Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationWed, 21 Dec 2016 13:22:07 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482323370tcp1zxioj0ch6am.htm/, Retrieved Fri, 01 Nov 2024 03:29:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302223, Retrieved Fri, 01 Nov 2024 03:29:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact124
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [ARIMA forecasting] [2016-12-21 12:22:07] [36884fbde1107444791dd71ee0072a5a] [Current]
Feedback Forum

Post a new message
Dataseries X:
3647
1885
4791
3178
2849
4716
3085
2799
3573
2721
3355
5667
2856
1944
4188
2949
3567
4137
3494
2489
3244
2669
2529
3377
3366
2073
4133
4213
3710
5123
3141
3084
3804
3203
2757
2243
5229
2857
3395
4882
7140
8945
6866
4205
3217
3079
2263
4187
2665
2073
3540
3686
2384
4500
1679
868
1869
3710
6904
3415
938
3359
3551
2278
3033
2280
2901
4812
4882
7896
5048
3741
4418
3471
5055
7595
8124
2333
3008
2744
2833
2428
4269
3207
5170
7767
4544
3741
2193
3432
5282
6635
4222
7317
4132
5048
4383
3761
4081
6491
5859
7139
7682
8649
6146
7137
9948
15819
8370
13222
16711
19059
8303
20781
9638
13444
6072
13442
14457
17705
16463
19194
20688
14739
12702
15760




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302223&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302223&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302223&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[102])
903432-------
915282-------
926635-------
934222-------
947317-------
954132-------
965048-------
974383-------
983761-------
994081-------
1006491-------
1015859-------
1027139-------
10376824841.85382097.758914828.58830.28860.32610.46560.3261
10486493942.18221705.354912106.61730.12920.18460.2590.2214
10561464401.76221838.414314414.54410.36640.20290.5140.296
10671375044.57822031.210317698.49730.37290.43230.36240.3728
10799485064.17792030.32817914.82880.22820.37590.55650.3758
108158194941.26351986.549717387.23210.04340.21520.49330.3646
10983704294.37241780.173714260.32410.21140.01170.4930.2879
110132224215.12971750.256513953.47520.03490.20150.53640.2781
111167115622.97582172.983621372.61970.08380.17220.57610.4252
112190595626.03152167.832921508.57440.04870.08570.45750.4259
11383035113.33742011.711818762.47340.32350.02260.45740.3856
114207815441.73252102.636320689.70720.02430.35650.41360.4136
11596384770.38621870.968317610.73990.22870.00730.32840.3588
116134444197.79541687.423314774.95410.04330.15670.20470.2929
11760724649.17851815.723317306.57610.41280.08660.40840.3499
118134425482.70482047.078422337.48990.17730.47270.42370.4236
119144575354.70232004.246821705.65980.13760.16620.2910.4153
120177055288.06921978.393721455.77280.06610.13320.10090.4112
121164634583.49491771.553117416.26110.03480.02250.28150.3482
122191944465.70731731.722616858.25620.00990.02890.0830.3362
123206885923.76862130.10426102.69970.07580.09870.14740.453
