Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 21 Dec 2016 16:25:51 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482333999t4df91tcp7ls8qp.htm/, Retrieved Fri, 01 Nov 2024 03:36:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302382, Retrieved Fri, 01 Nov 2024 03:36:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact85
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [structural time s...] [2016-12-21 15:25:51] [6f830dc7e8de22be3233942ffbe3aaba] [Current]
Feedback Forum

Post a new message
Dataseries X:
4526.1
4616.8
4558
4736.8
4771.1
4611.3
4687.1
4718.3
4731.6
4755.4
4849.8
4697.8
4720.2
4741.1
4794.2
4807.4
4836.9
4853
4902.9
4938
4910.4
4954.6
4937.3
5003.8
5005.6
4984.4
5050
5017.7
4984.8
5036.3
5093.6
5111.2
5090.7
5063.7
5007.5
5122.5
5172.3
5232.8
5183.3
5204.6
5255.4
5294.5
5308.9
5281.3
5413.9
5462.4
5568.7
5579.1
5590.3
5703.2
5717.7
5772.3
5876.6
6134.6
6155.6
6259.5
6180.7
6120.3
6097
6167.5
6207.1
6181.7
6196.2
6183.9
6184
6271.1
6204.9
6284.5
6293.9
6377.9
6400.2
6456.2
6372.8
6368.8
6497.8
6599.4
6696.9
6676.3
6731.7
6732.3
6760.2
6841.4
6917.5
6899.3
6972.9
6969.2
6941.6
6905.5
6971.3
6968.4
7012.2
7049.5
7095.6
7237.5
7230.5
7253.5
7289.4
7364.6
7428.1
7390.2
7279.9
7426.5
7480.1




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302382&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302382&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302382&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
14526.14526.1000
24616.84606.649321454054.698201607804684.64250663622940.777020726135256
345584562.266048065873.863979887490123.97569177048543-0.759996070032902
44736.84707.656314714585.617416894709374.94502309344992.20790937884735
54771.14758.216030606576.2158740317695.205715538431740.70049862443582
64611.34629.798827099384.196614275619384.45550907789691-2.09579906453872
74687.14675.37832276164.889337730233374.681321514519310.643368358647368
84718.34708.648661565895.41253618653684.833193982745910.440676277498972
94731.64724.877620188925.629585237142664.889888608423650.167742803235791
104755.44747.542444668495.998059519539714.977216022208130.263872170300204
114849.84831.309336682627.796323941840865.366524090442121.20324445845274
124697.84714.10066176794.728110085397274.7563286235964-1.93195606864387
134720.24749.74578573524.02427570440589-34.74799666048040.580990831302414
144741.14739.980461690693.404963710130122.79660262955713-0.179112670352028
154794.24784.360449389814.604504031914243.031605193194350.628543190401983
164807.44802.131784497424.973936815051073.066093045266980.202467271281471
174836.94829.96610979585.634154147589543.114336410909350.351249950444548
1848534847.822129994076.000025217371783.138572702930880.187634064562772
194902.94893.135263059027.217441909391433.213725001378860.603075196325651
2049384929.826487981298.158825273267443.268209072831910.451803051453795
214910.44911.570112963097.291079351711863.22100496286257-0.404636581243027
224954.64946.70706752838.229502749125413.269071003644080.426273386967576
234937.34937.030962748577.611878496935873.23923999078313-0.273936568281606
245003.84992.545316347389.299536415813713.316207485597740.73243533643983
255005.65029.776900345259.85551479087683-28.76369737768020.472251691823896
264984.44989.481885722757.593188666085571.77231749325906-0.692221757701624
2750505040.875926652159.261926804116681.915379228832520.667555586446125
285017.75020.684515175518.155117812886651.87923778684305-0.449360378159242
294984.84989.456178021236.660521380916261.84383529671794-0.60058978268762
305036.35029.004534158837.923872235915161.870894006708270.501338404876739
315093.65083.942217285569.750809916758561.907773146850760.716422781352613
325111.25107.0770537765210.27644354761161.917844186355590.203887556082072
335090.75092.837075515389.304248914764381.90013736636308-0.373363069208245
345063.75067.522099717967.919257943128081.87614325455798-0.527073903573674
355007.55015.522057440315.50271026029151.836303031744-0.912031237647475
365122.55106.544403675488.977179315874031.890835530374181.30138536295393
375172.35173.0333277515210.9491968964501-10.09129441038970.936664783283683
385232.85225.4132778150612.82011179010211.42611135660490.587406436214311
395183.35189.8999725366910.79532660641981.32230457370903-0.734570998099222
405204.65202.9121946381410.88758078258931.32370751517420.0337089881111461
415255.45248.3840745393912.33124888951831.337432745225530.525735988441006
425294.55288.5789735816813.4991932480561.347165565496160.423502128065213
435308.95306.7796931410213.69704625521821.348716855386740.0714492033697474
445281.35285.6729095150912.22706293211071.33774525523003-0.528849534392634
455413.95396.3773027855316.4002465470841.367453727648951.4962089960298
465462.45454.2226669548618.16191899560541.37942056760490.629628165446578
475568.75553.9256419423221.63755328848331.401953060748031.2386409305032
485579.15577.3968877786221.71591168566261.402437947120320.02785205275104
495590.35604.1854959869721.917984052641-14.70875348082790.0811195873312897
505703.25691.5393359555824.85008111892361.970083288181960.941929223946939
515717.75715.8234372865324.82559974842581.96920452474019-0.00859287875219375
525772.35766.1431232590625.92444656241121.978394809613640.387150027197729
535876.65862.9871610698528.98392997211961.990992823235411.07679227296116
546134.66098.7043389613837.91486194823552.021032736199283.13866175112899
556155.66151.1897148617238.5451651408732.02300490632130.22120087983722
566259.56247.9345673896441.06596043620782.030507598681440.883513589337156
