Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 21 Dec 2016 14:22:23 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482326629x6p0miw4bovxftt.htm/, Retrieved Fri, 01 Nov 2024 03:31:13 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302267, Retrieved Fri, 01 Nov 2024 03:31:13 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact79
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical Decompo...] [2016-12-21 13:22:23] [02b5df5aa2382aa6805f6181aa5e25f1] [Current]
Feedback Forum

Post a new message
Dataseries X:
3800
4150
4200
3650
3750
4250
2700
3950
4400
4500
4500
4050
4250
4450
4500
3950
4300
4500
2800
4300
4750
4900
5000
4500
4500
4800
4450
4550
4150
4750
2950
4650
4950
5050
5300
4650
4600
4950
4950
4400
4550
4900
3100
4800
5200
5350
5450
4700
4800
5200
5200
4550
4800
5200
3350
5050
5550
5650
5700
5100
5200
5500
5200
5700
5200
5800
3700
5450
5950
6000
6200
5500
5550
6100
6150
5500
5700
6000
3750
5900
6350
6350
6500
5750
5850
6300
6550
5450
5750
6600
3850
6000
6750
6750
6850
6100
6400
6750
5800
6750
5850
6800
3800
6400
6800
7000
7300
6300
6500
6950
7100
6100
6550
6800




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302267&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302267&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302267&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13800NANA-12.283NA
24150NANA331.727NA
34200NANA150.217NA
43650NANA-119.054NA
53750NANA-215.408NA
64250NANA289.54NA
727002184.534010.42-1825.88515.466
839504023.654041.67-18.0122-73.6545
944004488.934066.67422.266-88.9323
1045004583.614091.67491.942-83.6082
1145004733.614127.08606.525-233.608
1240504058.844160.42-101.577-8.8397
1342504162.724175-12.28387.283
1444504525.484193.75331.727-75.4774
1545004373.134222.92150.217126.866
1639504135.114254.17-119.054-185.113
1743004076.264291.67-215.408223.741
1845004620.794331.25289.54-120.79
1928002534.534360.42-1825.88265.466
2043004367.44385.42-18.0122-67.4045
2147504820.184397.92422.266-70.1823
2249004912.774420.83491.942-12.7749
2350005046.114439.58606.525-46.1082
2445004342.174443.75-101.577157.827
2545004448.134460.42-12.28351.8663
2648004812.984481.25331.727-12.9774
2744504654.384504.17150.217-204.384
2845504399.74518.75-119.054150.304
2941504322.094537.5-215.408-172.092
3047504845.794556.25289.54-95.7899
3129502740.784566.67-1825.88209.216
3246504559.074577.08-18.012290.9288
3349505026.434604.17422.266-76.4323
3450505110.694618.75491.942-60.6916
3553005235.694629.17606.52564.3084
3646504550.514652.08-101.57799.4936
3746004652.34664.58-12.283-52.3003
3849505008.814677.08331.727-58.8108
3949504843.974693.75150.217106.033
4044004597.614716.67-119.054-197.613
4145504520.014735.42-215.40829.9913
4249005033.294743.75289.54-133.29
4331002928.284754.17-1825.88171.716
4448004754.94772.92-18.012245.0955
4552005216.024793.75422.266-16.0156
4653505302.364810.42491.94247.6418
4754505433.614827.08606.52516.3918
4847004748.424850-101.577-48.423
4948004860.634872.92-12.283-60.6337
5052005225.484893.75331.727-25.4774
5152005068.974918.75150.217131.033
5245504826.784945.83-119.054-276.78
5348004753.344968.75-215.40846.658
5452005285.374995.83289.54-85.3733
5533503203.285029.17-1825.88146.716
5650505040.325058.33-18.01229.67882
5755505493.15070.83422.26656.901
5856505610.695118.75491.94239.3084
5957005789.865183.33606.525-89.8582
6051005123.425225-101.577-23.423
