Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationWed, 21 Dec 2016 11:57:43 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482318056y21nilelpjif7gh.htm/, Retrieved Fri, 01 Nov 2024 03:36:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302166, Retrieved Fri, 01 Nov 2024 03:36:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact70
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [Arima Forecasting ] [2016-12-21 10:57:43] [673dd365cbcfe0c4e35658a2fe545652] [Current]
Feedback Forum

Post a new message
Dataseries X:
3106.78
3235.94
2998.12
2896.3
2952
3060.24
2988.32
2889
2881.82
2969.22
3026.2
3146.08
3032.48
2719.74
2785.18
2797.28
2783.7
2822.84
2835.8
2823.22
2879.14
3003.5
2910.7
2895.54
2982.36
3087.2
3195.28
3272.72
3390.6
3676.12
4052.18
4431.2
4554.96
4279.7
4391.86
4482.82
4530.68
4580.66
4623.5
4720.14
4811.82
4980.18
5174.28
5181.24




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302166&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302166&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302166&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[40])
394623.5-------
404720.14-------
414811.824761.53844507.97375015.1030.34880.62550.62550.6255
424980.184761.53844294.7585228.31870.17930.41640.41640.569
435174.284761.53844152.05275371.0240.09220.2410.2410.553
445181.244761.53844036.9275486.14970.12810.13210.13210.5446

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[40]) \tabularnewline
39 & 4623.5 & - & - & - & - & - & - & - \tabularnewline
40 & 4720.14 & - & - & - & - & - & - & - \tabularnewline
41 & 4811.82 & 4761.5384 & 4507.9737 & 5015.103 & 0.3488 & 0.6255 & 0.6255 & 0.6255 \tabularnewline
42 & 4980.18 & 4761.5384 & 4294.758 & 5228.3187 & 0.1793 & 0.4164 & 0.4164 & 0.569 \tabularnewline
43 & 5174.28 & 4761.5384 & 4152.0527 & 5371.024 & 0.0922 & 0.241 & 0.241 & 0.553 \tabularnewline
44 & 5181.24 & 4761.5384 & 4036.927 & 5486.1497 & 0.1281 & 0.1321 & 0.1321 & 0.5446 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302166&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[40])[/C][/ROW]
[ROW][C]39[/C][C]4623.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]40[/C][C]4720.14[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]41[/C][C]4811.82[/C][C]4761.5384[/C][C]4507.9737[/C][C]5015.103[/C][C]0.3488[/C][C]0.6255[/C][C]0.6255[/C][C]0.6255[/C][/ROW]
[ROW][C]42[/C][C]4980.18[/C][C]4761.5384[/C][C]4294.758[/C][C]5228.3187[/C][C]0.1793[/C][C]0.4164[/C][C]0.4164[/C][C]0.569[/C][/ROW]
[ROW][C]43[/C][C]5174.28[/C][C]4761.5384[/C][C]4152.0527[/C][C]5371.024[/C][C]0.0922[/C][C]0.241[/C][C]0.241[/C][C]0.553[/C][/ROW]
[ROW][C]44[/C][C]5181.24[/C][C]4761.5384[/C][C]4036.927[/C][C]5486.1497[/C][C]0.1281[/C][C]0.1321[/C][C]0.1321[/C][C]0.5446[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302166&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302166&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[40])
394623.5-------
404720.14-------
414811.824761.53844507.97375015.1030.34880.62550.62550.6255
424980.184761.53844294.7585228.31870.17930.41640.41640.569
435174.284761.53844152.05275371.0240.09220.2410.2410.553
445181.244761.53844036.9275486.14970.12810.13210.13210.5446







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
410.02720.01040.01040.01052528.2427000.40830.4083
420.050.04390.02720.027747804.163925166.2033158.63861.77561.0919
430.06530.07980.04470.0462170355.655973562.6875271.22443.35181.8452
440.07760.0810.05380.0557176149.461199209.3809314.97523.40832.236

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
41 & 0.0272 & 0.0104 & 0.0104 & 0.0105 & 2528.2427 & 0 & 0 & 0.4083 & 0.4083 \tabularnewline
42 & 0.05 & 0.0439 & 0.0272 & 0.0277 & 47804.1639 & 25166.2033 & 158.6386 & 1.7756 & 1.0919 \tabularnewline
43 & 0.0653 & 0.0798 & 0.0447 & 0.0462 & 170355.6559 & 73562.6875 & 271.2244 & 3.3518 & 1.8452 \tabularnewline
44 & 0.0776 & 0.081 & 0.0538 & 0.0557 & 176149.4611 & 99209.3809 & 314.9752 & 3.4083 & 2.236 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302166&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]41[/C][C]0.0272[/C][C]0.0104[/C][C]0.0104[/C][C]0.0105[/C][C]2528.2427[/C][C]0[/C][C]0[/C][C]0.4083[/C][C]0.4083[/C][/ROW]
[ROW][C]42[/C][C]0.05[/C][C]0.0439[/C][C]0.0272[/C][C]0.0277[/C][C]47804.1639[/C][C]25166.2033[/C][C]158.6386[/C][C]1.7756[/C][C]1.0919[/C][/ROW]
[ROW][C]43[/C][C]0.0653[/C][C]0.0798[/C][C]0.0447[/C][C]0.0462[/C][C]170355.6559[/C][C]73562.6875[/C][C]271.2244[/C][C]3.3518[/C][C]1.8452[/C][/ROW]
[ROW][C]44[/C][C]0.0776[/C][C]0.081[/C][C]0.0538[/C][C]0.0557[/C][C]176149.4611[/C][C]99209.3809[/C][C]314.9752[/C][C]3.4083[/C][C]2.236[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302166&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302166&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
410.02720.01040.01040.01052528.2427000.40830.4083
420.050.04390.02720.027747804.163925166.2033158.63861.77561.0919
430.06530.07980.04470.0462170355.655973562.6875271.22443.35181.8452
440.07760.0810.05380.0557176149.461199209.3809314.97523.40832.236



Parameters (Session):
par1 = 4 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 1 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = 4 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 1 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par10 <- 'FALSE'
par9 <- '0'
par8 <- '0'
par7 <- '1'
par6 <- '0'
par5 <- '1'
par4 <- '0'
par3 <- '1'
par2 <- '1'
par1 <- '4'
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')