576180.76194.209806415736.95561102569422.01882925199326-1.43893346820761
586120.36134.1798181145132.74569691884272.00740428389641-1.472196814926
5960976105.1228814070530.06043442923752.00044276304221-0.938103230955555
606167.56161.2304332946431.19314073696142.003248161707260.395357092648438
616207.16221.1796963987232.4030102544937-18.74580513556330.454995972573937
626181.76190.0820949979729.58043512600351.19684809660353-0.922962721250663
636196.26198.4929882997428.65527885562381.17083218106529-0.321287608734874
646183.96188.9876916781926.99068677021131.16214248543851-0.579221051506854
6561846187.5031367530125.74831754503981.15990957147512-0.432155203907363
666271.16261.9612099319427.87449825592711.162562857774410.739217056773059
676204.96215.85504010724.64375111840221.15893350830764-1.12270522437793
686284.56277.3115946944726.25205887369391.160643626955420.558649631836408
696293.96294.2626826466125.84555156810571.16023119188368-0.141144102710102
706377.96368.7701213497427.97312297235071.162293482928130.738444293995124
716400.26398.7148198479628.05935136640961.162373353170490.0299183064600091
726456.26451.0603693847529.12184370546281.163313831101230.368534655345458
736372.86405.0164713434325.888153594316-20.0124144428494-1.1811096626239
746368.86375.7781101225223.45175913569821.44370254435629-0.8066028543834
756497.86482.6267329125127.1077716133721.528383614630151.26554867172258
766599.46585.4607705061430.42437213764411.540396971198161.14919842245567
776696.96684.1769358661733.4154387396351.54259770920721.03626056528333
786676.36680.7838705120231.80304383651041.54211070293907-0.558519510473
796731.76727.6858884189932.46455743269321.542262607542240.229104760142182
806732.36734.8928488213731.35781456042921.54202933402135-0.38324489487814
816760.26759.7261384917131.07188329441671.54197210142223-0.0989990984740337
826841.46832.9561425662332.91964961423091.54232522914410.639678531016611
836917.56908.9120819738634.80611605064341.542669738143060.653000766559676
846899.36904.2231278801433.07470012365781.5423675499648-0.599266818088797
856972.96979.5162782299134.908779866712-13.47617929507910.660154885689019
866969.26974.3863712129333.14539340760280.98707582590583-0.588684750932397
876941.66950.0654779195830.62399331247150.937102240939747-0.87201282504289
886905.56915.279379214527.75533808442440.929240942989625-0.992567646314994
896971.36966.5251184960528.78553211722710.9294841881502980.356421292446859
906968.46971.3866829967327.7362730483340.929615366610971-0.362993433801834
917012.27009.5616769823528.19411939555820.9295370302258580.158383972318509
927049.57047.0492306795328.60175323890870.929467274900370.141006622058686
937095.67091.9951713972429.318683809980.9293492184426110.247985407684536
947237.57220.3581963690133.66340093245810.9286647140968181.50276834761848
957230.57233.0106014616732.74168946019970.928803526628849-0.318792895151735
967253.57254.4252993164732.24477912414430.928875054014898-0.171860566696743
977289.47297.1526251379332.7022383917928-9.457135006478510.163312306751498
987364.67359.0526393450733.98561530417271.01382732135090.430873566434885
997428.17422.2792655530735.26883388402981.036123115176720.443704543646844
1007390.27398.7889364250732.69071090696871.03041132057181-0.891612166750503
1017279.97300.336993244926.93674458220591.03041410666662-1.98978702660383
1027426.57411.6577097330930.63919888989131.029258395417321.28031338623452
1037480.17473.8983152783332.02577501605041.028781119099660.479470463752508

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 4526.1 & 4526.1 & 0 & 0 & 0 \tabularnewline
2 & 4616.8 & 4606.64932145405 & 4.69820160780468 & 4.6425066362294 & 0.777020726135256 \tabularnewline
3 & 4558 & 4562.26604806587 & 3.86397988749012 & 3.97569177048543 & -0.759996070032902 \tabularnewline
4 & 4736.8 & 4707.65631471458 & 5.61741689470937 & 4.9450230934499 & 2.20790937884735 \tabularnewline
5 & 4771.1 & 4758.21603060657 & 6.215874031769 & 5.20571553843174 & 0.70049862443582 \tabularnewline
6 & 4611.3 & 4629.79882709938 & 4.19661427561938 & 4.45550907789691 & -2.09579906453872 \tabularnewline
7 & 4687.1 & 4675.3783227616 & 4.88933773023337 & 4.68132151451931 & 0.643368358647368 \tabularnewline
8 & 4718.3 & 4708.64866156589 & 5.4125361865368 & 4.83319398274591 & 0.440676277498972 \tabularnewline
9 & 4731.6 & 4724.87762018892 & 5.62958523714266 & 4.88988860842365 & 0.167742803235791 \tabularnewline
10 & 4755.4 & 4747.54244466849 & 5.99805951953971 & 4.97721602220813 & 0.263872170300204 \tabularnewline
11 & 4849.8 & 4831.30933668262 & 7.79632394184086 & 5.36652409044212 & 1.20324445845274 \tabularnewline
12 & 4697.8 & 4714.1006617679 & 4.72811008539727 & 4.7563286235964 & -1.93195606864387 \tabularnewline
13 & 4720.2 & 4749.7457857352 & 4.02427570440589 & -34.7479966604804 & 0.580990831302414 \tabularnewline
14 & 4741.1 & 4739.98046169069 & 3.40496371013012 & 2.79660262955713 & -0.179112670352028 \tabularnewline
15 & 4794.2 & 4784.36044938981 & 4.60450403191424 & 3.03160519319435 & 0.628543190401983 \tabularnewline
16 & 4807.4 & 4802.13178449742 & 4.97393681505107 & 3.06609304526698 & 0.202467271281471 \tabularnewline
17 & 4836.9 & 4829.9661097958 & 5.63415414758954 & 3.11433641090935 & 0.351249950444548 \tabularnewline
18 & 4853 & 4847.82212999407 & 6.00002521737178 & 3.13857270293088 & 0.187634064562772 \tabularnewline
19 & 4902.9 & 4893.13526305902 & 7.21744190939143 & 3.21372500137886 & 0.603075196325651 \tabularnewline
20 & 4938 & 4929.82648798129 & 8.15882527326744 & 3.26820907283191 & 0.451803051453795 \tabularnewline