6152005252.35264.58-12.283-52.3003
6255005627.565295.83331.727-127.561
6352005479.385329.17150.217-279.384
6457005241.365360.42-119.054458.637
6552005180.435395.83-215.40819.5747
6658005722.875433.33289.5477.1267
6737003638.75464.58-1825.8861.2992
6854505486.155504.17-18.0122-36.1545
6959505991.025568.75422.266-41.0156
7060006091.945600491.942-91.9416
7162006219.025612.5606.525-19.0249
7255005540.095641.67-101.577-40.0897
7355505639.85652.08-12.283-89.8003
7461006004.645672.92331.72795.3559
7561505858.555708.33150.217291.45
7655005620.535739.58-119.054-120.53
7757005551.265766.67-215.408148.741
7860006079.125789.58289.54-79.1233
7937503986.625812.5-1825.88-236.617
8059005815.325833.33-18.012284.6788
8163506280.65858.33422.26669.401
8263506364.865872.92491.942-14.8582
8365006479.445872.92606.52520.5584
8457505798.425900-101.577-48.423
8558505916.885929.17-12.283-66.8837
8663006269.235937.5331.72730.7726
8765506108.555958.33150.217441.45
8854505872.615991.67-119.054-422.613
8957505807.516022.92-215.408-57.5087
9066006341.626052.08289.54258.377
9138504263.76089.58-1825.88-413.701
9260006113.246131.25-18.0122-113.238
9367506541.026118.75422.266208.984
9467506633.616141.67491.942116.392
9568506806.526200606.52543.4751
9661006110.926212.5-101.577-10.923
9764006206.476218.75-12.283193.533
9867506565.066233.33331.727184.939
9958006402.36252.08150.217-602.3
10067506145.536264.58-119.054604.47
10158506078.346293.75-215.408-228.342
10268006610.376320.83289.54189.627
10338004507.456333.33-1825.88-707.451
10464006327.826345.83-18.012272.1788
10568006830.66408.33422.266-30.599
10670006927.366435.42491.94272.6418
10773007044.026437.5606.525255.975
10863006365.096466.67-101.577-65.0897
1096500NANA-12.283NA
1106950NANA331.727NA
1117100NANA150.217NA
1126100NANA-119.054NA
1136550NANA-215.408NA
1146800NANA289.54NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3800 & NA & NA & -12.283 & NA \tabularnewline
2 & 4150 & NA & NA & 331.727 & NA \tabularnewline
3 & 4200 & NA & NA & 150.217 & NA \tabularnewline
4 & 3650 & NA & NA & -119.054 & NA \tabularnewline
5 & 3750 & NA & NA & -215.408 & NA \tabularnewline
6 & 4250 & NA & NA & 289.54 & NA \tabularnewline
7 & 2700 & 2184.53 & 4010.42 & -1825.88 & 515.466 \tabularnewline
8 & 3950 & 4023.65 & 4041.67 & -18.0122 & -73.6545 \tabularnewline
9 & 4400 & 4488.93 & 4066.67 & 422.266 & -88.9323 \tabularnewline
10 & 4500 & 4583.61 & 4091.67 & 491.942 & -83.6082 \tabularnewline
11 & 4500 & 4733.61 & 4127.08 & 606.525 & -233.608 \tabularnewline
12 & 4050 & 4058.84 & 4160.42 & -101.577 & -8.8397 \tabularnewline
13 & 4250 & 4162.72 & 4175 & -12.283 & 87.283 \tabularnewline
14 & 4450 & 4525.48 & 4193.75 & 331.727 & -75.4774 \tabularnewline
15 & 4500 & 4373.13 & 4222.92 & 150.217 & 126.866 \tabularnewline
16 & 3950 & 4135.11 & 4254.17 & -119.054 & -185.113 \tabularnewline
17 & 4300 & 4076.26 & 4291.67 & -215.408 & 223.741 \tabularnewline
18 & 4500 & 4620.79 & 4331.25 & 289.54 & -120.79 \tabularnewline
19 & 2800 & 2534.53 & 4360.42 & -1825.88 & 265.466 \tabularnewline
20 & 4300 & 4367.4 & 4385.42 & -18.0122 & -67.4045 \tabularnewline
21 & 4750 & 4820.18 & 4397.92 & 422.266 & -70.1823 \tabularnewline
22 & 4900 & 4912.77 & 4420.83 & 491.942 & -12.7749 \tabularnewline
23 & 5000 & 5046.11 & 4439.58 & 606.525 & -46.1082 \tabularnewline
24 & 4500 & 4342.17 & 4443.75 & -101.577 & 157.827 \tabularnewline