124147396075.99952162.975227353.58290.21240.08920.11590.461
125127025509.41642006.014323645.76540.21850.15930.38140.4301
126157605910.06372105.524926562.74680.17490.25960.07910.4536

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[102]) \tabularnewline
90 & 3432 & - & - & - & - & - & - & - \tabularnewline
91 & 5282 & - & - & - & - & - & - & - \tabularnewline
92 & 6635 & - & - & - & - & - & - & - \tabularnewline
93 & 4222 & - & - & - & - & - & - & - \tabularnewline
94 & 7317 & - & - & - & - & - & - & - \tabularnewline
95 & 4132 & - & - & - & - & - & - & - \tabularnewline
96 & 5048 & - & - & - & - & - & - & - \tabularnewline
97 & 4383 & - & - & - & - & - & - & - \tabularnewline
98 & 3761 & - & - & - & - & - & - & - \tabularnewline
99 & 4081 & - & - & - & - & - & - & - \tabularnewline
100 & 6491 & - & - & - & - & - & - & - \tabularnewline
101 & 5859 & - & - & - & - & - & - & - \tabularnewline
102 & 7139 & - & - & - & - & - & - & - \tabularnewline
103 & 7682 & 4841.8538 & 2097.7589 & 14828.5883 & 0.2886 & 0.3261 & 0.4656 & 0.3261 \tabularnewline
104 & 8649 & 3942.1822 & 1705.3549 & 12106.6173 & 0.1292 & 0.1846 & 0.259 & 0.2214 \tabularnewline
105 & 6146 & 4401.7622 & 1838.4143 & 14414.5441 & 0.3664 & 0.2029 & 0.514 & 0.296 \tabularnewline
106 & 7137 & 5044.5782 & 2031.2103 & 17698.4973 & 0.3729 & 0.4323 & 0.3624 & 0.3728 \tabularnewline
107 & 9948 & 5064.1779 & 2030.328 & 17914.8288 & 0.2282 & 0.3759 & 0.5565 & 0.3758 \tabularnewline
108 & 15819 & 4941.2635 & 1986.5497 & 17387.2321 & 0.0434 & 0.2152 & 0.4933 & 0.3646 \tabularnewline
109 & 8370 & 4294.3724 & 1780.1737 & 14260.3241 & 0.2114 & 0.0117 & 0.493 & 0.2879 \tabularnewline
110 & 13222 & 4215.1297 & 1750.2565 & 13953.4752 & 0.0349 & 0.2015 & 0.5364 & 0.2781 \tabularnewline
111 & 16711 & 5622.9758 & 2172.9836 & 21372.6197 & 0.0838 & 0.1722 & 0.5761 & 0.4252 \tabularnewline
112 & 19059 & 5626.0315 & 2167.8329 & 21508.5744 & 0.0487 & 0.0857 & 0.4575 & 0.4259 \tabularnewline
113 & 8303 & 5113.3374 & 2011.7118 & 18762.4734 & 0.3235 & 0.0226 & 0.4574 & 0.3856 \tabularnewline
114 & 20781 & 5441.7325 & 2102.6363 & 20689.7072 & 0.0243 & 0.3565 & 0.4136 & 0.4136 \tabularnewline
115 & 9638 & 4770.3862 & 1870.9683 & 17610.7399 & 0.2287 & 0.0073 & 0.3284 & 0.3588 \tabularnewline
116 & 13444 & 4197.7954 & 1687.4233 & 14774.9541 & 0.0433 & 0.1567 & 0.2047 & 0.2929 \tabularnewline
117 & 6072 & 4649.1785 & 1815.7233 & 17306.5761 & 0.4128 & 0.0866 & 0.4084 & 0.3499 \tabularnewline
118 & 13442 & 5482.7048 & 2047.0784 & 22337.4899 & 0.1773 & 0.4727 & 0.4237 & 0.4236 \tabularnewline
119 & 14457 & 5354.7023 & 2004.2468 & 21705.6598 & 0.1376 & 0.1662 & 0.291 & 0.4153 \tabularnewline
120 & 17705 & 5288.0692 & 1978.3937 & 21455.7728 & 0.0661 & 0.1332 & 0.1009 & 0.4112 \tabularnewline
121 & 16463 & 4583.4949 & 1771.5531 & 17416.2611 & 0.0348 & 0.0225 & 0.2815 & 0.3482 \tabularnewline