21 & 4910.4 & 4911.57011296309 & 7.29107935171186 & 3.22100496286257 & -0.404636581243027 \tabularnewline
22 & 4954.6 & 4946.7070675283 & 8.22950274912541 & 3.26907100364408 & 0.426273386967576 \tabularnewline
23 & 4937.3 & 4937.03096274857 & 7.61187849693587 & 3.23923999078313 & -0.273936568281606 \tabularnewline
24 & 5003.8 & 4992.54531634738 & 9.29953641581371 & 3.31620748559774 & 0.73243533643983 \tabularnewline
25 & 5005.6 & 5029.77690034525 & 9.85551479087683 & -28.7636973776802 & 0.472251691823896 \tabularnewline
26 & 4984.4 & 4989.48188572275 & 7.59318866608557 & 1.77231749325906 & -0.692221757701624 \tabularnewline
27 & 5050 & 5040.87592665215 & 9.26192680411668 & 1.91537922883252 & 0.667555586446125 \tabularnewline
28 & 5017.7 & 5020.68451517551 & 8.15511781288665 & 1.87923778684305 & -0.449360378159242 \tabularnewline
29 & 4984.8 & 4989.45617802123 & 6.66052138091626 & 1.84383529671794 & -0.60058978268762 \tabularnewline
30 & 5036.3 & 5029.00453415883 & 7.92387223591516 & 1.87089400670827 & 0.501338404876739 \tabularnewline
31 & 5093.6 & 5083.94221728556 & 9.75080991675856 & 1.90777314685076 & 0.716422781352613 \tabularnewline
32 & 5111.2 & 5107.07705377652 & 10.2764435476116 & 1.91784418635559 & 0.203887556082072 \tabularnewline
33 & 5090.7 & 5092.83707551538 & 9.30424891476438 & 1.90013736636308 & -0.373363069208245 \tabularnewline
34 & 5063.7 & 5067.52209971796 & 7.91925794312808 & 1.87614325455798 & -0.527073903573674 \tabularnewline
35 & 5007.5 & 5015.52205744031 & 5.5027102602915 & 1.836303031744 & -0.912031237647475 \tabularnewline
36 & 5122.5 & 5106.54440367548 & 8.97717931587403 & 1.89083553037418 & 1.30138536295393 \tabularnewline
37 & 5172.3 & 5173.03332775152 & 10.9491968964501 & -10.0912944103897 & 0.936664783283683 \tabularnewline
38 & 5232.8 & 5225.41327781506 & 12.8201117901021 & 1.4261113566049 & 0.587406436214311 \tabularnewline
39 & 5183.3 & 5189.89997253669 & 10.7953266064198 & 1.32230457370903 & -0.734570998099222 \tabularnewline
40 & 5204.6 & 5202.91219463814 & 10.8875807825893 & 1.3237075151742 & 0.0337089881111461 \tabularnewline
41 & 5255.4 & 5248.38407453939 & 12.3312488895183 & 1.33743274522553 & 0.525735988441006 \tabularnewline
42 & 5294.5 & 5288.57897358168 & 13.499193248056 & 1.34716556549616 & 0.423502128065213 \tabularnewline
43 & 5308.9 & 5306.77969314102 & 13.6970462552182 & 1.34871685538674 & 0.0714492033697474 \tabularnewline
44 & 5281.3 & 5285.67290951509 & 12.2270629321107 & 1.33774525523003 & -0.528849534392634 \tabularnewline
45 & 5413.9 & 5396.37730278553 & 16.400246547084 & 1.36745372764895 & 1.4962089960298 \tabularnewline
46 & 5462.4 & 5454.22266695486 & 18.1619189956054 & 1.3794205676049 & 0.629628165446578 \tabularnewline
47 & 5568.7 & 5553.92564194232 & 21.6375532884833 & 1.40195306074803 & 1.2386409305032 \tabularnewline
48 & 5579.1 & 5577.39688777862 & 21.7159116856626 & 1.40243794712032 & 0.02785205275104 \tabularnewline
49 & 5590.3 & 5604.18549598697 & 21.917984052641 & -14.7087534808279 & 0.0811195873312897 \tabularnewline
50 & 5703.2 & 5691.53933595558 & 24.8500811189236 & 1.97008328818196 & 0.941929223946939 \tabularnewline
51 & 5717.7 & 5715.82343728653 & 24.8255997484258 & 1.96920452474019 & -0.00859287875219375 \tabularnewline
52 & 5772.3 & 5766.14312325906 & 25.9244465624112 & 1.97839480961364 & 0.387150027197729 \tabularnewline
53 & 5876.6 & 5862.98716106985 & 28.9839299721196 & 1.99099282323541 & 1.07679227296116 \tabularnewline
54 & 6134.6 & 6098.70433896138 & 37.9148619482355 & 2.02103273619928 & 3.13866175112899 \tabularnewline
55 & 6155.6 & 6151.18971486172 & 38.545165140873 & 2.0230049063213 & 0.22120087983722 \tabularnewline
56 & 6259.5 & 6247.93456738964 & 41.0659604362078 & 2.03050759868144 & 0.883513589337156 \tabularnewline
57 & 6180.7 & 6194.2098064157 & 36.9556110256942 & 2.01882925199326 & -1.43893346820761 \tabularnewline
58 & 6120.3 & 6134.17981811451 & 32.7456969188427 & 2.00740428389641 & -1.472196814926 \tabularnewline
59 & 6097 & 6105.12288140705 & 30.0604344292375 & 2.00044276304221 & -0.938103230955555 \tabularnewline
60 & 6167.5 & 6161.23043329464 & 31.1931407369614 & 2.00324816170726 & 0.395357092648438 \tabularnewline
61 & 6207.1 & 6221.17969639872 & 32.4030102544937 & -18.7458051355633 & 0.454995972573937 \tabularnewline
62 & 6181.7 & 6190.08209499797 & 29.5804351260035 & 1.19684809660353 & -0.922962721250663 \tabularnewline
63 & 6196.2 & 6198.49298829974 & 28.6552788556238 & 1.17083218106529 & -0.321287608734874 \tabularnewline
64 & 6183.9 & 6188.98769167819 & 26.9906867702113 & 1.16214248543851 & -0.579221051506854 \tabularnewline
65 & 6184 & 6187.50313675301 & 25.7483175450398 & 1.15990957147512 & -0.432155203907363 \tabularnewline
66 & 6271.1 & 6261.96120993194 & 27.8744982559271 & 1.16256285777441 & 0.739217056773059 \tabularnewline
67 & 6204.9 & 6215.855040107 & 24.6437511184022 & 1.15893350830764 & -1.12270522437793 \tabularnewline
68 & 6284.5 & 6277.31159469447 & 26.2520588736939 & 1.16064362695542 & 0.558649631836408 \tabularnewline
69 & 6293.9 & 6294.26268264661 & 25.8455515681057 & 1.16023119188368 & -0.141144102710102 \tabularnewline
70 & 6377.9 & 6368.77012134974 & 27.9731229723507 & 1.16229348292813 & 0.738444293995124 \tabularnewline
71 & 6400.2 & 6398.71481984796 & 28.0593513664096 & 1.16237335317049 & 0.0299183064600091 \tabularnewline
72 & 6456.2 & 6451.06036938475 & 29.1218437054628 & 1.16331383110123 & 0.368534655345458 \tabularnewline
73 & 6372.8 & 6405.01647134343 & 25.888153594316 & -20.0124144428494 & -1.1811096626239 \tabularnewline