25 & 4500 & 4448.13 & 4460.42 & -12.283 & 51.8663 \tabularnewline
26 & 4800 & 4812.98 & 4481.25 & 331.727 & -12.9774 \tabularnewline
27 & 4450 & 4654.38 & 4504.17 & 150.217 & -204.384 \tabularnewline
28 & 4550 & 4399.7 & 4518.75 & -119.054 & 150.304 \tabularnewline
29 & 4150 & 4322.09 & 4537.5 & -215.408 & -172.092 \tabularnewline
30 & 4750 & 4845.79 & 4556.25 & 289.54 & -95.7899 \tabularnewline
31 & 2950 & 2740.78 & 4566.67 & -1825.88 & 209.216 \tabularnewline
32 & 4650 & 4559.07 & 4577.08 & -18.0122 & 90.9288 \tabularnewline
33 & 4950 & 5026.43 & 4604.17 & 422.266 & -76.4323 \tabularnewline
34 & 5050 & 5110.69 & 4618.75 & 491.942 & -60.6916 \tabularnewline
35 & 5300 & 5235.69 & 4629.17 & 606.525 & 64.3084 \tabularnewline
36 & 4650 & 4550.51 & 4652.08 & -101.577 & 99.4936 \tabularnewline
37 & 4600 & 4652.3 & 4664.58 & -12.283 & -52.3003 \tabularnewline
38 & 4950 & 5008.81 & 4677.08 & 331.727 & -58.8108 \tabularnewline
39 & 4950 & 4843.97 & 4693.75 & 150.217 & 106.033 \tabularnewline
40 & 4400 & 4597.61 & 4716.67 & -119.054 & -197.613 \tabularnewline
41 & 4550 & 4520.01 & 4735.42 & -215.408 & 29.9913 \tabularnewline
42 & 4900 & 5033.29 & 4743.75 & 289.54 & -133.29 \tabularnewline
43 & 3100 & 2928.28 & 4754.17 & -1825.88 & 171.716 \tabularnewline
44 & 4800 & 4754.9 & 4772.92 & -18.0122 & 45.0955 \tabularnewline
45 & 5200 & 5216.02 & 4793.75 & 422.266 & -16.0156 \tabularnewline
46 & 5350 & 5302.36 & 4810.42 & 491.942 & 47.6418 \tabularnewline
47 & 5450 & 5433.61 & 4827.08 & 606.525 & 16.3918 \tabularnewline
48 & 4700 & 4748.42 & 4850 & -101.577 & -48.423 \tabularnewline
49 & 4800 & 4860.63 & 4872.92 & -12.283 & -60.6337 \tabularnewline
50 & 5200 & 5225.48 & 4893.75 & 331.727 & -25.4774 \tabularnewline
51 & 5200 & 5068.97 & 4918.75 & 150.217 & 131.033 \tabularnewline
52 & 4550 & 4826.78 & 4945.83 & -119.054 & -276.78 \tabularnewline
53 & 4800 & 4753.34 & 4968.75 & -215.408 & 46.658 \tabularnewline
54 & 5200 & 5285.37 & 4995.83 & 289.54 & -85.3733 \tabularnewline
55 & 3350 & 3203.28 & 5029.17 & -1825.88 & 146.716 \tabularnewline
56 & 5050 & 5040.32 & 5058.33 & -18.0122 & 9.67882 \tabularnewline
57 & 5550 & 5493.1 & 5070.83 & 422.266 & 56.901 \tabularnewline
58 & 5650 & 5610.69 & 5118.75 & 491.942 & 39.3084 \tabularnewline
59 & 5700 & 5789.86 & 5183.33 & 606.525 & -89.8582 \tabularnewline
60 & 5100 & 5123.42 & 5225 & -101.577 & -23.423 \tabularnewline
61 & 5200 & 5252.3 & 5264.58 & -12.283 & -52.3003 \tabularnewline
62 & 5500 & 5627.56 & 5295.83 & 331.727 & -127.561 \tabularnewline
63 & 5200 & 5479.38 & 5329.17 & 150.217 & -279.384 \tabularnewline
64 & 5700 & 5241.36 & 5360.42 & -119.054 & 458.637 \tabularnewline
65 & 5200 & 5180.43 & 5395.83 & -215.408 & 19.5747 \tabularnewline
66 & 5800 & 5722.87 & 5433.33 & 289.54 & 77.1267 \tabularnewline
67 & 3700 & 3638.7 & 5464.58 & -1825.88 & 61.2992 \tabularnewline
68 & 5450 & 5486.15 & 5504.17 & -18.0122 & -36.1545 \tabularnewline
69 & 5950 & 5991.02 & 5568.75 & 422.266 & -41.0156 \tabularnewline
70 & 6000 & 6091.94 & 5600 & 491.942 & -91.9416 \tabularnewline
71 & 6200 & 6219.02 & 5612.5 & 606.525 & -19.0249 \tabularnewline
72 & 5500 & 5540.09 & 5641.67 & -101.577 & -40.0897 \tabularnewline
73 & 5550 & 5639.8 & 5652.08 & -12.283 & -89.8003 \tabularnewline
74 & 6100 & 6004.64 & 5672.92 & 331.727 & 95.3559 \tabularnewline
