Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 21 Dec 2016 10:47:09 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t14823136871xx2dwtmkctq5ob.htm/, Retrieved Fri, 01 Nov 2024 03:42:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301951, Retrieved Fri, 01 Nov 2024 03:42:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact94
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [] [2016-12-21 09:47:09] [037fdaa34a77b5f63489b3bcd360a80c] [Current]
Feedback Forum

Post a new message
Dataseries X:
3455
3585
3675
3680
3735
3860
3765
3905
4110
4170
4110
4025
4145
4285
4370
4355
4385
4525
4375
4525
4610
4595
4500
4370
4390
4530
4590
4580
4595
4685
4490
4635
4710
4655
4665
4550
4590
4675
4645
4665
4635
4720
4565
4720
4830
4830
4765
4705
4675
4900
4945
4905
4955
5120
4860
5040
5140
5240
5145
5070
5085
5215
5255
5275
5315
5450
5205
5370
5500
5490
5440
5360
5380
5460
5450
5520
5475
5600
5250
5465
5515
5425
5325
5275
5160
5360
5435
5285
5415
5575
5265
5480
5565
5500
5280
5135
5050
5100
5070
5115
5140
5330
5080
5285
5405
5385
5255
5100
5040
5235
5310
5265
5380
5465
5225
5445




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301951&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301951&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301951&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
134553455000
235853570.509858011966.056383536331614.49014198803831.35365190179988
336753651.173881082788.0805785412832823.82611891721721.35298460644082
436803674.570598160558.210237185852655.429401839450760.289089563251874
537353718.110800434658.3910022879965816.88919956535480.666348795899597
638603826.277010537458.9464535468159433.72298946254511.88098395198488
737653782.110091649828.63057593483279-17.1100916498242-1.00117020755265
839053868.159004332189.0949057430799836.84099566781881.45929918088176
941104056.7298706120410.163570801663653.27012938796343.38304185315863
1041704153.546010458210.675675666329516.45398954179941.6333498352701
1141104121.0769882598110.4222887645959-11.0769882598058-0.813243168500529
1240254037.444119927939.87312353004861-12.4441199279282-1.77284490673896
1341454159.314459261765.68638993355625-14.31445926176042.40659896386576
1442854270.016674415237.1906110358732314.98332558476651.82121458371245
1543704338.656982435778.320533205496231.3430175642331.10420367010779
1643554359.833013275688.44358486390188-4.833013275679410.24138857854894
1743854384.497959090558.516870401154520.5020409094492630.305797207091728
1845254453.195723606948.7241195151220271.8042763930631.13392236727243
1943754425.899426575668.5929031147527-50.8994265756632-0.678461017588801
2045254500.473884234468.8503823577756524.52611576553881.24262037147069
2146104565.288091644269.0796066621546644.71190835573531.05403263691235
2245954575.306882222649.0836514803841719.69311777735660.0176943703704555
2345004514.94170455488.82506201437639-14.9417045548031-1.30826201744407
2443704436.650263704098.90773017658594-66.6502637040918-1.64063300071295
2543904439.868076981688.97390750698301-49.8680769816822-0.111381618105193
2645304510.241212551089.3342395106652819.75878744892351.12475318985226
2745904553.442864559139.7600572114088236.55713544087180.615273605195006
2845804584.07788179529.95467511532824-4.077881795201520.390075380421277
2945954605.0047470724710.0119550209194-10.00474707246750.20667828079003
3046854606.889095026059.9844707272609678.1109049739496-0.153139654015114
3144904576.013663627249.85836222719175-86.0136636272392-0.769619675283284
3246354612.890467924159.9483684940382622.10953207584550.508827982137878
3347104654.6298380057510.063969335201655.37016199424880.59878376032298