74 & 6368.8 & 6375.77811012252 & 23.4517591356982 & 1.44370254435629 & -0.8066028543834 \tabularnewline
75 & 6497.8 & 6482.62673291251 & 27.107771613372 & 1.52838361463015 & 1.26554867172258 \tabularnewline
76 & 6599.4 & 6585.46077050614 & 30.4243721376441 & 1.54039697119816 & 1.14919842245567 \tabularnewline
77 & 6696.9 & 6684.17693586617 & 33.415438739635 & 1.5425977092072 & 1.03626056528333 \tabularnewline
78 & 6676.3 & 6680.78387051202 & 31.8030438365104 & 1.54211070293907 & -0.558519510473 \tabularnewline
79 & 6731.7 & 6727.68588841899 & 32.4645574326932 & 1.54226260754224 & 0.229104760142182 \tabularnewline
80 & 6732.3 & 6734.89284882137 & 31.3578145604292 & 1.54202933402135 & -0.38324489487814 \tabularnewline
81 & 6760.2 & 6759.72613849171 & 31.0718832944167 & 1.54197210142223 & -0.0989990984740337 \tabularnewline
82 & 6841.4 & 6832.95614256623 & 32.9196496142309 & 1.5423252291441 & 0.639678531016611 \tabularnewline
83 & 6917.5 & 6908.91208197386 & 34.8061160506434 & 1.54266973814306 & 0.653000766559676 \tabularnewline
84 & 6899.3 & 6904.22312788014 & 33.0747001236578 & 1.5423675499648 & -0.599266818088797 \tabularnewline
85 & 6972.9 & 6979.51627822991 & 34.908779866712 & -13.4761792950791 & 0.660154885689019 \tabularnewline
86 & 6969.2 & 6974.38637121293 & 33.1453934076028 & 0.98707582590583 & -0.588684750932397 \tabularnewline
87 & 6941.6 & 6950.06547791958 & 30.6239933124715 & 0.937102240939747 & -0.87201282504289 \tabularnewline
88 & 6905.5 & 6915.2793792145 & 27.7553380844244 & 0.929240942989625 & -0.992567646314994 \tabularnewline
89 & 6971.3 & 6966.52511849605 & 28.7855321172271 & 0.929484188150298 & 0.356421292446859 \tabularnewline
90 & 6968.4 & 6971.38668299673 & 27.736273048334 & 0.929615366610971 & -0.362993433801834 \tabularnewline
91 & 7012.2 & 7009.56167698235 & 28.1941193955582 & 0.929537030225858 & 0.158383972318509 \tabularnewline
92 & 7049.5 & 7047.04923067953 & 28.6017532389087 & 0.92946727490037 & 0.141006622058686 \tabularnewline
93 & 7095.6 & 7091.99517139724 & 29.31868380998 & 0.929349218442611 & 0.247985407684536 \tabularnewline
94 & 7237.5 & 7220.35819636901 & 33.6634009324581 & 0.928664714096818 & 1.50276834761848 \tabularnewline
95 & 7230.5 & 7233.01060146167 & 32.7416894601997 & 0.928803526628849 & -0.318792895151735 \tabularnewline
96 & 7253.5 & 7254.42529931647 & 32.2447791241443 & 0.928875054014898 & -0.171860566696743 \tabularnewline
97 & 7289.4 & 7297.15262513793 & 32.7022383917928 & -9.45713500647851 & 0.163312306751498 \tabularnewline
98 & 7364.6 & 7359.05263934507 & 33.9856153041727 & 1.0138273213509 & 0.430873566434885 \tabularnewline
99 & 7428.1 & 7422.27926555307 & 35.2688338840298 & 1.03612311517672 & 0.443704543646844 \tabularnewline
100 & 7390.2 & 7398.78893642507 & 32.6907109069687 & 1.03041132057181 & -0.891612166750503 \tabularnewline
101 & 7279.9 & 7300.3369932449 & 26.9367445822059 & 1.03041410666662 & -1.98978702660383 \tabularnewline
102 & 7426.5 & 7411.65770973309 & 30.6391988898913 & 1.02925839541732 & 1.28031338623452 \tabularnewline
103 & 7480.1 & 7473.89831527833 & 32.0257750160504 & 1.02878111909966 & 0.479470463752508 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302382&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]4526.1[/C][C]4526.1[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]4616.8[/C][C]4606.64932145405[/C][C]4.69820160780468[/C][C]4.6425066362294[/C][C]0.777020726135256[/C][/ROW]
[ROW][C]3[/C][C]4558[/C][C]4562.26604806587[/C][C]3.86397988749012[/C][C]3.97569177048543[/C][C]-0.759996070032902[/C][/ROW]
[ROW][C]4[/C][C]4736.8[/C][C]4707.65631471458[/C][C]5.61741689470937[/C][C]4.9450230934499[/C][C]2.20790937884735[/C][/ROW]
[ROW][C]5[/C][C]4771.1[/C][C]4758.21603060657[/C][C]6.215874031769[/C][C]5.20571553843174[/C][C]0.70049862443582[/C][/ROW]
[ROW][C]6[/C][C]4611.3[/C][C]4629.79882709938[/C][C]4.19661427561938[/C][C]4.45550907789691[/C][C]-2.09579906453872[/C][/ROW]
[ROW][C]7[/C][C]4687.1[/C][C]4675.3783227616[/C][C]4.88933773023337[/C][C]4.68132151451931[/C][C]0.643368358647368[/C][/ROW]
[ROW][C]8[/C][C]4718.3[/C][C]4708.64866156589[/C][C]5.4125361865368[/C][C]4.83319398274591[/C][C]0.440676277498972[/C][/ROW]
[ROW][C]9[/C][C]4731.6[/C][C]4724.87762018892[/C][C]5.62958523714266[/C][C]4.88988860842365[/C][C]0.167742803235791[/C][/ROW]
[ROW][C]10[/C][C]4755.4[/C][C]4747.54244466849[/C][C]5.99805951953971[/C][C]4.97721602220813[/C][C]0.263872170300204[/C][/ROW]
[ROW][C]11[/C][C]4849.8[/C][C]4831.30933668262[/C][C]7.79632394184086[/C][C]5.36652409044212[/C][C]1.20324445845274[/C][/ROW]
[ROW][C]12[/C][C]4697.8[/C][C]4714.1006617679[/C][C]4.72811008539727[/C][C]4.7563286235964[/C][C]-1.93195606864387[/C][/ROW]
[ROW][C]13[/C][C]4720.2[/C][C]4749.7457857352[/C][C]4.02427570440589[/C][C]-34.7479966604804[/C][C]0.580990831302414[/C][/ROW]
[ROW][C]14[/C][C]4741.1[/C][C]4739.98046169069[/C][C]3.40496371013012[/C][C]2.79660262955713[/C][C]-0.179112670352028[/C][/ROW]
[ROW][C]15[/C][C]4794.2[/C][C]4784.36044938981[/C][C]4.60450403191424[/C][C]3.03160519319435[/C][C]0.628543190401983[/C][/ROW]
[ROW][C]16[/C][C]4807.4[/C][C]4802.13178449742[/C][C]4.97393681505107[/C][C]3.06609304526698[/C][C]0.202467271281471[/C][/ROW]
[ROW][C]17[/C][C]4836.9[/C][C]4829.9661097958[/C][C]5.63415414758954[/C][C]3.11433641090935[/C][C]0.351249950444548[/C][/ROW]
[ROW][C]18[/C][C]4853[/C][C]4847.82212999407[/C][C]6.00002521737178[/C][C]3.13857270293088[/C][C]0.187634064562772[/C][/ROW]
