Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 21 Dec 2016 15:49:51 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482331883gbchxm2e0xm3h73.htm/, Retrieved Fri, 01 Nov 2024 03:47:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302348, Retrieved Fri, 01 Nov 2024 03:47:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact72
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [autocorrelatie N2...] [2016-12-21 14:49:51] [6f830dc7e8de22be3233942ffbe3aaba] [Current]
Feedback Forum

Post a new message
Dataseries X:
4526.1
4616.8
4558
4736.8
4771.1
4611.3
4687.1
4718.3
4731.6
4755.4
4849.8
4697.8
4720.2
4741.1
4794.2
4807.4
4836.9
4853
4902.9
4938
4910.4
4954.6
4937.3
5003.8
5005.6
4984.4
5050
5017.7
4984.8
5036.3
5093.6
5111.2
5090.7
5063.7
5007.5
5122.5
5172.3
5232.8
5183.3
5204.6
5255.4
5294.5
5308.9
5281.3
5413.9
5462.4
5568.7
5579.1
5590.3
5703.2
5717.7
5772.3
5876.6
6134.6
6155.6
6259.5
6180.7
6120.3
6097
6167.5
6207.1
6181.7
6196.2
6183.9
6184
6271.1
6204.9
6284.5
6293.9
6377.9
6400.2
6456.2
6372.8
6368.8
6497.8
6599.4
6696.9
6676.3
6731.7
6732.3
6760.2
6841.4
6917.5
6899.3
6972.9
6969.2
6941.6
6905.5
6971.3
6968.4
7012.2
7049.5
7095.6
7237.5
7230.5
7253.5
7289.4
7364.6
7428.1
7390.2
7279.9
7426.5
7480.1




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302348&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302348&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302348&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.104849-1.05890.146069
2-0.054488-0.55030.291658
3-0.08857-0.89450.186576
4-0.006184-0.06250.475163
5-0.005057-0.05110.479685
60.1290361.30320.09772
70.027050.27320.392629
8-0.120428-1.21630.113345
90.1639421.65570.050425
10-0.107008-1.08070.141183
11-0.018697-0.18880.425299
12-0.117482-1.18650.119088

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.104849 & -1.0589 & 0.146069 \tabularnewline
2 & -0.054488 & -0.5503 & 0.291658 \tabularnewline
3 & -0.08857 & -0.8945 & 0.186576 \tabularnewline
4 & -0.006184 & -0.0625 & 0.475163 \tabularnewline
5 & -0.005057 & -0.0511 & 0.479685 \tabularnewline
6 & 0.129036 & 1.3032 & 0.09772 \tabularnewline
7 & 0.02705 & 0.2732 & 0.392629 \tabularnewline
8 & -0.120428 & -1.2163 & 0.113345 \tabularnewline
9 & 0.163942 & 1.6557 & 0.050425 \tabularnewline
10 & -0.107008 & -1.0807 & 0.141183 \tabularnewline
11 & -0.018697 & -0.1888 & 0.425299 \tabularnewline
12 & -0.117482 & -1.1865 & 0.119088 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302348&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.104849[/C][C]-1.0589[/C][C]0.146069[/C][/ROW]
[ROW][C]2[/C][C]-0.054488[/C][C]-0.5503[/C][C]0.291658[/C][/ROW]
[ROW][C]3[/C][C]-0.08857[/C][C]-0.8945[/C][C]0.186576[/C][/ROW]
[ROW][C]4[/C][C]-0.006184[/C][C]-0.0625[/C][C]0.475163[/C][/ROW]
[ROW][C]5[/C][C]-0.005057[/C][C]-0.0511[/C][C]0.479685[/C][/ROW]
[ROW][C]6[/C][C]0.129036[/C][C]1.3032[/C][C]0.09772[/C][/ROW]
[ROW][C]7[/C][C]0.02705[/C][C]0.2732[/C][C]0.392629[/C][/ROW]
[ROW][C]8[/C][C]-0.120428[/C][C]-1.2163[/C][C]0.113345[/C][/ROW]
[ROW][C]9[/C][C]0.163942[/C][C]1.6557[/C][C]0.050425[/C][/ROW]
[ROW][C]10[/C][C]-0.107008[/C][C]-1.0807[/C][C]0.141183[/C][/ROW]
[ROW][C]11[/C][C]-0.018697[/C][C]-0.1888[/C][C]0.425299[/C][/ROW]
[ROW][C]12[/C][C]-0.117482[/C][C]-1.1865[/C][C]0.119088[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302348&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302348&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.104849-1.05890.146069
2-0.054488-0.55030.291658
3-0.08857-0.89450.186576
4-0.006184-0.06250.475163
5-0.005057-0.05110.479685
60.1290361.30320.09772
70.027050.27320.392629
8-0.120428-1.21630.113345
90.1639421.65570.050425
10-0.107008-1.08070.141183
11-0.018697-0.18880.425299
12-0.117482-1.18650.119088