75 & 6150 & 5858.55 & 5708.33 & 150.217 & 291.45 \tabularnewline
76 & 5500 & 5620.53 & 5739.58 & -119.054 & -120.53 \tabularnewline
77 & 5700 & 5551.26 & 5766.67 & -215.408 & 148.741 \tabularnewline
78 & 6000 & 6079.12 & 5789.58 & 289.54 & -79.1233 \tabularnewline
79 & 3750 & 3986.62 & 5812.5 & -1825.88 & -236.617 \tabularnewline
80 & 5900 & 5815.32 & 5833.33 & -18.0122 & 84.6788 \tabularnewline
81 & 6350 & 6280.6 & 5858.33 & 422.266 & 69.401 \tabularnewline
82 & 6350 & 6364.86 & 5872.92 & 491.942 & -14.8582 \tabularnewline
83 & 6500 & 6479.44 & 5872.92 & 606.525 & 20.5584 \tabularnewline
84 & 5750 & 5798.42 & 5900 & -101.577 & -48.423 \tabularnewline
85 & 5850 & 5916.88 & 5929.17 & -12.283 & -66.8837 \tabularnewline
86 & 6300 & 6269.23 & 5937.5 & 331.727 & 30.7726 \tabularnewline
87 & 6550 & 6108.55 & 5958.33 & 150.217 & 441.45 \tabularnewline
88 & 5450 & 5872.61 & 5991.67 & -119.054 & -422.613 \tabularnewline
89 & 5750 & 5807.51 & 6022.92 & -215.408 & -57.5087 \tabularnewline
90 & 6600 & 6341.62 & 6052.08 & 289.54 & 258.377 \tabularnewline
91 & 3850 & 4263.7 & 6089.58 & -1825.88 & -413.701 \tabularnewline
92 & 6000 & 6113.24 & 6131.25 & -18.0122 & -113.238 \tabularnewline
93 & 6750 & 6541.02 & 6118.75 & 422.266 & 208.984 \tabularnewline
94 & 6750 & 6633.61 & 6141.67 & 491.942 & 116.392 \tabularnewline
95 & 6850 & 6806.52 & 6200 & 606.525 & 43.4751 \tabularnewline
96 & 6100 & 6110.92 & 6212.5 & -101.577 & -10.923 \tabularnewline
97 & 6400 & 6206.47 & 6218.75 & -12.283 & 193.533 \tabularnewline
98 & 6750 & 6565.06 & 6233.33 & 331.727 & 184.939 \tabularnewline
99 & 5800 & 6402.3 & 6252.08 & 150.217 & -602.3 \tabularnewline
100 & 6750 & 6145.53 & 6264.58 & -119.054 & 604.47 \tabularnewline
101 & 5850 & 6078.34 & 6293.75 & -215.408 & -228.342 \tabularnewline
102 & 6800 & 6610.37 & 6320.83 & 289.54 & 189.627 \tabularnewline
103 & 3800 & 4507.45 & 6333.33 & -1825.88 & -707.451 \tabularnewline
104 & 6400 & 6327.82 & 6345.83 & -18.0122 & 72.1788 \tabularnewline
105 & 6800 & 6830.6 & 6408.33 & 422.266 & -30.599 \tabularnewline
106 & 7000 & 6927.36 & 6435.42 & 491.942 & 72.6418 \tabularnewline
107 & 7300 & 7044.02 & 6437.5 & 606.525 & 255.975 \tabularnewline
108 & 6300 & 6365.09 & 6466.67 & -101.577 & -65.0897 \tabularnewline
109 & 6500 & NA & NA & -12.283 & NA \tabularnewline
110 & 6950 & NA & NA & 331.727 & NA \tabularnewline
111 & 7100 & NA & NA & 150.217 & NA \tabularnewline
112 & 6100 & NA & NA & -119.054 & NA \tabularnewline
113 & 6550 & NA & NA & -215.408 & NA \tabularnewline
114 & 6800 & NA & NA & 289.54 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302267&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3800[/C][C]NA[/C][C]NA[/C][C]-12.283[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]4150[/C][C]NA[/C][C]NA[/C][C]331.727[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]4200[/C][C]NA[/C][C]NA[/C][C]150.217[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]3650[/C][C]NA[/C][C]NA[/C][C]-119.054[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]3750[/C][C]NA[/C][C]NA[/C][C]-215.408[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]4250[/C][C]NA[/C][C]NA[/C][C]289.54[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]2700[/C][C]2184.53[/C][C]4010.42[/C][C]-1825.88[/C][C]515.466[/C][/ROW]
[ROW][C]8[/C][C]3950[/C][C]4023.65[/C][C]4041.67[/C][C]-18.0122[/C][C]-73.6545[/C][/ROW]