122 & 19194 & 4465.7073 & 1731.7226 & 16858.2562 & 0.0099 & 0.0289 & 0.083 & 0.3362 \tabularnewline
123 & 20688 & 5923.7686 & 2130.104 & 26102.6997 & 0.0758 & 0.0987 & 0.1474 & 0.453 \tabularnewline
124 & 14739 & 6075.9995 & 2162.9752 & 27353.5829 & 0.2124 & 0.0892 & 0.1159 & 0.461 \tabularnewline
125 & 12702 & 5509.4164 & 2006.0143 & 23645.7654 & 0.2185 & 0.1593 & 0.3814 & 0.4301 \tabularnewline
126 & 15760 & 5910.0637 & 2105.5249 & 26562.7468 & 0.1749 & 0.2596 & 0.0791 & 0.4536 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302223&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[102])[/C][/ROW]
[ROW][C]90[/C][C]3432[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]91[/C][C]5282[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]92[/C][C]6635[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]93[/C][C]4222[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]94[/C][C]7317[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]95[/C][C]4132[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]96[/C][C]5048[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]97[/C][C]4383[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]98[/C][C]3761[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]99[/C][C]4081[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]100[/C][C]6491[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]101[/C][C]5859[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]102[/C][C]7139[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]103[/C][C]7682[/C][C]4841.8538[/C][C]2097.7589[/C][C]14828.5883[/C][C]0.2886[/C][C]0.3261[/C][C]0.4656[/C][C]0.3261[/C][/ROW]
[ROW][C]104[/C][C]8649[/C][C]3942.1822[/C][C]1705.3549[/C][C]12106.6173[/C][C]0.1292[/C][C]0.1846[/C][C]0.259[/C][C]0.2214[/C][/ROW]
[ROW][C]105[/C][C]6146[/C][C]4401.7622[/C][C]1838.4143[/C][C]14414.5441[/C][C]0.3664[/C][C]0.2029[/C][C]0.514[/C][C]0.296[/C][/ROW]
[ROW][C]106[/C][C]7137[/C][C]5044.5782[/C][C]2031.2103[/C][C]17698.4973[/C][C]0.3729[/C][C]0.4323[/C][C]0.3624[/C][C]0.3728[/C][/ROW]
[ROW][C]107[/C][C]9948[/C][C]5064.1779[/C][C]2030.328[/C][C]17914.8288[/C][C]0.2282[/C][C]0.3759[/C][C]0.5565[/C][C]0.3758[/C][/ROW]
[ROW][C]108[/C][C]15819[/C][C]4941.2635[/C][C]1986.5497[/C][C]17387.2321[/C][C]0.0434[/C][C]0.2152[/C][C]0.4933[/C][C]0.3646[/C][/ROW]
[ROW][C]109[/C][C]8370[/C][C]4294.3724[/C][C]1780.1737[/C][C]14260.3241[/C][C]0.2114[/C][C]0.0117[/C][C]0.493[/C][C]0.2879[/C][/ROW]
[ROW][C]110[/C][C]13222[/C][C]4215.1297[/C][C]1750.2565[/C][C]13953.4752[/C][C]0.0349[/C][C]0.2015[/C][C]0.5364[/C][C]0.2781[/C][/ROW]
[ROW][C]111[/C][C]16711[/C][C]5622.9758[/C][C]2172.9836[/C][C]21372.6197[/C][C]0.0838[/C][C]0.1722[/C][C]0.5761[/C][C]0.4252[/C][/ROW]
[ROW][C]112[/C][C]19059[/C][C]5626.0315[/C][C]2167.8329[/C][C]21508.5744[/C][C]0.0487[/C][C]0.0857[/C][C]0.4575[/C][C]0.4259[/C][/ROW]
