Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 21 Dec 2016 17:06:15 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482336391foq2lxtwr7lusok.htm/, Retrieved Fri, 01 Nov 2024 03:36:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302407, Retrieved Fri, 01 Nov 2024 03:36:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact101
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-21 16:06:15] [672675941468e072e71d9fb024f2b817] [Current]
Feedback Forum

Post a new message
Dataseries X:
1932.8
1861.4
2170.2
1999.6
2225.5
2195.7
2713.1
2412
2568.3
2623.7
3185.5
2722.6
3046.3
2854.2
3337.6
2920.3
3058.3
2933.7
3773.4
3193.5
3472.2
3345.5
4028.4
3463.1
3675.4
3500.8
4142.1
3598
3765.3
3557.7
4303.6
3620.1
3691.1
3678.1
4505.8
3695
3894.1
3718.9
4749.8
3855.9
4011.7
3907.6
4812.5
4071.3
4163.4
4077.6
5109.2
4207.6
4320.8
4396.9
5358.8




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302407&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302407&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302407&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.7224885.15962e-06
20.7253125.17982e-06
30.6163894.40192.7e-05
40.7396525.28221e-06
50.4821983.44360.000578
60.4931713.52190.000456
70.4004822.860.003062
80.5160573.68540.000277
90.2873652.05220.02265
100.3057472.18350.016814
110.2312551.65150.052391
120.3405752.43220.009278
130.1413011.00910.158848
140.1583221.13060.131747
150.0901350.64370.261331
160.1812731.29460.100653
17-0.001866-0.01330.494711

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.722488 & 5.1596 & 2e-06 \tabularnewline
2 & 0.725312 & 5.1798 & 2e-06 \tabularnewline
3 & 0.616389 & 4.4019 & 2.7e-05 \tabularnewline
4 & 0.739652 & 5.2822 & 1e-06 \tabularnewline
5 & 0.482198 & 3.4436 & 0.000578 \tabularnewline
6 & 0.493171 & 3.5219 & 0.000456 \tabularnewline
7 & 0.400482 & 2.86 & 0.003062 \tabularnewline
8 & 0.516057 & 3.6854 & 0.000277 \tabularnewline
9 & 0.287365 & 2.0522 & 0.02265 \tabularnewline
10 & 0.305747 & 2.1835 & 0.016814 \tabularnewline
11 & 0.231255 & 1.6515 & 0.052391 \tabularnewline
12 & 0.340575 & 2.4322 & 0.009278 \tabularnewline
13 & 0.141301 & 1.0091 & 0.158848 \tabularnewline
14 & 0.158322 & 1.1306 & 0.131747 \tabularnewline
15 & 0.090135 & 0.6437 & 0.261331 \tabularnewline
16 & 0.181273 & 1.2946 & 0.100653 \tabularnewline
17 & -0.001866 & -0.0133 & 0.494711 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302407&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.722488[/C][C]5.1596[/C][C]2e-06[/C][/ROW]
[ROW][C]2[/C][C]0.725312[/C][C]5.1798[/C][C]2e-06[/C][/ROW]
[ROW][C]3[/C][C]0.616389[/C][C]4.4019[/C][C]2.7e-05[/C][/ROW]
[ROW][C]4[/C][C]0.739652[/C][C]5.2822[/C][C]1e-06[/C][/ROW]
[ROW][C]5[/C][C]0.482198[/C][C]3.4436[/C][C]0.000578[/C][/ROW]
[ROW][C]6[/C][C]0.493171[/C][C]3.5219[/C][C]0.000456[/C][/ROW]
[ROW][C]7[/C][C]0.400482[/C][C]2.86[/C][C]0.003062[/C][/ROW]
[ROW][C]8[/C][C]0.516057[/C][C]3.6854[/C][C]0.000277[/C][/ROW]
[ROW][C]9[/C][C]0.287365[/C][C]2.0522[/C][C]0.02265[/C][/ROW]
[ROW][C]10[/C][C]0.305747[/C][C]2.1835[/C][C]0.016814[/C][/ROW]
[ROW][C]11[/C][C]0.231255[/C][C]1.6515[/C][C]0.052391[/C][/ROW]
[ROW][C]12[/C][C]0.340575[/C][C]2.4322[/C][C]0.009278[/C][/ROW]
[ROW][C]13[/C][C]0.141301[/C][C]1.0091[/C][C]0.158848[/C][/ROW]
[ROW][C]14[/C][C]0.158322[/C][C]1.1306[/C][C]0.131747[/C][/ROW]
[ROW][C]15[/C][C]0.090135[/C][C]0.6437[/C][C]0.261331[/C][/ROW]
[ROW][C]16[/C][C]0.181273[/C][C]1.2946[/C][C]0.100653[/C][/ROW]
[ROW][C]17[/C][C]-0.001866[/C][C]-0.0133[/C][C]0.494711[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302407&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302407&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.7224885.15962e-06
20.7253125.17982e-06
30.6163894.40192.7e-05
40.7396525.28221e-06
50.4821983.44360.000578
60.4931713.52190.000456
70.4004822.860.003062
80.5160573.68540.000277
90.2873652.05220.02265
100.3057472.18350.016814
110.2312551.65150.052391
120.3405752.43220.009278
130.1413011.00910.158848
140.1583221.13060.131747
150.0901350.64370.261331
160.1812731.29460.100653
17-0.001866-0.01330.494711