[ROW][C]9[/C][C]4400[/C][C]4488.93[/C][C]4066.67[/C][C]422.266[/C][C]-88.9323[/C][/ROW]
[ROW][C]10[/C][C]4500[/C][C]4583.61[/C][C]4091.67[/C][C]491.942[/C][C]-83.6082[/C][/ROW]
[ROW][C]11[/C][C]4500[/C][C]4733.61[/C][C]4127.08[/C][C]606.525[/C][C]-233.608[/C][/ROW]
[ROW][C]12[/C][C]4050[/C][C]4058.84[/C][C]4160.42[/C][C]-101.577[/C][C]-8.8397[/C][/ROW]
[ROW][C]13[/C][C]4250[/C][C]4162.72[/C][C]4175[/C][C]-12.283[/C][C]87.283[/C][/ROW]
[ROW][C]14[/C][C]4450[/C][C]4525.48[/C][C]4193.75[/C][C]331.727[/C][C]-75.4774[/C][/ROW]
[ROW][C]15[/C][C]4500[/C][C]4373.13[/C][C]4222.92[/C][C]150.217[/C][C]126.866[/C][/ROW]
[ROW][C]16[/C][C]3950[/C][C]4135.11[/C][C]4254.17[/C][C]-119.054[/C][C]-185.113[/C][/ROW]
[ROW][C]17[/C][C]4300[/C][C]4076.26[/C][C]4291.67[/C][C]-215.408[/C][C]223.741[/C][/ROW]
[ROW][C]18[/C][C]4500[/C][C]4620.79[/C][C]4331.25[/C][C]289.54[/C][C]-120.79[/C][/ROW]
[ROW][C]19[/C][C]2800[/C][C]2534.53[/C][C]4360.42[/C][C]-1825.88[/C][C]265.466[/C][/ROW]
[ROW][C]20[/C][C]4300[/C][C]4367.4[/C][C]4385.42[/C][C]-18.0122[/C][C]-67.4045[/C][/ROW]
[ROW][C]21[/C][C]4750[/C][C]4820.18[/C][C]4397.92[/C][C]422.266[/C][C]-70.1823[/C][/ROW]
[ROW][C]22[/C][C]4900[/C][C]4912.77[/C][C]4420.83[/C][C]491.942[/C][C]-12.7749[/C][/ROW]
[ROW][C]23[/C][C]5000[/C][C]5046.11[/C][C]4439.58[/C][C]606.525[/C][C]-46.1082[/C][/ROW]
[ROW][C]24[/C][C]4500[/C][C]4342.17[/C][C]4443.75[/C][C]-101.577[/C][C]157.827[/C][/ROW]
[ROW][C]25[/C][C]4500[/C][C]4448.13[/C][C]4460.42[/C][C]-12.283[/C][C]51.8663[/C][/ROW]
[ROW][C]26[/C][C]4800[/C][C]4812.98[/C][C]4481.25[/C][C]331.727[/C][C]-12.9774[/C][/ROW]
[ROW][C]27[/C][C]4450[/C][C]4654.38[/C][C]4504.17[/C][C]150.217[/C][C]-204.384[/C][/ROW]
[ROW][C]28[/C][C]4550[/C][C]4399.7[/C][C]4518.75[/C][C]-119.054[/C][C]150.304[/C][/ROW]
[ROW][C]29[/C][C]4150[/C][C]4322.09[/C][C]4537.5[/C][C]-215.408[/C][C]-172.092[/C][/ROW]
[ROW][C]30[/C][C]4750[/C][C]4845.79[/C][C]4556.25[/C][C]289.54[/C][C]-95.7899[/C][/ROW]
[ROW][C]31[/C][C]2950[/C][C]2740.78[/C][C]4566.67[/C][C]-1825.88[/C][C]209.216[/C][/ROW]
[ROW][C]32[/C][C]4650[/C][C]4559.07[/C][C]4577.08[/C][C]-18.0122[/C][C]90.9288[/C][/ROW]
[ROW][C]33[/C][C]4950[/C][C]5026.43[/C][C]4604.17[/C][C]422.266[/C][C]-76.4323[/C][/ROW]
[ROW][C]34[/C][C]5050[/C][C]5110.69[/C][C]4618.75[/C][C]491.942[/C][C]-60.6916[/C][/ROW]
[ROW][C]35[/C][C]5300[/C][C]5235.69[/C][C]4629.17[/C][C]606.525[/C][C]64.3084[/C][/ROW]
[ROW][C]36[/C][C]4650[/C][C]4550.51[/C][C]4652.08[/C][C]-101.577[/C][C]99.4936[/C][/ROW]
[ROW][C]37[/C][C]4600[/C][C]4652.3[/C][C]4664.58[/C][C]-12.283[/C][C]-52.3003[/C][/ROW]
[ROW][C]38[/C][C]4950[/C][C]5008.81[/C][C]4677.08[/C][C]331.727[/C][C]-58.8108[/C][/ROW]
[ROW][C]39[/C][C]4950[/C][C]4843.97[/C][C]4693.75[/C][C]150.217[/C][C]106.033[/C][/ROW]
[ROW][C]40[/C][C]4400[/C][C]4597.61[/C][C]4716.67[/C][C]-119.054[/C][C]-197.613[/C][/ROW]
[ROW][C]41[/C][C]4550[/C][C]4520.01[/C][C]4735.42[/C][C]-215.408[/C][C]29.9913[/C][/ROW]
[ROW][C]42[/C][C]4900[/C][C]5033.29[/C][C]4743.75[/C][C]289.54[/C][C]-133.29[/C][/ROW]
[ROW][C]43[/C][C]3100[/C][C]2928.28[/C][C]4754.17[/C][C]-1825.88[/C][C]171.716[/C][/ROW]
[ROW][C]44[/C][C]4800[/C][C]4754.9[/C][C]4772.92[/C][C]-18.0122[/C][C]45.0955[/C][/ROW]
[ROW][C]45[/C][C]5200[/C][C]5216.02[/C][C]4793.75[/C][C]422.266[/C][C]-16.0156[/C][/ROW]
[ROW][C]46[/C][C]5350[/C][C]5302.36[/C][C]4810.42[/C][C]491.942[/C][C]47.6418[/C][/ROW]