[ROW][C]113[/C][C]8303[/C][C]5113.3374[/C][C]2011.7118[/C][C]18762.4734[/C][C]0.3235[/C][C]0.0226[/C][C]0.4574[/C][C]0.3856[/C][/ROW]
[ROW][C]114[/C][C]20781[/C][C]5441.7325[/C][C]2102.6363[/C][C]20689.7072[/C][C]0.0243[/C][C]0.3565[/C][C]0.4136[/C][C]0.4136[/C][/ROW]
[ROW][C]115[/C][C]9638[/C][C]4770.3862[/C][C]1870.9683[/C][C]17610.7399[/C][C]0.2287[/C][C]0.0073[/C][C]0.3284[/C][C]0.3588[/C][/ROW]
[ROW][C]116[/C][C]13444[/C][C]4197.7954[/C][C]1687.4233[/C][C]14774.9541[/C][C]0.0433[/C][C]0.1567[/C][C]0.2047[/C][C]0.2929[/C][/ROW]
[ROW][C]117[/C][C]6072[/C][C]4649.1785[/C][C]1815.7233[/C][C]17306.5761[/C][C]0.4128[/C][C]0.0866[/C][C]0.4084[/C][C]0.3499[/C][/ROW]
[ROW][C]118[/C][C]13442[/C][C]5482.7048[/C][C]2047.0784[/C][C]22337.4899[/C][C]0.1773[/C][C]0.4727[/C][C]0.4237[/C][C]0.4236[/C][/ROW]
[ROW][C]119[/C][C]14457[/C][C]5354.7023[/C][C]2004.2468[/C][C]21705.6598[/C][C]0.1376[/C][C]0.1662[/C][C]0.291[/C][C]0.4153[/C][/ROW]
[ROW][C]120[/C][C]17705[/C][C]5288.0692[/C][C]1978.3937[/C][C]21455.7728[/C][C]0.0661[/C][C]0.1332[/C][C]0.1009[/C][C]0.4112[/C][/ROW]
[ROW][C]121[/C][C]16463[/C][C]4583.4949[/C][C]1771.5531[/C][C]17416.2611[/C][C]0.0348[/C][C]0.0225[/C][C]0.2815[/C][C]0.3482[/C][/ROW]
[ROW][C]122[/C][C]19194[/C][C]4465.7073[/C][C]1731.7226[/C][C]16858.2562[/C][C]0.0099[/C][C]0.0289[/C][C]0.083[/C][C]0.3362[/C][/ROW]
[ROW][C]123[/C][C]20688[/C][C]5923.7686[/C][C]2130.104[/C][C]26102.6997[/C][C]0.0758[/C][C]0.0987[/C][C]0.1474[/C][C]0.453[/C][/ROW]
[ROW][C]124[/C][C]14739[/C][C]6075.9995[/C][C]2162.9752[/C][C]27353.5829[/C][C]0.2124[/C][C]0.0892[/C][C]0.1159[/C][C]0.461[/C][/ROW]
[ROW][C]125[/C][C]12702[/C][C]5509.4164[/C][C]2006.0143[/C][C]23645.7654[/C][C]0.2185[/C][C]0.1593[/C][C]0.3814[/C][C]0.4301[/C][/ROW]
[ROW][C]126[/C][C]15760[/C][C]5910.0637[/C][C]2105.5249[/C][C]26562.7468[/C][C]0.1749[/C][C]0.2596[/C][C]0.0791[/C][C]0.4536[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302223&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302223&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[102])
903432-------
915282-------
926635-------
934222-------
947317-------
954132-------
965048-------
974383-------
983761-------
994081-------
1006491-------
1015859-------
1027139-------
10376824841.85382097.758914828.58830.28860.32610.46560.3261
10486493942.18221705.354912106.61730.12920.18460.2590.2214
10561464401.76221838.414314414.54410.36640.20290.5140.296
10671375044.57822031.210317698.49730.37290.43230.36240.3728
10799485064.17792030.32817914.82880.22820.37590.55650.3758
108158194941.26351986.549717387.23210.04340.21520.49330.3646
10983704294.37241780.173714260.32410.21140.01170.4930.2879
110132224215.12971750.256513953.47520.03490.20150.53640.2781
111167115622.97582172.983621372.61970.08380.17220.57610.4252
112190595626.03152167.832921508.57440.04870.08570.45750.4259
11383035113.33742011.711818762.47340.32350.02260.45740.3856