3446554630.191470088089.9407751647098824.8085299119204-0.649949649495515
3546654647.508646869189.9563885986280917.49135313082290.138842684376564
3645504628.6510683387610.0058183107799-78.6510683387599-0.543368167872241
3745904652.403303938189.94237703444966-62.40330393818130.262478665854311
3846754666.308719509329.95658264622518.691280490679040.0735442282075865
3946454632.729607257769.5637525432680112.2703927422405-0.798877542376784
4046654661.070450963549.719720097949123.929549036456480.350106103644323
4146354650.436320852639.60706929850194-15.4363208526316-0.382892015115855
4247204638.361654401229.5278252855341381.6383455987786-0.40847308436749
4345654655.426230942689.5506627171448-90.42623094268090.141975635421419
4447204694.565581900999.6418882043226625.43441809901340.557333251632185
4548304749.596128017929.7878654916763280.40387198207640.854971594797276
4648304796.083446146129.8912957018647733.91655385387630.691110660295923
4747654762.550893285629.837262832294932.44910671437727-0.817086248276353
4847054781.782469304019.82544117551733-76.78246930400540.177131888049883
4946754753.617710734089.89400979181789-78.6177107340801-0.718814133672006
5049004844.136210042810.126640649691455.86378995719591.50229398587273
5149454918.2072874712310.567500480927126.79271252876481.18119376806075
5249054907.3954965833710.4131434588906-2.395496583369-0.398478244516544
5349554949.031750218610.5850973449735.9682497813990.586638320491522
5451205018.58814072710.8147555855101.4118592730031.11066689567929
5548604984.1099349885110.6736666562806-124.109934988514-0.853298020248565
5650405016.7154086752510.737957333874923.28459132474620.413170894249888
5751405056.8428909397110.820719175777383.15710906028670.553589167809747
5852405157.2581955422611.019814777437982.74180445774061.6866956390063
5951455155.2997236348511.0087689925578-10.299723634851-0.244186340685241
6050705147.8832845363811.0212879123911-77.8832845363762-0.347171255571034
6150855181.748665650711.0110111853039-96.74866565070290.43051403406793
6252155183.5286777295810.986775482219531.4713222704237-0.172306754681611
6352555214.555902608511.098647888976140.44409739149510.371757433350082
6452755271.0695262773511.38423226286253.930473722648170.846855714913087
6553155313.0587621237311.54635648658931.941237876267270.574515269325488
6654505333.4209279778511.5817579920777116.5790720221460.16597468737076
6752055339.204707592211.5632317091636-134.204707592195-0.109232030675924
6853705356.3505137973611.578939460004313.64948620264290.105175371600565
6955005420.3705929000811.709324976241779.62940709991980.987694965532432
7054905413.6971672919211.676032142401276.3028327080755-0.345997200193849
7154405438.8238082767311.68553628632871.176191723272910.253061426792983
7253605446.9158985079411.6862585029541-86.9158985079428-0.0676600808244737
7353805470.5707703660111.6896849708273-90.57077036601010.225117582111718
7454605451.0365050693611.61177570300868.96349493064373-0.583428077596071
7554505433.7406285697611.474940406405216.2593714302408-0.537731532138754
7655205499.9548530663811.778194539771720.04514693362111.02147980329709
7754755488.0932217283711.6597757667938-13.0932217283702-0.44352554345378
7856005485.7010177222811.6032096996028114.298982277716-0.26445302395943
7952505419.7333875405611.3528004571164-169.733387540562-1.46128154912632
8054655451.4997715570411.408156389576313.50022844295980.384575627158918
8155155440.9783727106211.359088237069574.0216272893837-0.412972409414303
8254255380.4584200481511.247686612007144.5415799518457-1.35270159849366
8353255339.0883584418811.2117116264126-14.0883584418826-0.989891499686242
