Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationWed, 21 Dec 2016 13:13:34 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482322838ygqgobfrs9k4hui.htm/, Retrieved Fri, 01 Nov 2024 03:37:50 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302211, Retrieved Fri, 01 Nov 2024 03:37:50 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact139
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [arima forecast n2170] [2016-12-21 12:13:34] [111362aa4cdbe055231fbc5cb9e916c4] [Current]
Feedback Forum

Post a new message
Dataseries X:
4030
4320
4840
4410
4180
4240
3680
4270
4140
4470
4180
4510
4490
3960
3750
3670
3590
2840
3530
4320
3740
3710
3830
3490
4200
4280
4650
2100
2410
1230
2420
2360
1870
2250
1960
2550
3180
3330
3760
3930
3710
3250
3450
3480
3090
3690
3250
3300
4040
3630
3820
3400
2500
2380
2520
2340
2420
2430
2080
2420
2430
2400
2790
2370
2700
2640
2910
2420
2800
2830
2310
2540
2780
2820
3610
3270
3030
3250
3040
3630
3320
3440
3110
3180
3330
3100
3440
3320
3380
3610
3320
3860
3430
3510
3290
3010
3860
3530
3610
3370
3700
3500
4110
4590
3680
4220
3740
3550
4150
4110
4160
3780
3150
3260
4750
4110
3610
3890
2800
2610
3600
3400
3400
3120
3150
3240




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302211&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302211&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302211&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[126])
1143260-------
1154750-------
1164110-------
1173610-------
1183890-------
1192800-------
1202610-------
1213600-------
1223400-------
1233400-------
1243120-------
1253150-------
1263240-------
127NA4248.6243285.31085211.9372NA0.97990.15380.9799
128NA4128.93942984.04495273.8338NANA0.51290.936
129NA3438.46682137.0854739.8485NANA0.39810.6175
130NA3839.25432398.28055280.2281NANA0.47250.7925
131NA3032.64031464.45144600.8292NANA0.61440.3978
132NA2842.64031156.80894528.4717NANA0.60660.322
133NA3651.45911855.67555447.2426NANA0.52240.6733
134NA3525.78981626.40845425.1712NANA0.55160.616
135NA3549.01821551.40445546.632NANA0.55810.6191
136NA3222.56151131.32465313.7984NANA0.53830.4935
137NA2945.947765.10255126.7916NANA0.42720.3958
138NA3045.2384778.32555312.1512NANA0.43310.4331
139NA4277.49391742.53856812.4494NANANA0.7888
140NA3916.08781208.96826623.2074NANANA0.6878
141NA3314.1025445.13166183.0735NANANA0.5202
142NA3658.7761636.60946680.9429NANANA0.607
143NA2720.5103-447.45275888.4732NANANA0.374
144NA2530.5103-776.82815837.8486NANANA0.3371
145NA3423.4999-17.57326864.5731NANANA0.5416
146NA3263.299-306.50246833.1004NANANA0.5051
147NA3275.7363-418.31026969.7828NANANA0.5076
148NA2970.8618-843.38486785.1084NANANA0.445
149NA2836.6904-1094.08246767.4632NANANA0.4203
150NA2931.6653-1112.27736975.608NANANA0.4406

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[126]) \tabularnewline
114 & 3260 & - & - & - & - & - & - & - \tabularnewline
115 & 4750 & - & - & - & - & - & - & - \tabularnewline
116 & 4110 & - & - & - & - & - & - & - \tabularnewline
117 & 3610 & - & - & - & - & - & - & - \tabularnewline
118 & 3890 & - & - & - & - & - & - & - \tabularnewline
119 & 2800 & - & - & - & - & - & - & - \tabularnewline
120 & 2610 & - & - & - & - & - & - & - \tabularnewline
121 & 3600 & - & - & - & - & - & - & - \tabularnewline
122 & 3400 & - & - & - & - & - & - & - \tabularnewline
123 & 3400 & - & - & - & - & - & - & - \tabularnewline
124 & 3120 & - & - & - & - & - & - & - \tabularnewline
125 & 3150 & - & - & - & - & - & - & - \tabularnewline
126 & 3240 & - & - & - & - & - & - & - \tabularnewline
127 & NA & 4248.624 & 3285.3108 & 5211.9372 & NA & 0.9799 & 0.1538 & 0.9799 \tabularnewline
128 & NA & 4128.9394 & 2984.0449 & 5273.8338 & NA & NA & 0.5129 & 0.936 \tabularnewline
129 & NA & 3438.4668 & 2137.085 & 4739.8485 & NA & NA & 0.3981 & 0.6175 \tabularnewline
130 & NA & 3839.2543 & 2398.2805 & 5280.2281 & NA & NA & 0.4725 & 0.7925 \tabularnewline
131 & NA & 3032.6403 & 1464.4514 & 4600.8292 & NA & NA & 0.6144 & 0.3978 \tabularnewline
132 & NA & 2842.6403 & 1156.8089 & 4528.4717 & NA & NA & 0.6066 & 0.322 \tabularnewline