114207815441.73252102.636320689.70720.02430.35650.41360.4136
11596384770.38621870.968317610.73990.22870.00730.32840.3588
116134444197.79541687.423314774.95410.04330.15670.20470.2929
11760724649.17851815.723317306.57610.41280.08660.40840.3499
118134425482.70482047.078422337.48990.17730.47270.42370.4236
119144575354.70232004.246821705.65980.13760.16620.2910.4153
120177055288.06921978.393721455.77280.06610.13320.10090.4112
121164634583.49491771.553117416.26110.03480.02250.28150.3482
122191944465.70731731.722616858.25620.00990.02890.0830.3362
123206885923.76862130.10426102.69970.07580.09870.14740.453
124147396075.99952162.975227353.58290.21240.08920.11590.461
125127025509.41642006.014323645.76540.21850.15930.38140.4301
126157605910.06372105.524926562.74680.17490.25960.07910.4536







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1031.05230.36970.36970.45368066430.5478000.62220.6222
1041.05670.54420.4570.600622154133.808315110282.1783887.19461.03120.8267
1051.16060.28380.39920.51063042365.67311087643.3433329.81130.38210.6785
1061.27980.29320.37270.46894378228.83879410289.7173067.61960.45840.6235
1071.29470.49090.39640.505223851718.701812298575.51393506.93251.070.7128
1081.28510.68760.44490.5957118325151.340729969671.48515474.45632.38320.9912
1091.1840.48690.45090.602516610740.21328061252.73195297.28730.89290.9772
1101.17870.68120.47970.656381123712.997434694060.26515890.16641.97331.1017
1111.42910.66350.50010.6937122944279.837144499640.21756670.80512.42931.2492
1121.44030.70480.52060.7332180444644.017358094140.59757621.95122.9431.4186
1131.36190.38420.50820.709810173947.581553737759.41427330.60430.69881.3531
1141.42960.73810.52740.7481235293127.217668867373.39798298.63683.36071.5204
1151.37330.5050.52560.742523693664.254965392472.69468086.56121.06641.4855
1161.28560.68780.53720.764485492299.767266828174.62838174.85012.02571.5241
1171.3890.23430.5170.73112024421.069862507924.39117906.19530.31171.4433
1181.56850.59210.52170.73863350380.564662560577.90197909.52451.74381.4621
1191.55790.62960.52810.748682851823.664463754180.59387984.62151.99421.4934
1201.55990.70130.53770.767154180169.461568777846.6428293.2412.72041.5615
1211.42850.72160.54740.7861141122640.721472585467.38318519.71052.60271.6163
1221.41580.76730.55840.809216922604.62279802324.2458933.21473.22681.6969
1231.7380.71370.56580.8233217982528.387986382333.96619294.20973.23471.7701
1241.78670.58780.56680.823875047577.53385867117.76469266.45121.8981.7759
1251.67950.56630.56670.822351733258.609984383036.93189186.0241.57581.7672
1261.78290.6250.56920.825997021245.59184909628.95929214.64212.1581.7835

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
103 & 1.0523 & 0.3697 & 0.3697 & 0.4536 & 8066430.5478 & 0 & 0 & 0.6222 & 0.6222 \tabularnewline
104 & 1.0567 & 0.5442 & 0.457 & 0.6006 & 22154133.8083 & 15110282.178 & 3887.1946 & 1.0312 & 0.8267 \tabularnewline