8452755355.9208799990111.2126200904476-80.92087999901060.105770852776278
8551605276.3829194650811.1472952737226-116.382919465076-1.7051846104674
8653605322.8384065204411.232248896717937.16159347956440.660225081738722
8754355406.3815247578811.532559897565528.61847524212381.34766742737272
8852855308.1314365208310.9895176111615-23.1314365208303-2.05022865516719
8954155386.0062202137411.303852901034228.99377978626231.25453747123868
9055755431.2875255635511.4382005963561143.7124744364540.639215122801707
9152655443.2141517890411.4397690797735-178.2141517890450.00919946955570706
9254805456.8976771685411.445645809936623.10232283146110.0422658848160823
9355655468.4408484250911.445846620213596.55915157491030.0018363081591892
9455005452.0065603904611.406946090909447.9934396095363-0.52462484197446
9552805340.4491763738611.3186166268481-60.4491763738611-2.31311151912908
9651355231.7453332039711.2666749991947-96.7453332039734-2.25754382840491
9750505191.0507750907311.2152366115548-141.050775090733-0.975804561663801
9851005109.916442136310.9998825688849-9.91644213630502-1.72783733972018
9950705037.0078003844310.686575224027732.9921996155679-1.56597495143903
10051155121.0516308691711.0146244361212-6.051630869174951.37097136262116
10151405127.5000353411710.99455177040312.499964658827-0.0856376668906752
10253305173.0586263748611.1269667083222156.941373625140.650051490347818
10350805240.5783952217611.3049074793053-160.5783952217611.06193087757605
10452855263.0467407766511.333188889128321.9532592233550.210253773842462
10554055290.884459682811.3651201693819114.1155403172010.310718814943399
10653855299.5452617781811.361571789450685.4547382218185-0.0508830807871
10752555288.0176548212911.3437514463396-33.0176548212947-0.430531384165491
10851005211.6125841140411.2878035089218-111.61258411404-1.64995422621925
10950405166.3332274462411.2218921190444-126.333227446244-1.06199153063641
11052355206.6366000287811.287759189584328.36339997121980.544371403753452
11153105275.4697533540811.484348909656834.5302466459171.07509007530484
11252655278.1985783422311.4485731191916-13.1985783422329-0.16373875243559
11353805353.1096614897311.709425932798426.89033851027521.19022067589306
11454655340.4486168051811.619760662452124.551383194822-0.458223704400965
11552255378.0761531797711.6996785570102-153.0761531797740.48963753356729
11654455418.5248336037511.770204901936126.47516639624680.541363649942739

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 3455 & 3455 & 0 & 0 & 0 \tabularnewline
2 & 3585 & 3570.50985801196 & 6.0563835363316 & 14.4901419880383 & 1.35365190179988 \tabularnewline
3 & 3675 & 3651.17388108278 & 8.08057854128328 & 23.8261189172172 & 1.35298460644082 \tabularnewline
4 & 3680 & 3674.57059816055 & 8.21023718585265 & 5.42940183945076 & 0.289089563251874 \tabularnewline
5 & 3735 & 3718.11080043465 & 8.39100228799658 & 16.8891995653548 & 0.666348795899597 \tabularnewline
6 & 3860 & 3826.27701053745 & 8.94645354681594 & 33.7229894625451 & 1.88098395198488 \tabularnewline
7 & 3765 & 3782.11009164982 & 8.63057593483279 & -17.1100916498242 & -1.00117020755265 \tabularnewline
8 & 3905 & 3868.15900433218 & 9.09490574307998 & 36.8409956678188 & 1.45929918088176 \tabularnewline
9 & 4110 & 4056.72987061204 & 10.1635708016636 & 53.2701293879634 & 3.38304185315863 \tabularnewline
10 & 4170 & 4153.5460104582 & 10.6756756663295 & 16.4539895417994 & 1.6333498352701 \tabularnewline
11 & 4110 & 4121.07698825981 & 10.4222887645959 & -11.0769882598058 & -0.813243168500529 \tabularnewline
12 & 4025 & 4037.44411992793 & 9.87312353004861 & -12.4441199279282 & -1.77284490673896 \tabularnewline
