Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_correlation.wasp
Title produced by softwarePearson Correlation
Date of computationWed, 21 Dec 2016 14:52:43 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482328410i1549aa3cy1x5kb.htm/, Retrieved Fri, 01 Nov 2024 03:48:39 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302295, Retrieved Fri, 01 Nov 2024 03:48:39 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact83
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Pearson Correlation] [] [2016-12-21 13:52:43] [cedc5386ad7644fa02c81dc221bdf6b7] [Current]
Feedback Forum

Post a new message
Dataseries X:
5
3
5
5
5
5
5
5
5
5
4
2
5
4
5
4
5
5
5
4
4
3
5
4
5
4
5
5
5
5
5
5
5
5
5
4
4
5
5
5
5
5
5
5
5
5
5
NA
4
5
5
4
5
3
4
3
5
5
5
5
5
5
5
5
4
5
4
5
2
4
5
5
4
5
2
5
3
4
4
5
5
4
4
5
4
4
5
5
5
4
4
4
3
4
5
5
4
5
2
5
5
4
3
5
4
5
5
5
5
5
4
5
5
5
4
5
5
2
5
5
5
5
5
5
5
5
4
3
5
5
5
5
4
4
4
5
4
NA
4
5
2
5
4
5
5
4
5
4
5
5
5
4
5
5
5
5
5
2
5
3
5
5
5
4
5
5
5
5
5
Dataseries Y:
3
4
5
4
4
3
3
4
4
4
4
4
4
3
4
4
4
NA
4
4
4
4
4
4
4
3
4
4
4
4
4
3
4
4
2
4
4
3
4
4
4
4
3
4
4
4
4
4
4
3
4
5
5
3
4
4
4
5
4
4
4
4
5
4
4
2
4
4
4
4
4
4
4
3
5
4
3
4
4
4
4
3
4
4
4
5
4
4
4
4
4
4
5
4
5
4
4
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
4
5
3
3
4
4
NA
4
5
5
3
4
4
4
5
4
5
3
4
3
4
4
4
4
4
4
4
4
4
4
5
4
4
NA
3
4
4
4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302295&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302295&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302295&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean4.509090909090913.94545454545455
Biased Variance0.6135537190082640.269752066115703
Biased Standard Deviation0.7832966992195640.519376612984935
Covariance-0.051330376940133
Correlation-0.125408123931747
Determination0.0157271975480805
T-Test-1.61384466459662
p-value (2 sided)0.108495364142901
p-value (1 sided)0.0542476820714506
95% CI of Correlation[-0.272961676780974, 0.0279102255103598]
Degrees of Freedom163
Number of Observations165

\begin{tabular}{lllllllll}
\hline
Pearson Product Moment Correlation - Ungrouped Data \tabularnewline
Statistic & Variable X & Variable Y \tabularnewline
Mean & 4.50909090909091 & 3.94545454545455 \tabularnewline
Biased Variance & 0.613553719008264 & 0.269752066115703 \tabularnewline
Biased Standard Deviation & 0.783296699219564 & 0.519376612984935 \tabularnewline
Covariance & -0.051330376940133 \tabularnewline
Correlation & -0.125408123931747 \tabularnewline
Determination & 0.0157271975480805 \tabularnewline
T-Test & -1.61384466459662 \tabularnewline
p-value (2 sided) & 0.108495364142901 \tabularnewline
p-value (1 sided) & 0.0542476820714506 \tabularnewline
95% CI of Correlation & [-0.272961676780974, 0.0279102255103598] \tabularnewline
Degrees of Freedom & 163 \tabularnewline
Number of Observations & 165 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302295&T=1

[TABLE]
[ROW][C]Pearson Product Moment Correlation - Ungrouped Data[/C][/ROW]
[ROW][C]Statistic[/C][C]Variable X[/C][C]Variable Y[/C][/ROW]
[ROW][C]Mean[/C][C]4.50909090909091[/C][C]3.94545454545455[/C][/ROW]
[ROW][C]Biased Variance[/C][C]0.613553719008264[/C][C]0.269752066115703[/C][/ROW]
[ROW][C]Biased Standard Deviation[/C][C]0.783296699219564[/C][C]0.519376612984935[/C][/ROW]
[ROW][C]Covariance[/C][C]-0.051330376940133[/C][/ROW]
[ROW][C]Correlation[/C][C]-0.125408123931747[/C][/ROW]
[ROW][C]Determination[/C][C]0.0157271975480805[/C][/ROW]
[ROW][C]T-Test[/C][C]-1.61384466459662[/C][/ROW]
[ROW][C]p-value (2 sided)[/C][C]0.108495364142901[/C][/ROW]
[ROW][C]p-value (1 sided)[/C][C]0.0542476820714506[/C][/ROW]
[ROW][C]95% CI of Correlation[/C][C][-0.272961676780974, 0.0279102255103598][/C][/ROW]
[ROW][C]Degrees of Freedom[/C][C]163[/C][/ROW]
[ROW][C]Number of Observations[/C][C]165[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302295&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302295&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean4.509090909090913.94545454545455
Biased Variance0.6135537190082640.269752066115703
Biased Standard Deviation0.7832966992195640.519376612984935
Covariance-0.051330376940133
Correlation-0.125408123931747
Determination0.0157271975480805
T-Test-1.61384466459662
p-value (2 sided)0.108495364142901
p-value (1 sided)0.0542476820714506
95% CI of Correlation[-0.272961676780974, 0.0279102255103598]
Degrees of Freedom163
Number of Observations165







Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 117.38, p-value < 2.2e-16
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 50.302, p-value = 1.194e-11
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 23.722, p-value < 2.2e-16
> ad.y
	Anderson-Darling normality test
data:  y
A = 28.565, p-value < 2.2e-16

\begin{tabular}{lllllllll}
\hline
Normality Tests \tabularnewline
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 117.38, p-value < 2.2e-16
alternative hypothesis: greater
\tabularnewline
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 50.302, p-value = 1.194e-11
alternative hypothesis: greater
\tabularnewline
> ad.x
	Anderson-Darling normality test
data:  x
A = 23.722, p-value < 2.2e-16
\tabularnewline
> ad.y
	Anderson-Darling normality test
data:  y
A = 28.565, p-value < 2.2e-16
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=302295&T=2

[TABLE]
[ROW][C]Normality Tests[/C][/ROW]
[ROW][C]
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 117.38, p-value < 2.2e-16
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 50.302, p-value = 1.194e-11
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> ad.x
	Anderson-Darling normality test
data:  x
A = 23.722, p-value < 2.2e-16
[/C][/ROW] [ROW][C]
> ad.y
	Anderson-Darling normality test
data:  y
A = 28.565, p-value < 2.2e-16
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302295&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302295&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 117.38, p-value < 2.2e-16
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 50.302, p-value = 1.194e-11
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 23.722, p-value < 2.2e-16
> ad.y
	Anderson-Darling normality test
data:  y
A = 28.565, p-value < 2.2e-16



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
library(psychometric)
x <- x[!is.na(y)]
y <- y[!is.na(y)]
y <- y[!is.na(x)]
x <- x[!is.na(x)]
bitmap(file='test1.png')
histx <- hist(x, plot=FALSE)
histy <- hist(y, plot=FALSE)
maxcounts <- max(c(histx$counts, histx$counts))
xrange <- c(min(x),max(x))
yrange <- c(min(y),max(y))
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
par(mar=c(4,4,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab, sub=main)
par(mar=c(0,4,1,1))
barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0)
par(mar=c(4,0,1,1))
barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE)
dev.off()
lx = length(x)
makebiased = (lx-1)/lx
varx = var(x)*makebiased
vary = var(y)*makebiased
corxy <- cor.test(x,y,method='pearson', na.rm = T)
cxy <- as.matrix(corxy$estimate)[1,1]
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistic',1,TRUE)
a<-table.element(a,'Variable X',1,TRUE)
a<-table.element(a,'Variable Y',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,mean(x))
a<-table.element(a,mean(y))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biased Variance',header=TRUE)
a<-table.element(a,varx)
a<-table.element(a,vary)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biased Standard Deviation',header=TRUE)
a<-table.element(a,sqrt(varx))
a<-table.element(a,sqrt(vary))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Covariance',header=TRUE)
a<-table.element(a,cov(x,y),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',header=TRUE)
a<-table.element(a,cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Determination',header=TRUE)
a<-table.element(a,cxy*cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-Test',header=TRUE)
a<-table.element(a,as.matrix(corxy$statistic)[1,1],2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (2 sided)',header=TRUE)
a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (1 sided)',header=TRUE)
a<-table.element(a,p2/2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'95% CI of Correlation',header=TRUE)
a<-table.element(a,paste('[',CIr(r=cxy, n = lx, level = .95)[1],', ', CIr(r=cxy, n = lx, level = .95)[2],']',sep=''),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Degrees of Freedom',header=TRUE)
a<-table.element(a,lx-2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of Observations',header=TRUE)
a<-table.element(a,lx,2)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
library(moments)
library(nortest)
jarque.x <- jarque.test(x)
jarque.y <- jarque.test(y)
if(lx>7) {
ad.x <- ad.test(x)
ad.y <- ad.test(y)
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Normality Tests',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.y'),'
',sep=''))
a<-table.row.end(a)
if(lx>7) {
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.y'),'
',sep=''))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
library(car)
bitmap(file='test2.png')
qqPlot(x,main='QQplot of variable x')
dev.off()
bitmap(file='test3.png')
qqPlot(y,main='QQplot of variable y')
dev.off()