105 & 1.1606 & 0.2838 & 0.3992 & 0.5106 & 3042365.673 & 11087643.343 & 3329.8113 & 0.3821 & 0.6785 \tabularnewline
106 & 1.2798 & 0.2932 & 0.3727 & 0.4689 & 4378228.8387 & 9410289.717 & 3067.6196 & 0.4584 & 0.6235 \tabularnewline
107 & 1.2947 & 0.4909 & 0.3964 & 0.5052 & 23851718.7018 & 12298575.5139 & 3506.9325 & 1.07 & 0.7128 \tabularnewline
108 & 1.2851 & 0.6876 & 0.4449 & 0.5957 & 118325151.3407 & 29969671.4851 & 5474.4563 & 2.3832 & 0.9912 \tabularnewline
109 & 1.184 & 0.4869 & 0.4509 & 0.6025 & 16610740.213 & 28061252.7319 & 5297.2873 & 0.8929 & 0.9772 \tabularnewline
110 & 1.1787 & 0.6812 & 0.4797 & 0.6563 & 81123712.9974 & 34694060.2651 & 5890.1664 & 1.9733 & 1.1017 \tabularnewline
111 & 1.4291 & 0.6635 & 0.5001 & 0.6937 & 122944279.8371 & 44499640.2175 & 6670.8051 & 2.4293 & 1.2492 \tabularnewline
112 & 1.4403 & 0.7048 & 0.5206 & 0.7332 & 180444644.0173 & 58094140.5975 & 7621.9512 & 2.943 & 1.4186 \tabularnewline
113 & 1.3619 & 0.3842 & 0.5082 & 0.7098 & 10173947.5815 & 53737759.4142 & 7330.6043 & 0.6988 & 1.3531 \tabularnewline
114 & 1.4296 & 0.7381 & 0.5274 & 0.7481 & 235293127.2176 & 68867373.3979 & 8298.6368 & 3.3607 & 1.5204 \tabularnewline
115 & 1.3733 & 0.505 & 0.5256 & 0.7425 & 23693664.2549 & 65392472.6946 & 8086.5612 & 1.0664 & 1.4855 \tabularnewline
116 & 1.2856 & 0.6878 & 0.5372 & 0.7644 & 85492299.7672 & 66828174.6283 & 8174.8501 & 2.0257 & 1.5241 \tabularnewline
117 & 1.389 & 0.2343 & 0.517 & 0.7311 & 2024421.0698 & 62507924.3911 & 7906.1953 & 0.3117 & 1.4433 \tabularnewline
118 & 1.5685 & 0.5921 & 0.5217 & 0.738 & 63350380.5646 & 62560577.9019 & 7909.5245 & 1.7438 & 1.4621 \tabularnewline
119 & 1.5579 & 0.6296 & 0.5281 & 0.7486 & 82851823.6644 & 63754180.5938 & 7984.6215 & 1.9942 & 1.4934 \tabularnewline
120 & 1.5599 & 0.7013 & 0.5377 & 0.767 & 154180169.4615 & 68777846.642 & 8293.241 & 2.7204 & 1.5615 \tabularnewline
121 & 1.4285 & 0.7216 & 0.5474 & 0.7861 & 141122640.7214 & 72585467.3831 & 8519.7105 & 2.6027 & 1.6163 \tabularnewline
122 & 1.4158 & 0.7673 & 0.5584 & 0.809 & 216922604.622 & 79802324.245 & 8933.2147 & 3.2268 & 1.6969 \tabularnewline
123 & 1.738 & 0.7137 & 0.5658 & 0.8233 & 217982528.3879 & 86382333.9661 & 9294.2097 & 3.2347 & 1.7701 \tabularnewline
124 & 1.7867 & 0.5878 & 0.5668 & 0.8238 & 75047577.533 & 85867117.7646 & 9266.4512 & 1.898 & 1.7759 \tabularnewline
125 & 1.6795 & 0.5663 & 0.5667 & 0.8223 & 51733258.6099 & 84383036.9318 & 9186.024 & 1.5758 & 1.7672 \tabularnewline
126 & 1.7829 & 0.625 & 0.5692 & 0.8259 & 97021245.591 & 84909628.9592 & 9214.6421 & 2.158 & 1.7835 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302223&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]103[/C][C]1.0523[/C][C]0.3697[/C][C]0.3697[/C][C]0.4536[/C][C]8066430.5478[/C][C]0[/C][C]0[/C][C]0.6222[/C][C]0.6222[/C][/ROW]