133 & NA & 3651.4591 & 1855.6755 & 5447.2426 & NA & NA & 0.5224 & 0.6733 \tabularnewline
134 & NA & 3525.7898 & 1626.4084 & 5425.1712 & NA & NA & 0.5516 & 0.616 \tabularnewline
135 & NA & 3549.0182 & 1551.4044 & 5546.632 & NA & NA & 0.5581 & 0.6191 \tabularnewline
136 & NA & 3222.5615 & 1131.3246 & 5313.7984 & NA & NA & 0.5383 & 0.4935 \tabularnewline
137 & NA & 2945.947 & 765.1025 & 5126.7916 & NA & NA & 0.4272 & 0.3958 \tabularnewline
138 & NA & 3045.2384 & 778.3255 & 5312.1512 & NA & NA & 0.4331 & 0.4331 \tabularnewline
139 & NA & 4277.4939 & 1742.5385 & 6812.4494 & NA & NA & NA & 0.7888 \tabularnewline
140 & NA & 3916.0878 & 1208.9682 & 6623.2074 & NA & NA & NA & 0.6878 \tabularnewline
141 & NA & 3314.1025 & 445.1316 & 6183.0735 & NA & NA & NA & 0.5202 \tabularnewline
142 & NA & 3658.7761 & 636.6094 & 6680.9429 & NA & NA & NA & 0.607 \tabularnewline
143 & NA & 2720.5103 & -447.4527 & 5888.4732 & NA & NA & NA & 0.374 \tabularnewline
144 & NA & 2530.5103 & -776.8281 & 5837.8486 & NA & NA & NA & 0.3371 \tabularnewline
145 & NA & 3423.4999 & -17.5732 & 6864.5731 & NA & NA & NA & 0.5416 \tabularnewline
146 & NA & 3263.299 & -306.5024 & 6833.1004 & NA & NA & NA & 0.5051 \tabularnewline
147 & NA & 3275.7363 & -418.3102 & 6969.7828 & NA & NA & NA & 0.5076 \tabularnewline
148 & NA & 2970.8618 & -843.3848 & 6785.1084 & NA & NA & NA & 0.445 \tabularnewline
149 & NA & 2836.6904 & -1094.0824 & 6767.4632 & NA & NA & NA & 0.4203 \tabularnewline
150 & NA & 2931.6653 & -1112.2773 & 6975.608 & NA & NA & NA & 0.4406 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302211&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[126])[/C][/ROW]
[ROW][C]114[/C][C]3260[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]115[/C][C]4750[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]116[/C][C]4110[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]117[/C][C]3610[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]118[/C][C]3890[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]119[/C][C]2800[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]120[/C][C]2610[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]121[/C][C]3600[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]122[/C][C]3400[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]123[/C][C]3400[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]124[/C][C]3120[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]125[/C][C]3150[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]126[/C][C]3240[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]127[/C][C]NA[/C][C]4248.624[/C][C]3285.3108[/C][C]5211.9372[/C][C]NA[/C][C]0.9799[/C][C]0.1538[/C][C]0.9799[/C][/ROW]
[ROW][C]128[/C][C]NA[/C][C]4128.9394[/C][C]2984.0449[/C][C]5273.8338[/C][C]NA[/C][C]NA[/C][C]0.5129[/C][C]0.936[/C][/ROW]
[ROW][C]129[/C][C]NA[/C][C]3438.4668[/C][C]2137.085[/C][C]4739.8485[/C][C]NA[/C][C]NA[/C][C]0.3981[/C][C]0.6175[/C][/ROW]
[ROW][C]130[/C][C]NA[/C][C]3839.2543[/C][C]2398.2805[/C][C]5280.2281[/C][C]NA[/C][C]NA[/C][C]0.4725[/C][C]0.7925[/C][/ROW]
[ROW][C]131[/C][C]NA[/C][C]3032.6403[/C][C]1464.4514[/C][C]4600.8292[/C][C]NA[/C][C]NA[/C][C]0.6144[/C][C]0.3978[/C][/ROW]
[ROW][C]132[/C][C]NA[/C][C]2842.6403[/C][C]1156.8089[/C][C]4528.4717[/C][C]NA[/C][C]NA[/C][C]0.6066[/C][C]0.322[/C][/ROW]
[ROW][C]133[/C][C]NA[/C][C]3651.4591[/C][C]1855.6755[/C][C]5447.2426[/C][C]NA[/C][C]NA[/C][C]0.5224[/C][C]0.6733[/C][/ROW]
[ROW][C]134[/C][C]NA[/C][C]3525.7898[/C][C]1626.4084[/C][C]5425.1712[/C][C]NA[/C][C]NA[/C][C]0.5516[/C][C]0.616[/C][/ROW]
[ROW][C]135[/C][C]NA[/C][C]3549.0182[/C][C]1551.4044[/C][C]5546.632[/C][C]NA[/C][C]NA[/C][C]0.5581[/C][C]0.6191[/C][/ROW]
[ROW][C]136[/C][C]NA[/C][C]3222.5615[/C][C]1131.3246[/C][C]5313.7984[/C][C]NA[/C][C]NA[/C][C]0.5383[/C][C]0.4935[/C][/ROW]
[ROW][C]137[/C][C]NA[/C][C]2945.947[/C][C]765.1025[/C][C]5126.7916[/C][C]NA[/C][C]NA[/C][C]0.4272[/C][C]0.3958[/C][/ROW]
[ROW][C]138[/C][C]NA[/C][C]3045.2384[/C][C]778.3255[/C][C]5312.1512[/C][C]NA[/C][C]NA[/C][C]0.4331[/C][C]0.4331[/C][/ROW]