[ROW][C]19[/C][C]4902.9[/C][C]4893.13526305902[/C][C]7.21744190939143[/C][C]3.21372500137886[/C][C]0.603075196325651[/C][/ROW]
[ROW][C]20[/C][C]4938[/C][C]4929.82648798129[/C][C]8.15882527326744[/C][C]3.26820907283191[/C][C]0.451803051453795[/C][/ROW]
[ROW][C]21[/C][C]4910.4[/C][C]4911.57011296309[/C][C]7.29107935171186[/C][C]3.22100496286257[/C][C]-0.404636581243027[/C][/ROW]
[ROW][C]22[/C][C]4954.6[/C][C]4946.7070675283[/C][C]8.22950274912541[/C][C]3.26907100364408[/C][C]0.426273386967576[/C][/ROW]
[ROW][C]23[/C][C]4937.3[/C][C]4937.03096274857[/C][C]7.61187849693587[/C][C]3.23923999078313[/C][C]-0.273936568281606[/C][/ROW]
[ROW][C]24[/C][C]5003.8[/C][C]4992.54531634738[/C][C]9.29953641581371[/C][C]3.31620748559774[/C][C]0.73243533643983[/C][/ROW]
[ROW][C]25[/C][C]5005.6[/C][C]5029.77690034525[/C][C]9.85551479087683[/C][C]-28.7636973776802[/C][C]0.472251691823896[/C][/ROW]
[ROW][C]26[/C][C]4984.4[/C][C]4989.48188572275[/C][C]7.59318866608557[/C][C]1.77231749325906[/C][C]-0.692221757701624[/C][/ROW]
[ROW][C]27[/C][C]5050[/C][C]5040.87592665215[/C][C]9.26192680411668[/C][C]1.91537922883252[/C][C]0.667555586446125[/C][/ROW]
[ROW][C]28[/C][C]5017.7[/C][C]5020.68451517551[/C][C]8.15511781288665[/C][C]1.87923778684305[/C][C]-0.449360378159242[/C][/ROW]
[ROW][C]29[/C][C]4984.8[/C][C]4989.45617802123[/C][C]6.66052138091626[/C][C]1.84383529671794[/C][C]-0.60058978268762[/C][/ROW]
[ROW][C]30[/C][C]5036.3[/C][C]5029.00453415883[/C][C]7.92387223591516[/C][C]1.87089400670827[/C][C]0.501338404876739[/C][/ROW]
[ROW][C]31[/C][C]5093.6[/C][C]5083.94221728556[/C][C]9.75080991675856[/C][C]1.90777314685076[/C][C]0.716422781352613[/C][/ROW]
[ROW][C]32[/C][C]5111.2[/C][C]5107.07705377652[/C][C]10.2764435476116[/C][C]1.91784418635559[/C][C]0.203887556082072[/C][/ROW]
[ROW][C]33[/C][C]5090.7[/C][C]5092.83707551538[/C][C]9.30424891476438[/C][C]1.90013736636308[/C][C]-0.373363069208245[/C][/ROW]
[ROW][C]34[/C][C]5063.7[/C][C]5067.52209971796[/C][C]7.91925794312808[/C][C]1.87614325455798[/C][C]-0.527073903573674[/C][/ROW]
[ROW][C]35[/C][C]5007.5[/C][C]5015.52205744031[/C][C]5.5027102602915[/C][C]1.836303031744[/C][C]-0.912031237647475[/C][/ROW]
[ROW][C]36[/C][C]5122.5[/C][C]5106.54440367548[/C][C]8.97717931587403[/C][C]1.89083553037418[/C][C]1.30138536295393[/C][/ROW]
[ROW][C]37[/C][C]5172.3[/C][C]5173.03332775152[/C][C]10.9491968964501[/C][C]-10.0912944103897[/C][C]0.936664783283683[/C][/ROW]
[ROW][C]38[/C][C]5232.8[/C][C]5225.41327781506[/C][C]12.8201117901021[/C][C]1.4261113566049[/C][C]0.587406436214311[/C][/ROW]
[ROW][C]39[/C][C]5183.3[/C][C]5189.89997253669[/C][C]10.7953266064198[/C][C]1.32230457370903[/C][C]-0.734570998099222[/C][/ROW]
[ROW][C]40[/C][C]5204.6[/C][C]5202.91219463814[/C][C]10.8875807825893[/C][C]1.3237075151742[/C][C]0.0337089881111461[/C][/ROW]
[ROW][C]41[/C][C]5255.4[/C][C]5248.38407453939[/C][C]12.3312488895183[/C][C]1.33743274522553[/C][C]0.525735988441006[/C][/ROW]
[ROW][C]42[/C][C]5294.5[/C][C]5288.57897358168[/C][C]13.499193248056[/C][C]1.34716556549616[/C][C]0.423502128065213[/C][/ROW]
[ROW][C]43[/C][C]5308.9[/C][C]5306.77969314102[/C][C]13.6970462552182[/C][C]1.34871685538674[/C][C]0.0714492033697474[/C][/ROW]
[ROW][C]44[/C][C]5281.3[/C][C]5285.67290951509[/C][C]12.2270629321107[/C][C]1.33774525523003[/C][C]-0.528849534392634[/C][/ROW]
[ROW][C]45[/C][C]5413.9[/C][C]5396.37730278553[/C][C]16.400246547084[/C][C]1.36745372764895[/C][C]1.4962089960298[/C][/ROW]
[ROW][C]46[/C][C]5462.4[/C][C]5454.22266695486[/C][C]18.1619189956054[/C][C]1.3794205676049[/C][C]0.629628165446578[/C][/ROW]
[ROW][C]47[/C][C]5568.7[/C][C]5553.92564194232[/C][C]21.6375532884833[/C][C]1.40195306074803[/C][C]1.2386409305032[/C][/ROW]
[ROW][C]48[/C][C]5579.1[/C][C]5577.39688777862[/C][C]21.7159116856626[/C][C]1.40243794712032[/C][C]0.02785205275104[/C][/ROW]
[ROW][C]49[/C][C]5590.3[/C][C]5604.18549598697[/C][C]21.917984052641[/C][C]-14.7087534808279[/C][C]0.0811195873312897[/C][/ROW]
[ROW][C]50[/C][C]5703.2[/C][C]5691.53933595558[/C][C]24.8500811189236[/C][C]1.97008328818196[/C][C]0.941929223946939[/C][/ROW]
[ROW][C]51[/C][C]5717.7[/C][C]5715.82343728653[/C][C]24.8255997484258[/C][C]1.96920452474019[/C][C]-0.00859287875219375[/C][/ROW]
[ROW][C]52[/C][C]5772.3[/C][C]5766.14312325906[/C][C]25.9244465624112[/C][C]1.97839480961364[/C][C]0.387150027197729[/C][/ROW]
[ROW][C]53[/C][C]5876.6[/C][C]5862.98716106985[/C][C]28.9839299721196[/C][C]1.99099282323541[/C][C]1.07679227296116[/C][/ROW]
[ROW][C]54[/C][C]6134.6[/C][C]6098.70433896138[/C][C]37.9148619482355[/C][C]2.02103273619928[/C][C]3.13866175112899[/C][/ROW]
[ROW][C]55[/C][C]6155.6[/C][C]6151.18971486172[/C][C]38.545165140873[/C][C]2.0230049063213[/C][C]0.22120087983722[/C][/ROW]
[ROW][C]56[/C][C]6259.5[/C][C]6247.93456738964[/C][C]41.0659604362078[/C][C]2.03050759868144[/C][C]0.883513589337156[/C][/ROW]
[ROW][C]57[/C][C]6180.7[/C][C]6194.2098064157[/C][C]36.9556110256942[/C][C]2.01882925199326[/C][C]-1.43893346820761[/C][/ROW]
[ROW][C]58[/C][C]6120.3[/C][C]6134.17981811451[/C][C]32.7456969188427[/C][C]2.00740428389641[/C][C]-1.472196814926[/C][/ROW]
[ROW][C]59[/C][C]6097[/C][C]6105.12288140705[/C][C]30.0604344292375[/C][C]2.00044276304221[/C][C]-0.938103230955555[/C][/ROW]
[ROW][C]60[/C][C]6167.5[/C][C]6161.23043329464[/C][C]31.1931407369614[/C][C]2.00324816170726[/C][C]0.395357092648438[/C][/ROW]
[ROW][C]61[/C][C]6207.1[/C][C]6221.17969639872[/C][C]32.4030102544937[/C][C]-18.7458051355633[/C][C]0.454995972573937[/C][/ROW]
[ROW][C]62[/C][C]6181.7[/C][C]6190.08209499797[/C][C]29.5804351260035[/C][C]1.19684809660353[/C][C]-0.922962721250663[/C][/ROW]