[ROW][C]47[/C][C]5450[/C][C]5433.61[/C][C]4827.08[/C][C]606.525[/C][C]16.3918[/C][/ROW]
[ROW][C]48[/C][C]4700[/C][C]4748.42[/C][C]4850[/C][C]-101.577[/C][C]-48.423[/C][/ROW]
[ROW][C]49[/C][C]4800[/C][C]4860.63[/C][C]4872.92[/C][C]-12.283[/C][C]-60.6337[/C][/ROW]
[ROW][C]50[/C][C]5200[/C][C]5225.48[/C][C]4893.75[/C][C]331.727[/C][C]-25.4774[/C][/ROW]
[ROW][C]51[/C][C]5200[/C][C]5068.97[/C][C]4918.75[/C][C]150.217[/C][C]131.033[/C][/ROW]
[ROW][C]52[/C][C]4550[/C][C]4826.78[/C][C]4945.83[/C][C]-119.054[/C][C]-276.78[/C][/ROW]
[ROW][C]53[/C][C]4800[/C][C]4753.34[/C][C]4968.75[/C][C]-215.408[/C][C]46.658[/C][/ROW]
[ROW][C]54[/C][C]5200[/C][C]5285.37[/C][C]4995.83[/C][C]289.54[/C][C]-85.3733[/C][/ROW]
[ROW][C]55[/C][C]3350[/C][C]3203.28[/C][C]5029.17[/C][C]-1825.88[/C][C]146.716[/C][/ROW]
[ROW][C]56[/C][C]5050[/C][C]5040.32[/C][C]5058.33[/C][C]-18.0122[/C][C]9.67882[/C][/ROW]
[ROW][C]57[/C][C]5550[/C][C]5493.1[/C][C]5070.83[/C][C]422.266[/C][C]56.901[/C][/ROW]
[ROW][C]58[/C][C]5650[/C][C]5610.69[/C][C]5118.75[/C][C]491.942[/C][C]39.3084[/C][/ROW]
[ROW][C]59[/C][C]5700[/C][C]5789.86[/C][C]5183.33[/C][C]606.525[/C][C]-89.8582[/C][/ROW]
[ROW][C]60[/C][C]5100[/C][C]5123.42[/C][C]5225[/C][C]-101.577[/C][C]-23.423[/C][/ROW]
[ROW][C]61[/C][C]5200[/C][C]5252.3[/C][C]5264.58[/C][C]-12.283[/C][C]-52.3003[/C][/ROW]
[ROW][C]62[/C][C]5500[/C][C]5627.56[/C][C]5295.83[/C][C]331.727[/C][C]-127.561[/C][/ROW]
[ROW][C]63[/C][C]5200[/C][C]5479.38[/C][C]5329.17[/C][C]150.217[/C][C]-279.384[/C][/ROW]
[ROW][C]64[/C][C]5700[/C][C]5241.36[/C][C]5360.42[/C][C]-119.054[/C][C]458.637[/C][/ROW]
[ROW][C]65[/C][C]5200[/C][C]5180.43[/C][C]5395.83[/C][C]-215.408[/C][C]19.5747[/C][/ROW]
[ROW][C]66[/C][C]5800[/C][C]5722.87[/C][C]5433.33[/C][C]289.54[/C][C]77.1267[/C][/ROW]
[ROW][C]67[/C][C]3700[/C][C]3638.7[/C][C]5464.58[/C][C]-1825.88[/C][C]61.2992[/C][/ROW]
[ROW][C]68[/C][C]5450[/C][C]5486.15[/C][C]5504.17[/C][C]-18.0122[/C][C]-36.1545[/C][/ROW]
[ROW][C]69[/C][C]5950[/C][C]5991.02[/C][C]5568.75[/C][C]422.266[/C][C]-41.0156[/C][/ROW]
[ROW][C]70[/C][C]6000[/C][C]6091.94[/C][C]5600[/C][C]491.942[/C][C]-91.9416[/C][/ROW]
[ROW][C]71[/C][C]6200[/C][C]6219.02[/C][C]5612.5[/C][C]606.525[/C][C]-19.0249[/C][/ROW]
[ROW][C]72[/C][C]5500[/C][C]5540.09[/C][C]5641.67[/C][C]-101.577[/C][C]-40.0897[/C][/ROW]
[ROW][C]73[/C][C]5550[/C][C]5639.8[/C][C]5652.08[/C][C]-12.283[/C][C]-89.8003[/C][/ROW]
[ROW][C]74[/C][C]6100[/C][C]6004.64[/C][C]5672.92[/C][C]331.727[/C][C]95.3559[/C][/ROW]
[ROW][C]75[/C][C]6150[/C][C]5858.55[/C][C]5708.33[/C][C]150.217[/C][C]291.45[/C][/ROW]
[ROW][C]76[/C][C]5500[/C][C]5620.53[/C][C]5739.58[/C][C]-119.054[/C][C]-120.53[/C][/ROW]
[ROW][C]77[/C][C]5700[/C][C]5551.26[/C][C]5766.67[/C][C]-215.408[/C][C]148.741[/C][/ROW]
[ROW][C]78[/C][C]6000[/C][C]6079.12[/C][C]5789.58[/C][C]289.54[/C][C]-79.1233[/C][/ROW]
[ROW][C]79[/C][C]3750[/C][C]3986.62[/C][C]5812.5[/C][C]-1825.88[/C][C]-236.617[/C][/ROW]
[ROW][C]80[/C][C]5900[/C][C]5815.32[/C][C]5833.33[/C][C]-18.0122[/C][C]84.6788[/C][/ROW]
[ROW][C]81[/C][C]6350[/C][C]6280.6[/C][C]5858.33[/C][C]422.266[/C][C]69.401[/C][/ROW]
[ROW][C]82[/C][C]6350[/C][C]6364.86[/C][C]5872.92[/C][C]491.942[/C][C]-14.8582[/C][/ROW]
[ROW][C]83[/C][C]6500[/C][C]6479.44[/C][C]5872.92[/C][C]606.525[/C][C]20.5584[/C][/ROW]
[ROW][C]84[/C][C]5750[/C][C]5798.42[/C][C]5900[/C][C]-101.577[/C][C]-48.423[/C][/ROW]