[ROW][C]139[/C][C]NA[/C][C]4277.4939[/C][C]1742.5385[/C][C]6812.4494[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.7888[/C][/ROW]
[ROW][C]140[/C][C]NA[/C][C]3916.0878[/C][C]1208.9682[/C][C]6623.2074[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.6878[/C][/ROW]
[ROW][C]141[/C][C]NA[/C][C]3314.1025[/C][C]445.1316[/C][C]6183.0735[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5202[/C][/ROW]
[ROW][C]142[/C][C]NA[/C][C]3658.7761[/C][C]636.6094[/C][C]6680.9429[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.607[/C][/ROW]
[ROW][C]143[/C][C]NA[/C][C]2720.5103[/C][C]-447.4527[/C][C]5888.4732[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.374[/C][/ROW]
[ROW][C]144[/C][C]NA[/C][C]2530.5103[/C][C]-776.8281[/C][C]5837.8486[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3371[/C][/ROW]
[ROW][C]145[/C][C]NA[/C][C]3423.4999[/C][C]-17.5732[/C][C]6864.5731[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5416[/C][/ROW]
[ROW][C]146[/C][C]NA[/C][C]3263.299[/C][C]-306.5024[/C][C]6833.1004[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5051[/C][/ROW]
[ROW][C]147[/C][C]NA[/C][C]3275.7363[/C][C]-418.3102[/C][C]6969.7828[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5076[/C][/ROW]
[ROW][C]148[/C][C]NA[/C][C]2970.8618[/C][C]-843.3848[/C][C]6785.1084[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.445[/C][/ROW]
[ROW][C]149[/C][C]NA[/C][C]2836.6904[/C][C]-1094.0824[/C][C]6767.4632[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4203[/C][/ROW]
[ROW][C]150[/C][C]NA[/C][C]2931.6653[/C][C]-1112.2773[/C][C]6975.608[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4406[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302211&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302211&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[126])
1143260-------
1154750-------
1164110-------
1173610-------
1183890-------
1192800-------
1202610-------
1213600-------
1223400-------
1233400-------
1243120-------
1253150-------
1263240-------
127NA4248.6243285.31085211.9372NA0.97990.15380.9799
128NA4128.93942984.04495273.8338NANA0.51290.936
129NA3438.46682137.0854739.8485NANA0.39810.6175
130NA3839.25432398.28055280.2281NANA0.47250.7925
131NA3032.64031464.45144600.8292NANA0.61440.3978
132NA2842.64031156.80894528.4717NANA0.60660.322
133NA3651.45911855.67555447.2426NANA0.52240.6733
134NA3525.78981626.40845425.1712NANA0.55160.616
135NA3549.01821551.40445546.632NANA0.55810.6191
136NA3222.56151131.32465313.7984NANA0.53830.4935
137NA2945.947765.10255126.7916NANA0.42720.3958
138NA3045.2384778.32555312.1512NANA0.43310.4331
139NA4277.49391742.53856812.4494NANANA0.7888
140NA3916.08781208.96826623.2074NANANA0.6878
141NA3314.1025445.13166183.0735NANANA0.5202
142NA3658.7761636.60946680.9429NANANA0.607
143NA2720.5103-447.45275888.4732NANANA0.374
144NA2530.5103-776.82815837.8486NANANA0.3371
145NA3423.4999-17.57326864.5731NANANA0.5416
146NA3263.299-306.50246833.1004NANANA0.5051
147NA3275.7363-418.31026969.7828NANANA0.5076
148NA2970.8618-843.38486785.1084NANANA0.445
149NA2836.6904-1094.08246767.4632NANANA0.4203
150NA2931.6653-1112.27736975.608NANANA0.4406







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1270.1157NANANANA00NANA
1280.1415NANANANANANANANA
1290.1931NANANANANANANANA
1300.1915NANANANANANANANA
1310.2638NANANANANANANANA
1320.3026NANANANANANANANA
1330.2509NANANANANANANANA
1340.2749NANANANANANANANA
1350.2872NANANANANANANANA
1360.3311NANANANANANANANA
1370.3777NANANANANANANANA
1380.3798NANANANANANANANA
1390.3024NANANANANANANANA
1400.3527NANANANANANANANA
1410.4417NANANANANANANANA
1420.4214NANANANANANANANA
1430.5941NANANANANANANANA
1440.6668NANANANANANANANA
1450.5128NANANANANANANANA
1460.5581NANANANANANANANA
1470.5754NANANANANANANANA
1480.655NANANANANANANANA
1490.707NANANANANANANANA
1500.7038NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
127 & 0.1157 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
128 & 0.1415 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
129 & 0.1931 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
130 & 0.1915 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