[ROW][C]63[/C][C]6196.2[/C][C]6198.49298829974[/C][C]28.6552788556238[/C][C]1.17083218106529[/C][C]-0.321287608734874[/C][/ROW]
[ROW][C]64[/C][C]6183.9[/C][C]6188.98769167819[/C][C]26.9906867702113[/C][C]1.16214248543851[/C][C]-0.579221051506854[/C][/ROW]
[ROW][C]65[/C][C]6184[/C][C]6187.50313675301[/C][C]25.7483175450398[/C][C]1.15990957147512[/C][C]-0.432155203907363[/C][/ROW]
[ROW][C]66[/C][C]6271.1[/C][C]6261.96120993194[/C][C]27.8744982559271[/C][C]1.16256285777441[/C][C]0.739217056773059[/C][/ROW]
[ROW][C]67[/C][C]6204.9[/C][C]6215.855040107[/C][C]24.6437511184022[/C][C]1.15893350830764[/C][C]-1.12270522437793[/C][/ROW]
[ROW][C]68[/C][C]6284.5[/C][C]6277.31159469447[/C][C]26.2520588736939[/C][C]1.16064362695542[/C][C]0.558649631836408[/C][/ROW]
[ROW][C]69[/C][C]6293.9[/C][C]6294.26268264661[/C][C]25.8455515681057[/C][C]1.16023119188368[/C][C]-0.141144102710102[/C][/ROW]
[ROW][C]70[/C][C]6377.9[/C][C]6368.77012134974[/C][C]27.9731229723507[/C][C]1.16229348292813[/C][C]0.738444293995124[/C][/ROW]
[ROW][C]71[/C][C]6400.2[/C][C]6398.71481984796[/C][C]28.0593513664096[/C][C]1.16237335317049[/C][C]0.0299183064600091[/C][/ROW]
[ROW][C]72[/C][C]6456.2[/C][C]6451.06036938475[/C][C]29.1218437054628[/C][C]1.16331383110123[/C][C]0.368534655345458[/C][/ROW]
[ROW][C]73[/C][C]6372.8[/C][C]6405.01647134343[/C][C]25.888153594316[/C][C]-20.0124144428494[/C][C]-1.1811096626239[/C][/ROW]
[ROW][C]74[/C][C]6368.8[/C][C]6375.77811012252[/C][C]23.4517591356982[/C][C]1.44370254435629[/C][C]-0.8066028543834[/C][/ROW]
[ROW][C]75[/C][C]6497.8[/C][C]6482.62673291251[/C][C]27.107771613372[/C][C]1.52838361463015[/C][C]1.26554867172258[/C][/ROW]
[ROW][C]76[/C][C]6599.4[/C][C]6585.46077050614[/C][C]30.4243721376441[/C][C]1.54039697119816[/C][C]1.14919842245567[/C][/ROW]
[ROW][C]77[/C][C]6696.9[/C][C]6684.17693586617[/C][C]33.415438739635[/C][C]1.5425977092072[/C][C]1.03626056528333[/C][/ROW]
[ROW][C]78[/C][C]6676.3[/C][C]6680.78387051202[/C][C]31.8030438365104[/C][C]1.54211070293907[/C][C]-0.558519510473[/C][/ROW]
[ROW][C]79[/C][C]6731.7[/C][C]6727.68588841899[/C][C]32.4645574326932[/C][C]1.54226260754224[/C][C]0.229104760142182[/C][/ROW]
[ROW][C]80[/C][C]6732.3[/C][C]6734.89284882137[/C][C]31.3578145604292[/C][C]1.54202933402135[/C][C]-0.38324489487814[/C][/ROW]
[ROW][C]81[/C][C]6760.2[/C][C]6759.72613849171[/C][C]31.0718832944167[/C][C]1.54197210142223[/C][C]-0.0989990984740337[/C][/ROW]
[ROW][C]82[/C][C]6841.4[/C][C]6832.95614256623[/C][C]32.9196496142309[/C][C]1.5423252291441[/C][C]0.639678531016611[/C][/ROW]
[ROW][C]83[/C][C]6917.5[/C][C]6908.91208197386[/C][C]34.8061160506434[/C][C]1.54266973814306[/C][C]0.653000766559676[/C][/ROW]
[ROW][C]84[/C][C]6899.3[/C][C]6904.22312788014[/C][C]33.0747001236578[/C][C]1.5423675499648[/C][C]-0.599266818088797[/C][/ROW]
[ROW][C]85[/C][C]6972.9[/C][C]6979.51627822991[/C][C]34.908779866712[/C][C]-13.4761792950791[/C][C]0.660154885689019[/C][/ROW]
[ROW][C]86[/C][C]6969.2[/C][C]6974.38637121293[/C][C]33.1453934076028[/C][C]0.98707582590583[/C][C]-0.588684750932397[/C][/ROW]
[ROW][C]87[/C][C]6941.6[/C][C]6950.06547791958[/C][C]30.6239933124715[/C][C]0.937102240939747[/C][C]-0.87201282504289[/C][/ROW]
[ROW][C]88[/C][C]6905.5[/C][C]6915.2793792145[/C][C]27.7553380844244[/C][C]0.929240942989625[/C][C]-0.992567646314994[/C][/ROW]
[ROW][C]89[/C][C]6971.3[/C][C]6966.52511849605[/C][C]28.7855321172271[/C][C]0.929484188150298[/C][C]0.356421292446859[/C][/ROW]
[ROW][C]90[/C][C]6968.4[/C][C]6971.38668299673[/C][C]27.736273048334[/C][C]0.929615366610971[/C][C]-0.362993433801834[/C][/ROW]
[ROW][C]91[/C][C]7012.2[/C][C]7009.56167698235[/C][C]28.1941193955582[/C][C]0.929537030225858[/C][C]0.158383972318509[/C][/ROW]
[ROW][C]92[/C][C]7049.5[/C][C]7047.04923067953[/C][C]28.6017532389087[/C][C]0.92946727490037[/C][C]0.141006622058686[/C][/ROW]
[ROW][C]93[/C][C]7095.6[/C][C]7091.99517139724[/C][C]29.31868380998[/C][C]0.929349218442611[/C][C]0.247985407684536[/C][/ROW]
[ROW][C]94[/C][C]7237.5[/C][C]7220.35819636901[/C][C]33.6634009324581[/C][C]0.928664714096818[/C][C]1.50276834761848[/C][/ROW]
[ROW][C]95[/C][C]7230.5[/C][C]7233.01060146167[/C][C]32.7416894601997[/C][C]0.928803526628849[/C][C]-0.318792895151735[/C][/ROW]
[ROW][C]96[/C][C]7253.5[/C][C]7254.42529931647[/C][C]32.2447791241443[/C][C]0.928875054014898[/C][C]-0.171860566696743[/C][/ROW]
[ROW][C]97[/C][C]7289.4[/C][C]7297.15262513793[/C][C]32.7022383917928[/C][C]-9.45713500647851[/C][C]0.163312306751498[/C][/ROW]
[ROW][C]98[/C][C]7364.6[/C][C]7359.05263934507[/C][C]33.9856153041727[/C][C]1.0138273213509[/C][C]0.430873566434885[/C][/ROW]
[ROW][C]99[/C][C]7428.1[/C][C]7422.27926555307[/C][C]35.2688338840298[/C][C]1.03612311517672[/C][C]0.443704543646844[/C][/ROW]
[ROW][C]100[/C][C]7390.2[/C][C]7398.78893642507[/C][C]32.6907109069687[/C][C]1.03041132057181[/C][C]-0.891612166750503[/C][/ROW]
[ROW][C]101[/C][C]7279.9[/C][C]7300.3369932449[/C][C]26.9367445822059[/C][C]1.03041410666662[/C][C]-1.98978702660383[/C][/ROW]
[ROW][C]102[/C][C]7426.5[/C][C]7411.65770973309[/C][C]30.6391988898913[/C][C]1.02925839541732[/C][C]1.28031338623452[/C][/ROW]
[ROW][C]103[/C][C]7480.1[/C][C]7473.89831527833[/C][C]32.0257750160504[/C][C]1.02878111909966[/C][C]0.479470463752508[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302382&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302382&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
14526.14526.1000
24616.84606.649321454054.698201607804684.64250663622940.777020726135256
345584562.266048065873.863979887490123.97569177048543-0.759996070032902