[ROW][C]85[/C][C]5850[/C][C]5916.88[/C][C]5929.17[/C][C]-12.283[/C][C]-66.8837[/C][/ROW]
[ROW][C]86[/C][C]6300[/C][C]6269.23[/C][C]5937.5[/C][C]331.727[/C][C]30.7726[/C][/ROW]
[ROW][C]87[/C][C]6550[/C][C]6108.55[/C][C]5958.33[/C][C]150.217[/C][C]441.45[/C][/ROW]
[ROW][C]88[/C][C]5450[/C][C]5872.61[/C][C]5991.67[/C][C]-119.054[/C][C]-422.613[/C][/ROW]
[ROW][C]89[/C][C]5750[/C][C]5807.51[/C][C]6022.92[/C][C]-215.408[/C][C]-57.5087[/C][/ROW]
[ROW][C]90[/C][C]6600[/C][C]6341.62[/C][C]6052.08[/C][C]289.54[/C][C]258.377[/C][/ROW]
[ROW][C]91[/C][C]3850[/C][C]4263.7[/C][C]6089.58[/C][C]-1825.88[/C][C]-413.701[/C][/ROW]
[ROW][C]92[/C][C]6000[/C][C]6113.24[/C][C]6131.25[/C][C]-18.0122[/C][C]-113.238[/C][/ROW]
[ROW][C]93[/C][C]6750[/C][C]6541.02[/C][C]6118.75[/C][C]422.266[/C][C]208.984[/C][/ROW]
[ROW][C]94[/C][C]6750[/C][C]6633.61[/C][C]6141.67[/C][C]491.942[/C][C]116.392[/C][/ROW]
[ROW][C]95[/C][C]6850[/C][C]6806.52[/C][C]6200[/C][C]606.525[/C][C]43.4751[/C][/ROW]
[ROW][C]96[/C][C]6100[/C][C]6110.92[/C][C]6212.5[/C][C]-101.577[/C][C]-10.923[/C][/ROW]
[ROW][C]97[/C][C]6400[/C][C]6206.47[/C][C]6218.75[/C][C]-12.283[/C][C]193.533[/C][/ROW]
[ROW][C]98[/C][C]6750[/C][C]6565.06[/C][C]6233.33[/C][C]331.727[/C][C]184.939[/C][/ROW]
[ROW][C]99[/C][C]5800[/C][C]6402.3[/C][C]6252.08[/C][C]150.217[/C][C]-602.3[/C][/ROW]
[ROW][C]100[/C][C]6750[/C][C]6145.53[/C][C]6264.58[/C][C]-119.054[/C][C]604.47[/C][/ROW]
[ROW][C]101[/C][C]5850[/C][C]6078.34[/C][C]6293.75[/C][C]-215.408[/C][C]-228.342[/C][/ROW]
[ROW][C]102[/C][C]6800[/C][C]6610.37[/C][C]6320.83[/C][C]289.54[/C][C]189.627[/C][/ROW]
[ROW][C]103[/C][C]3800[/C][C]4507.45[/C][C]6333.33[/C][C]-1825.88[/C][C]-707.451[/C][/ROW]
[ROW][C]104[/C][C]6400[/C][C]6327.82[/C][C]6345.83[/C][C]-18.0122[/C][C]72.1788[/C][/ROW]
[ROW][C]105[/C][C]6800[/C][C]6830.6[/C][C]6408.33[/C][C]422.266[/C][C]-30.599[/C][/ROW]
[ROW][C]106[/C][C]7000[/C][C]6927.36[/C][C]6435.42[/C][C]491.942[/C][C]72.6418[/C][/ROW]
[ROW][C]107[/C][C]7300[/C][C]7044.02[/C][C]6437.5[/C][C]606.525[/C][C]255.975[/C][/ROW]
[ROW][C]108[/C][C]6300[/C][C]6365.09[/C][C]6466.67[/C][C]-101.577[/C][C]-65.0897[/C][/ROW]
[ROW][C]109[/C][C]6500[/C][C]NA[/C][C]NA[/C][C]-12.283[/C][C]NA[/C][/ROW]
[ROW][C]110[/C][C]6950[/C][C]NA[/C][C]NA[/C][C]331.727[/C][C]NA[/C][/ROW]
[ROW][C]111[/C][C]7100[/C][C]NA[/C][C]NA[/C][C]150.217[/C][C]NA[/C][/ROW]
[ROW][C]112[/C][C]6100[/C][C]NA[/C][C]NA[/C][C]-119.054[/C][C]NA[/C][/ROW]
[ROW][C]113[/C][C]6550[/C][C]NA[/C][C]NA[/C][C]-215.408[/C][C]NA[/C][/ROW]
[ROW][C]114[/C][C]6800[/C][C]NA[/C][C]NA[/C][C]289.54[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302267&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302267&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13800NANA-12.283NA
24150NANA331.727NA
34200NANA150.217NA
43650NANA-119.054NA
53750NANA-215.408NA
64250NANA289.54NA
727002184.534010.42-1825.88515.466
839504023.654041.67-18.0122-73.6545
944004488.934066.67422.266-88.9323
1045004583.614091.67491.942-83.6082
1145004733.614127.08606.525-233.608
1240504058.844160.42-101.577-8.8397
1342504162.724175-12.28387.283
1444504525.484193.75331.727-75.4774
1545004373.134222.92150.217126.866
1639504135.114254.17-119.054-185.113
1743004076.264291.67-215.408223.741
1845004620.794331.25289.54-120.79
1928002534.534360.42-1825.88265.466
2043004367.44385.42-18.0122-67.4045
2147504820.184397.92422.266-70.1823
2249004912.774420.83491.942-12.7749