131 & 0.2638 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
132 & 0.3026 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
133 & 0.2509 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
134 & 0.2749 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
135 & 0.2872 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
136 & 0.3311 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
137 & 0.3777 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
138 & 0.3798 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
139 & 0.3024 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
140 & 0.3527 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
141 & 0.4417 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
142 & 0.4214 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
143 & 0.5941 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
144 & 0.6668 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
145 & 0.5128 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
146 & 0.5581 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
147 & 0.5754 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
148 & 0.655 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
149 & 0.707 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
150 & 0.7038 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302211&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]127[/C][C]0.1157[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]128[/C][C]0.1415[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]129[/C][C]0.1931[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]130[/C][C]0.1915[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]131[/C][C]0.2638[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]132[/C][C]0.3026[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]133[/C][C]0.2509[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]134[/C][C]0.2749[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]135[/C][C]0.2872[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]136[/C][C]0.3311[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]137[/C][C]0.3777[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]138[/C][C]0.3798[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]139[/C][C]0.3024[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]140[/C][C]0.3527[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]141[/C][C]0.4417[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]142[/C][C]0.4214[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]143[/C][C]0.5941[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]144[/C][C]0.6668[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]145[/C][C]0.5128[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]146[/C][C]0.5581[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]147[/C][C]0.5754[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]148[/C][C]0.655[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]149[/C][C]0.707[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]150[/C][C]0.7038[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302211&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302211&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1270.1157NANANANA00NANA
1280.1415NANANANANANANANA
1290.1931NANANANANANANANA
1300.1915NANANANANANANANA
1310.2638NANANANANANANANA
1320.3026NANANANANANANANA
1330.2509NANANANANANANANA
1340.2749NANANANANANANANA
1350.2872NANANANANANANANA
1360.3311NANANANANANANANA
1370.3777NANANANANANANANA
1380.3798NANANANANANANANA
1390.3024NANANANANANANANA
1400.3527NANANANANANANANA
1410.4417NANANANANANANANA
1420.4214NANANANANANANANA
1430.5941NANANANANANANANA
1440.6668NANANANANANANANA
1450.5128NANANANANANANANA
1460.5581NANANANANANANANA
1470.5754NANANANANANANANA
1480.655NANANANANANANANA
1490.707NANANANANANANANA
1500.7038NANANANANANANANA



Parameters (Session):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 1 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 1 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')