44736.84707.656314714585.617416894709374.94502309344992.20790937884735
54771.14758.216030606576.2158740317695.205715538431740.70049862443582
64611.34629.798827099384.196614275619384.45550907789691-2.09579906453872
74687.14675.37832276164.889337730233374.681321514519310.643368358647368
84718.34708.648661565895.41253618653684.833193982745910.440676277498972
94731.64724.877620188925.629585237142664.889888608423650.167742803235791
104755.44747.542444668495.998059519539714.977216022208130.263872170300204
114849.84831.309336682627.796323941840865.366524090442121.20324445845274
124697.84714.10066176794.728110085397274.7563286235964-1.93195606864387
134720.24749.74578573524.02427570440589-34.74799666048040.580990831302414
144741.14739.980461690693.404963710130122.79660262955713-0.179112670352028
154794.24784.360449389814.604504031914243.031605193194350.628543190401983
164807.44802.131784497424.973936815051073.066093045266980.202467271281471
174836.94829.96610979585.634154147589543.114336410909350.351249950444548
1848534847.822129994076.000025217371783.138572702930880.187634064562772
194902.94893.135263059027.217441909391433.213725001378860.603075196325651
2049384929.826487981298.158825273267443.268209072831910.451803051453795
214910.44911.570112963097.291079351711863.22100496286257-0.404636581243027
224954.64946.70706752838.229502749125413.269071003644080.426273386967576
234937.34937.030962748577.611878496935873.23923999078313-0.273936568281606
245003.84992.545316347389.299536415813713.316207485597740.73243533643983
255005.65029.776900345259.85551479087683-28.76369737768020.472251691823896
264984.44989.481885722757.593188666085571.77231749325906-0.692221757701624
2750505040.875926652159.261926804116681.915379228832520.667555586446125
285017.75020.684515175518.155117812886651.87923778684305-0.449360378159242
294984.84989.456178021236.660521380916261.84383529671794-0.60058978268762
305036.35029.004534158837.923872235915161.870894006708270.501338404876739
315093.65083.942217285569.750809916758561.907773146850760.716422781352613
325111.25107.0770537765210.27644354761161.917844186355590.203887556082072
335090.75092.837075515389.304248914764381.90013736636308-0.373363069208245
345063.75067.522099717967.919257943128081.87614325455798-0.527073903573674
355007.55015.522057440315.50271026029151.836303031744-0.912031237647475
365122.55106.544403675488.977179315874031.890835530374181.30138536295393
375172.35173.0333277515210.9491968964501-10.09129441038970.936664783283683
385232.85225.4132778150612.82011179010211.42611135660490.587406436214311
395183.35189.8999725366910.79532660641981.32230457370903-0.734570998099222
405204.65202.9121946381410.88758078258931.32370751517420.0337089881111461
415255.45248.3840745393912.33124888951831.337432745225530.525735988441006
425294.55288.5789735816813.4991932480561.347165565496160.423502128065213
435308.95306.7796931410213.69704625521821.348716855386740.0714492033697474
445281.35285.6729095150912.22706293211071.33774525523003-0.528849534392634
455413.95396.3773027855316.4002465470841.367453727648951.4962089960298
465462.45454.2226669548618.16191899560541.37942056760490.629628165446578
475568.75553.9256419423221.63755328848331.401953060748031.2386409305032
485579.15577.3968877786221.71591168566261.402437947120320.02785205275104
495590.35604.1854959869721.917984052641-14.70875348082790.0811195873312897
505703.25691.5393359555824.85008111892361.970083288181960.941929223946939
515717.75715.8234372865324.82559974842581.96920452474019-0.00859287875219375
525772.35766.1431232590625.92444656241121.978394809613640.387150027197729
535876.65862.9871610698528.98392997211961.990992823235411.07679227296116
546134.66098.7043389613837.91486194823552.021032736199283.13866175112899
556155.66151.1897148617238.5451651408732.02300490632130.22120087983722
566259.56247.9345673896441.06596043620782.030507598681440.883513589337156
576180.76194.209806415736.95561102569422.01882925199326-1.43893346820761
586120.36134.1798181145132.74569691884272.00740428389641-1.472196814926
5960976105.1228814070530.06043442923752.00044276304221-0.938103230955555
606167.56161.2304332946431.19314073696142.003248161707260.395357092648438
616207.16221.1796963987232.4030102544937-18.74580513556330.454995972573937
626181.76190.0820949979729.58043512600351.19684809660353-0.922962721250663
636196.26198.4929882997428.65527885562381.17083218106529-0.321287608734874
646183.96188.9876916781926.99068677021131.16214248543851-0.579221051506854
6561846187.5031367530125.74831754503981.15990957147512-0.432155203907363
666271.16261.9612099319427.87449825592711.162562857774410.739217056773059
676204.96215.85504010724.64375111840221.15893350830764-1.12270522437793
686284.56277.3115946944726.25205887369391.160643626955420.558649631836408
696293.96294.2626826466125.84555156810571.16023119188368-0.141144102710102
706377.96368.7701213497427.97312297235071.162293482928130.738444293995124
716400.26398.7148198479628.05935136640961.162373353170490.0299183064600091
726456.26451.0603693847529.12184370546281.163313831101230.368534655345458
736372.86405.0164713434325.888153594316-20.0124144428494-1.1811096626239
746368.86375.7781101225223.45175913569821.44370254435629-0.8066028543834
756497.86482.6267329125127.1077716133721.528383614630151.26554867172258
766599.46585.4607705061430.42437213764411.540396971198161.14919842245567
776696.96684.1769358661733.4154387396351.54259770920721.03626056528333
786676.36680.7838705120231.80304383651041.54211070293907-0.558519510473