2350005046.114439.58606.525-46.1082
2445004342.174443.75-101.577157.827
2545004448.134460.42-12.28351.8663
2648004812.984481.25331.727-12.9774
2744504654.384504.17150.217-204.384
2845504399.74518.75-119.054150.304
2941504322.094537.5-215.408-172.092
3047504845.794556.25289.54-95.7899
3129502740.784566.67-1825.88209.216
3246504559.074577.08-18.012290.9288
3349505026.434604.17422.266-76.4323
3450505110.694618.75491.942-60.6916
3553005235.694629.17606.52564.3084
3646504550.514652.08-101.57799.4936
3746004652.34664.58-12.283-52.3003
3849505008.814677.08331.727-58.8108
3949504843.974693.75150.217106.033
4044004597.614716.67-119.054-197.613
4145504520.014735.42-215.40829.9913
4249005033.294743.75289.54-133.29
4331002928.284754.17-1825.88171.716
4448004754.94772.92-18.012245.0955
4552005216.024793.75422.266-16.0156
4653505302.364810.42491.94247.6418
4754505433.614827.08606.52516.3918
4847004748.424850-101.577-48.423
4948004860.634872.92-12.283-60.6337
5052005225.484893.75331.727-25.4774
5152005068.974918.75150.217131.033
5245504826.784945.83-119.054-276.78
5348004753.344968.75-215.40846.658
5452005285.374995.83289.54-85.3733
5533503203.285029.17-1825.88146.716
5650505040.325058.33-18.01229.67882
5755505493.15070.83422.26656.901
5856505610.695118.75491.94239.3084
5957005789.865183.33606.525-89.8582
6051005123.425225-101.577-23.423
6152005252.35264.58-12.283-52.3003
6255005627.565295.83331.727-127.561
6352005479.385329.17150.217-279.384
6457005241.365360.42-119.054458.637
6552005180.435395.83-215.40819.5747
6658005722.875433.33289.5477.1267
6737003638.75464.58-1825.8861.2992
6854505486.155504.17-18.0122-36.1545
6959505991.025568.75422.266-41.0156
7060006091.945600491.942-91.9416
7162006219.025612.5606.525-19.0249
7255005540.095641.67-101.577-40.0897
7355505639.85652.08-12.283-89.8003
7461006004.645672.92331.72795.3559
7561505858.555708.33150.217291.45
7655005620.535739.58-119.054-120.53
7757005551.265766.67-215.408148.741
7860006079.125789.58289.54-79.1233
7937503986.625812.5-1825.88-236.617
8059005815.325833.33-18.012284.6788
8163506280.65858.33422.26669.401
8263506364.865872.92491.942-14.8582
8365006479.445872.92606.52520.5584
8457505798.425900-101.577-48.423
8558505916.885929.17-12.283-66.8837
8663006269.235937.5331.72730.7726
8765506108.555958.33150.217441.45
8854505872.615991.67-119.054-422.613
8957505807.516022.92-215.408-57.5087
9066006341.626052.08289.54258.377
9138504263.76089.58-1825.88-413.701
9260006113.246131.25-18.0122-113.238
9367506541.026118.75422.266208.984
9467506633.616141.67491.942116.392
9568506806.526200606.52543.4751
9661006110.926212.5-101.577-10.923
9764006206.476218.75-12.283193.533
9867506565.066233.33331.727184.939
9958006402.36252.08150.217-602.3
10067506145.536264.58-119.054604.47
10158506078.346293.75-215.408-228.342
10268006610.376320.83289.54189.627
10338004507.456333.33-1825.88-707.451
10464006327.826345.83-18.012272.1788
10568006830.66408.33422.266-30.599
10670006927.366435.42491.94272.6418
10773007044.026437.5606.525255.975
10863006365.096466.67-101.577-65.0897
1096500NANA-12.283NA
1106950NANA331.727NA
1117100NANA150.217NA
1126100NANA-119.054NA
1136550NANA-215.408NA
1146800NANA289.54NA



Parameters (Session):
par4 = 4 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- '12'
par1 <- 'multiplicative'
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')