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.7224885.15962e-06
20.4253523.03760.001877
30.0202930.14490.442671
40.4394833.13850.001411
5-0.502262-3.58690.000375
60.0233610.16680.434081
70.0777490.55520.290579
80.1461031.04340.150846
9-0.192189-1.37250.087957
10-0.056521-0.40360.344082
110.0527040.37640.354097
120.0715760.51120.305724
13-0.069874-0.4990.309962
14-0.098734-0.70510.241976
15-0.015091-0.10780.4573
160.0074250.0530.47896
17-0.042331-0.30230.381824

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.722488 & 5.1596 & 2e-06 \tabularnewline
2 & 0.425352 & 3.0376 & 0.001877 \tabularnewline
3 & 0.020293 & 0.1449 & 0.442671 \tabularnewline
4 & 0.439483 & 3.1385 & 0.001411 \tabularnewline
5 & -0.502262 & -3.5869 & 0.000375 \tabularnewline
6 & 0.023361 & 0.1668 & 0.434081 \tabularnewline
7 & 0.077749 & 0.5552 & 0.290579 \tabularnewline
8 & 0.146103 & 1.0434 & 0.150846 \tabularnewline
9 & -0.192189 & -1.3725 & 0.087957 \tabularnewline
10 & -0.056521 & -0.4036 & 0.344082 \tabularnewline
11 & 0.052704 & 0.3764 & 0.354097 \tabularnewline
12 & 0.071576 & 0.5112 & 0.305724 \tabularnewline
13 & -0.069874 & -0.499 & 0.309962 \tabularnewline
14 & -0.098734 & -0.7051 & 0.241976 \tabularnewline
15 & -0.015091 & -0.1078 & 0.4573 \tabularnewline
16 & 0.007425 & 0.053 & 0.47896 \tabularnewline
17 & -0.042331 & -0.3023 & 0.381824 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302407&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.722488[/C][C]5.1596[/C][C]2e-06[/C][/ROW]
[ROW][C]2[/C][C]0.425352[/C][C]3.0376[/C][C]0.001877[/C][/ROW]
[ROW][C]3[/C][C]0.020293[/C][C]0.1449[/C][C]0.442671[/C][/ROW]
[ROW][C]4[/C][C]0.439483[/C][C]3.1385[/C][C]0.001411[/C][/ROW]
[ROW][C]5[/C][C]-0.502262[/C][C]-3.5869[/C][C]0.000375[/C][/ROW]
[ROW][C]6[/C][C]0.023361[/C][C]0.1668[/C][C]0.434081[/C][/ROW]
[ROW][C]7[/C][C]0.077749[/C][C]0.5552[/C][C]0.290579[/C][/ROW]
[ROW][C]8[/C][C]0.146103[/C][C]1.0434[/C][C]0.150846[/C][/ROW]
[ROW][C]9[/C][C]-0.192189[/C][C]-1.3725[/C][C]0.087957[/C][/ROW]
[ROW][C]10[/C][C]-0.056521[/C][C]-0.4036[/C][C]0.344082[/C][/ROW]
[ROW][C]11[/C][C]0.052704[/C][C]0.3764[/C][C]0.354097[/C][/ROW]
[ROW][C]12[/C][C]0.071576[/C][C]0.5112[/C][C]0.305724[/C][/ROW]
[ROW][C]13[/C][C]-0.069874[/C][C]-0.499[/C][C]0.309962[/C][/ROW]
[ROW][C]14[/C][C]-0.098734[/C][C]-0.7051[/C][C]0.241976[/C][/ROW]
[ROW][C]15[/C][C]-0.015091[/C][C]-0.1078[/C][C]0.4573[/C][/ROW]
[ROW][C]16[/C][C]0.007425[/C][C]0.053[/C][C]0.47896[/C][/ROW]
[ROW][C]17[/C][C]-0.042331[/C][C]-0.3023[/C][C]0.381824[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302407&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302407&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.7224885.15962e-06
20.4253523.03760.001877
30.0202930.14490.442671
40.4394833.13850.001411
5-0.502262-3.58690.000375
60.0233610.16680.434081
70.0777490.55520.290579
80.1461031.04340.150846
9-0.192189-1.37250.087957
10-0.056521-0.40360.344082
110.0527040.37640.354097
120.0715760.51120.305724
13-0.069874-0.4990.309962
14-0.098734-0.70510.241976
15-0.015091-0.10780.4573
160.0074250.0530.47896
17-0.042331-0.30230.381824



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 4 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '4'
par4 <- '1'
par3 <- '1'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')