796731.76727.6858884189932.46455743269321.542262607542240.229104760142182
806732.36734.8928488213731.35781456042921.54202933402135-0.38324489487814
816760.26759.7261384917131.07188329441671.54197210142223-0.0989990984740337
826841.46832.9561425662332.91964961423091.54232522914410.639678531016611
836917.56908.9120819738634.80611605064341.542669738143060.653000766559676
846899.36904.2231278801433.07470012365781.5423675499648-0.599266818088797
856972.96979.5162782299134.908779866712-13.47617929507910.660154885689019
866969.26974.3863712129333.14539340760280.98707582590583-0.588684750932397
876941.66950.0654779195830.62399331247150.937102240939747-0.87201282504289
886905.56915.279379214527.75533808442440.929240942989625-0.992567646314994
896971.36966.5251184960528.78553211722710.9294841881502980.356421292446859
906968.46971.3866829967327.7362730483340.929615366610971-0.362993433801834
917012.27009.5616769823528.19411939555820.9295370302258580.158383972318509
927049.57047.0492306795328.60175323890870.929467274900370.141006622058686
937095.67091.9951713972429.318683809980.9293492184426110.247985407684536
947237.57220.3581963690133.66340093245810.9286647140968181.50276834761848
957230.57233.0106014616732.74168946019970.928803526628849-0.318792895151735
967253.57254.4252993164732.24477912414430.928875054014898-0.171860566696743
977289.47297.1526251379332.7022383917928-9.457135006478510.163312306751498
987364.67359.0526393450733.98561530417271.01382732135090.430873566434885
997428.17422.2792655530735.26883388402981.036123115176720.443704543646844
1007390.27398.7889364250732.69071090696871.03041132057181-0.891612166750503
1017279.97300.336993244926.93674458220591.03041410666662-1.98978702660383
1027426.57411.6577097330930.63919888989131.029258395417321.28031338623452
1037480.17473.8983152783332.02577501605041.028781119099660.479470463752508







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
17505.553639070947491.8778659165113.6757731544345
27522.755535028237524.48508348766-1.72954845942825
37569.253527071357557.0923010588112.1612260125398
47598.210119934247589.699518629968.51060130428521
57624.225312344887622.306736201111.91857614377586
67646.392033216457654.91395377225-8.52192055580422
77683.851338486527687.5211713434-3.66983285688494
87710.084951641967720.12838891455-10.0434372725874
97741.55953806837752.7356064857-11.1760684174018
107771.786209133967785.34282405685-13.556614922892
117821.63163026687817.9500416283.68158863880441
127859.306916430317850.557259199158.74965723115882

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 7505.55363907094 & 7491.87786591651 & 13.6757731544345 \tabularnewline
2 & 7522.75553502823 & 7524.48508348766 & -1.72954845942825 \tabularnewline
3 & 7569.25352707135 & 7557.09230105881 & 12.1612260125398 \tabularnewline
4 & 7598.21011993424 & 7589.69951862996 & 8.51060130428521 \tabularnewline
5 & 7624.22531234488 & 7622.30673620111 & 1.91857614377586 \tabularnewline
6 & 7646.39203321645 & 7654.91395377225 & -8.52192055580422 \tabularnewline
7 & 7683.85133848652 & 7687.5211713434 & -3.66983285688494 \tabularnewline
8 & 7710.08495164196 & 7720.12838891455 & -10.0434372725874 \tabularnewline
9 & 7741.5595380683 & 7752.7356064857 & -11.1760684174018 \tabularnewline
10 & 7771.78620913396 & 7785.34282405685 & -13.556614922892 \tabularnewline
11 & 7821.6316302668 & 7817.950041628 & 3.68158863880441 \tabularnewline
12 & 7859.30691643031 & 7850.55725919915 & 8.74965723115882 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302382&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]7505.55363907094[/C][C]7491.87786591651[/C][C]13.6757731544345[/C][/ROW]
[ROW][C]2[/C][C]7522.75553502823[/C][C]7524.48508348766[/C][C]-1.72954845942825[/C][/ROW]
[ROW][C]3[/C][C]7569.25352707135[/C][C]7557.09230105881[/C][C]12.1612260125398[/C][/ROW]
[ROW][C]4[/C][C]7598.21011993424[/C][C]7589.69951862996[/C][C]8.51060130428521[/C][/ROW]
[ROW][C]5[/C][C]7624.22531234488[/C][C]7622.30673620111[/C][C]1.91857614377586[/C][/ROW]
[ROW][C]6[/C][C]7646.39203321645[/C][C]7654.91395377225[/C][C]-8.52192055580422[/C][/ROW]
[ROW][C]7[/C][C]7683.85133848652[/C][C]7687.5211713434[/C][C]-3.66983285688494[/C][/ROW]
[ROW][C]8[/C][C]7710.08495164196[/C][C]7720.12838891455[/C][C]-10.0434372725874[/C][/ROW]
[ROW][C]9[/C][C]7741.5595380683[/C][C]7752.7356064857[/C][C]-11.1760684174018[/C][/ROW]
[ROW][C]10[/C][C]7771.78620913396[/C][C]7785.34282405685[/C][C]-13.556614922892[/C][/ROW]
[ROW][C]11[/C][C]7821.6316302668[/C][C]7817.950041628[/C][C]3.68158863880441[/C][/ROW]
[ROW][C]12[/C][C]7859.30691643031[/C][C]7850.55725919915[/C][C]8.74965723115882[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302382&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302382&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
17505.553639070947491.8778659165113.6757731544345
27522.755535028237524.48508348766-1.72954845942825
37569.253527071357557.0923010588112.1612260125398
47598.210119934247589.699518629968.51060130428521
57624.225312344887622.306736201111.91857614377586
67646.392033216457654.91395377225-8.52192055580422
77683.851338486527687.5211713434-3.66983285688494
87710.084951641967720.12838891455-10.0434372725874
97741.55953806837752.7356064857-11.1760684174018
107771.786209133967785.34282405685-13.556614922892
117821.63163026687817.9500416283.68158863880441
127859.306916430317850.557259199158.74965723115882



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
par3 <- 'BFGS'
par2 <- '12'
par1 <- '1'
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')