[ROW][C]104[/C][C]1.0567[/C][C]0.5442[/C][C]0.457[/C][C]0.6006[/C][C]22154133.8083[/C][C]15110282.178[/C][C]3887.1946[/C][C]1.0312[/C][C]0.8267[/C][/ROW]
[ROW][C]105[/C][C]1.1606[/C][C]0.2838[/C][C]0.3992[/C][C]0.5106[/C][C]3042365.673[/C][C]11087643.343[/C][C]3329.8113[/C][C]0.3821[/C][C]0.6785[/C][/ROW]
[ROW][C]106[/C][C]1.2798[/C][C]0.2932[/C][C]0.3727[/C][C]0.4689[/C][C]4378228.8387[/C][C]9410289.717[/C][C]3067.6196[/C][C]0.4584[/C][C]0.6235[/C][/ROW]
[ROW][C]107[/C][C]1.2947[/C][C]0.4909[/C][C]0.3964[/C][C]0.5052[/C][C]23851718.7018[/C][C]12298575.5139[/C][C]3506.9325[/C][C]1.07[/C][C]0.7128[/C][/ROW]
[ROW][C]108[/C][C]1.2851[/C][C]0.6876[/C][C]0.4449[/C][C]0.5957[/C][C]118325151.3407[/C][C]29969671.4851[/C][C]5474.4563[/C][C]2.3832[/C][C]0.9912[/C][/ROW]
[ROW][C]109[/C][C]1.184[/C][C]0.4869[/C][C]0.4509[/C][C]0.6025[/C][C]16610740.213[/C][C]28061252.7319[/C][C]5297.2873[/C][C]0.8929[/C][C]0.9772[/C][/ROW]
[ROW][C]110[/C][C]1.1787[/C][C]0.6812[/C][C]0.4797[/C][C]0.6563[/C][C]81123712.9974[/C][C]34694060.2651[/C][C]5890.1664[/C][C]1.9733[/C][C]1.1017[/C][/ROW]
[ROW][C]111[/C][C]1.4291[/C][C]0.6635[/C][C]0.5001[/C][C]0.6937[/C][C]122944279.8371[/C][C]44499640.2175[/C][C]6670.8051[/C][C]2.4293[/C][C]1.2492[/C][/ROW]
[ROW][C]112[/C][C]1.4403[/C][C]0.7048[/C][C]0.5206[/C][C]0.7332[/C][C]180444644.0173[/C][C]58094140.5975[/C][C]7621.9512[/C][C]2.943[/C][C]1.4186[/C][/ROW]
[ROW][C]113[/C][C]1.3619[/C][C]0.3842[/C][C]0.5082[/C][C]0.7098[/C][C]10173947.5815[/C][C]53737759.4142[/C][C]7330.6043[/C][C]0.6988[/C][C]1.3531[/C][/ROW]
[ROW][C]114[/C][C]1.4296[/C][C]0.7381[/C][C]0.5274[/C][C]0.7481[/C][C]235293127.2176[/C][C]68867373.3979[/C][C]8298.6368[/C][C]3.3607[/C][C]1.5204[/C][/ROW]
[ROW][C]115[/C][C]1.3733[/C][C]0.505[/C][C]0.5256[/C][C]0.7425[/C][C]23693664.2549[/C][C]65392472.6946[/C][C]8086.5612[/C][C]1.0664[/C][C]1.4855[/C][/ROW]
[ROW][C]116[/C][C]1.2856[/C][C]0.6878[/C][C]0.5372[/C][C]0.7644[/C][C]85492299.7672[/C][C]66828174.6283[/C][C]8174.8501[/C][C]2.0257[/C][C]1.5241[/C][/ROW]
[ROW][C]117[/C][C]1.389[/C][C]0.2343[/C][C]0.517[/C][C]0.7311[/C][C]2024421.0698[/C][C]62507924.3911[/C][C]7906.1953[/C][C]0.3117[/C][C]1.4433[/C][/ROW]
[ROW][C]118[/C][C]1.5685[/C][C]0.5921[/C][C]0.5217[/C][C]0.738[/C][C]63350380.5646[/C][C]62560577.9019[/C][C]7909.5245[/C][C]1.7438[/C][C]1.4621[/C][/ROW]
[ROW][C]119[/C][C]1.5579[/C][C]0.6296[/C][C]0.5281[/C][C]0.7486[/C][C]82851823.6644[/C][C]63754180.5938[/C][C]7984.6215[/C][C]1.9942[/C][C]1.4934[/C][/ROW]
[ROW][C]120[/C][C]1.5599[/C][C]0.7013[/C][C]0.5377[/C][C]0.767[/C][C]154180169.4615[/C][C]68777846.642[/C][C]8293.241[/C][C]2.7204[/C][C]1.5615[/C][/ROW]
[ROW][C]121[/C][C]1.4285[/C][C]0.7216[/C][C]0.5474[/C][C]0.7861[/C][C]141122640.7214[/C][C]72585467.3831[/C][C]8519.7105[/C][C]2.6027[/C][C]1.6163[/C][/ROW]
[ROW][C]122[/C][C]1.4158[/C][C]0.7673[/C][C]0.5584[/C][C]0.809[/C][C]216922604.622[/C][C]79802324.245[/C][C]8933.2147[/C][C]3.2268[/C][C]1.6969[/C][/ROW]