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.104849-1.05890.146069
2-0.066209-0.66870.252606
3-0.103185-1.04210.14991
4-0.032586-0.32910.371377
5-0.022782-0.23010.409241
60.1171491.18320.11975
70.0532690.5380.295877
8-0.099934-1.00930.157615
90.1744651.7620.040532
10-0.080262-0.81060.20974
11-0.036176-0.36540.3578
12-0.131882-1.33190.092923

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.104849 & -1.0589 & 0.146069 \tabularnewline
2 & -0.066209 & -0.6687 & 0.252606 \tabularnewline
3 & -0.103185 & -1.0421 & 0.14991 \tabularnewline
4 & -0.032586 & -0.3291 & 0.371377 \tabularnewline
5 & -0.022782 & -0.2301 & 0.409241 \tabularnewline
6 & 0.117149 & 1.1832 & 0.11975 \tabularnewline
7 & 0.053269 & 0.538 & 0.295877 \tabularnewline
8 & -0.099934 & -1.0093 & 0.157615 \tabularnewline
9 & 0.174465 & 1.762 & 0.040532 \tabularnewline
10 & -0.080262 & -0.8106 & 0.20974 \tabularnewline
11 & -0.036176 & -0.3654 & 0.3578 \tabularnewline
12 & -0.131882 & -1.3319 & 0.092923 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302348&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.104849[/C][C]-1.0589[/C][C]0.146069[/C][/ROW]
[ROW][C]2[/C][C]-0.066209[/C][C]-0.6687[/C][C]0.252606[/C][/ROW]
[ROW][C]3[/C][C]-0.103185[/C][C]-1.0421[/C][C]0.14991[/C][/ROW]
[ROW][C]4[/C][C]-0.032586[/C][C]-0.3291[/C][C]0.371377[/C][/ROW]
[ROW][C]5[/C][C]-0.022782[/C][C]-0.2301[/C][C]0.409241[/C][/ROW]
[ROW][C]6[/C][C]0.117149[/C][C]1.1832[/C][C]0.11975[/C][/ROW]
[ROW][C]7[/C][C]0.053269[/C][C]0.538[/C][C]0.295877[/C][/ROW]
[ROW][C]8[/C][C]-0.099934[/C][C]-1.0093[/C][C]0.157615[/C][/ROW]
[ROW][C]9[/C][C]0.174465[/C][C]1.762[/C][C]0.040532[/C][/ROW]
[ROW][C]10[/C][C]-0.080262[/C][C]-0.8106[/C][C]0.20974[/C][/ROW]
[ROW][C]11[/C][C]-0.036176[/C][C]-0.3654[/C][C]0.3578[/C][/ROW]
[ROW][C]12[/C][C]-0.131882[/C][C]-1.3319[/C][C]0.092923[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302348&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302348&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.104849-1.05890.146069
2-0.066209-0.66870.252606
3-0.103185-1.04210.14991
4-0.032586-0.32910.371377
5-0.022782-0.23010.409241
60.1171491.18320.11975
70.0532690.5380.295877
8-0.099934-1.00930.157615
90.1744651.7620.040532
10-0.080262-0.81060.20974
11-0.036176-0.36540.3578
12-0.131882-1.33190.092923



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- ''
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '1'
par2 <- '1'
par1 <- '12'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')