[ROW][C]123[/C][C]1.738[/C][C]0.7137[/C][C]0.5658[/C][C]0.8233[/C][C]217982528.3879[/C][C]86382333.9661[/C][C]9294.2097[/C][C]3.2347[/C][C]1.7701[/C][/ROW]
[ROW][C]124[/C][C]1.7867[/C][C]0.5878[/C][C]0.5668[/C][C]0.8238[/C][C]75047577.533[/C][C]85867117.7646[/C][C]9266.4512[/C][C]1.898[/C][C]1.7759[/C][/ROW]
[ROW][C]125[/C][C]1.6795[/C][C]0.5663[/C][C]0.5667[/C][C]0.8223[/C][C]51733258.6099[/C][C]84383036.9318[/C][C]9186.024[/C][C]1.5758[/C][C]1.7672[/C][/ROW]
[ROW][C]126[/C][C]1.7829[/C][C]0.625[/C][C]0.5692[/C][C]0.8259[/C][C]97021245.591[/C][C]84909628.9592[/C][C]9214.6421[/C][C]2.158[/C][C]1.7835[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302223&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302223&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1031.05230.36970.36970.45368066430.5478000.62220.6222
1041.05670.54420.4570.600622154133.808315110282.1783887.19461.03120.8267
1051.16060.28380.39920.51063042365.67311087643.3433329.81130.38210.6785
1061.27980.29320.37270.46894378228.83879410289.7173067.61960.45840.6235
1071.29470.49090.39640.505223851718.701812298575.51393506.93251.070.7128
1081.28510.68760.44490.5957118325151.340729969671.48515474.45632.38320.9912
1091.1840.48690.45090.602516610740.21328061252.73195297.28730.89290.9772
1101.17870.68120.47970.656381123712.997434694060.26515890.16641.97331.1017
1111.42910.66350.50010.6937122944279.837144499640.21756670.80512.42931.2492
1121.44030.70480.52060.7332180444644.017358094140.59757621.95122.9431.4186
1131.36190.38420.50820.709810173947.581553737759.41427330.60430.69881.3531
1141.42960.73810.52740.7481235293127.217668867373.39798298.63683.36071.5204
1151.37330.5050.52560.742523693664.254965392472.69468086.56121.06641.4855
1161.28560.68780.53720.764485492299.767266828174.62838174.85012.02571.5241
1171.3890.23430.5170.73112024421.069862507924.39117906.19530.31171.4433
1181.56850.59210.52170.73863350380.564662560577.90197909.52451.74381.4621
1191.55790.62960.52810.748682851823.664463754180.59387984.62151.99421.4934
1201.55990.70130.53770.767154180169.461568777846.6428293.2412.72041.5615
1211.42850.72160.54740.7861141122640.721472585467.38318519.71052.60271.6163
1221.41580.76730.55840.809216922604.62279802324.2458933.21473.22681.6969
1231.7380.71370.56580.8233217982528.387986382333.96619294.20973.23471.7701
1241.78670.58780.56680.823875047577.53385867117.76469266.45121.8981.7759
1251.67950.56630.56670.822351733258.609984383036.93189186.0241.57581.7672
1261.78290.6250.56920.825997021245.59184909628.95929214.64212.1581.7835



Parameters (Session):
par1 = 24 ; par2 = -0.3 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 1 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 24 ; par2 = -0.3 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 1 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')