13 & 4145 & 4159.31445926176 & 5.68638993355625 & -14.3144592617604 & 2.40659896386576 \tabularnewline
14 & 4285 & 4270.01667441523 & 7.19061103587323 & 14.9833255847665 & 1.82121458371245 \tabularnewline
15 & 4370 & 4338.65698243577 & 8.3205332054962 & 31.343017564233 & 1.10420367010779 \tabularnewline
16 & 4355 & 4359.83301327568 & 8.44358486390188 & -4.83301327567941 & 0.24138857854894 \tabularnewline
17 & 4385 & 4384.49795909055 & 8.51687040115452 & 0.502040909449263 & 0.305797207091728 \tabularnewline
18 & 4525 & 4453.19572360694 & 8.72411951512202 & 71.804276393063 & 1.13392236727243 \tabularnewline
19 & 4375 & 4425.89942657566 & 8.5929031147527 & -50.8994265756632 & -0.678461017588801 \tabularnewline
20 & 4525 & 4500.47388423446 & 8.85038235777565 & 24.5261157655388 & 1.24262037147069 \tabularnewline
21 & 4610 & 4565.28809164426 & 9.07960666215466 & 44.7119083557353 & 1.05403263691235 \tabularnewline
22 & 4595 & 4575.30688222264 & 9.08365148038417 & 19.6931177773566 & 0.0176943703704555 \tabularnewline
23 & 4500 & 4514.9417045548 & 8.82506201437639 & -14.9417045548031 & -1.30826201744407 \tabularnewline
24 & 4370 & 4436.65026370409 & 8.90773017658594 & -66.6502637040918 & -1.64063300071295 \tabularnewline
25 & 4390 & 4439.86807698168 & 8.97390750698301 & -49.8680769816822 & -0.111381618105193 \tabularnewline
26 & 4530 & 4510.24121255108 & 9.33423951066528 & 19.7587874489235 & 1.12475318985226 \tabularnewline
27 & 4590 & 4553.44286455913 & 9.76005721140882 & 36.5571354408718 & 0.615273605195006 \tabularnewline
28 & 4580 & 4584.0778817952 & 9.95467511532824 & -4.07788179520152 & 0.390075380421277 \tabularnewline
29 & 4595 & 4605.00474707247 & 10.0119550209194 & -10.0047470724675 & 0.20667828079003 \tabularnewline
30 & 4685 & 4606.88909502605 & 9.98447072726096 & 78.1109049739496 & -0.153139654015114 \tabularnewline
31 & 4490 & 4576.01366362724 & 9.85836222719175 & -86.0136636272392 & -0.769619675283284 \tabularnewline
32 & 4635 & 4612.89046792415 & 9.94836849403826 & 22.1095320758455 & 0.508827982137878 \tabularnewline
33 & 4710 & 4654.62983800575 & 10.0639693352016 & 55.3701619942488 & 0.59878376032298 \tabularnewline
34 & 4655 & 4630.19147008808 & 9.94077516470988 & 24.8085299119204 & -0.649949649495515 \tabularnewline
35 & 4665 & 4647.50864686918 & 9.95638859862809 & 17.4913531308229 & 0.138842684376564 \tabularnewline
36 & 4550 & 4628.65106833876 & 10.0058183107799 & -78.6510683387599 & -0.543368167872241 \tabularnewline
37 & 4590 & 4652.40330393818 & 9.94237703444966 & -62.4033039381813 & 0.262478665854311 \tabularnewline
38 & 4675 & 4666.30871950932 & 9.9565826462251 & 8.69128049067904 & 0.0735442282075865 \tabularnewline
39 & 4645 & 4632.72960725776 & 9.56375254326801 & 12.2703927422405 & -0.798877542376784 \tabularnewline
40 & 4665 & 4661.07045096354 & 9.71972009794912 & 3.92954903645648 & 0.350106103644323 \tabularnewline
41 & 4635 & 4650.43632085263 & 9.60706929850194 & -15.4363208526316 & -0.382892015115855 \tabularnewline
42 & 4720 & 4638.36165440122 & 9.52782528553413 & 81.6383455987786 & -0.40847308436749 \tabularnewline
43 & 4565 & 4655.42623094268 & 9.5506627171448 & -90.4262309426809 & 0.141975635421419 \tabularnewline
44 & 4720 & 4694.56558190099 & 9.64188820432266 & 25.4344180990134 & 0.557333251632185 \tabularnewline
45 & 4830 & 4749.59612801792 & 9.78786549167632 & 80.4038719820764 & 0.854971594797276 \tabularnewline
46 & 4830 & 4796.08344614612 & 9.89129570186477 & 33.9165538538763 & 0.691110660295923 \tabularnewline
47 & 4765 & 4762.55089328562 & 9.83726283229493 & 2.44910671437727 & -0.817086248276353 \tabularnewline
48 & 4705 & 4781.78246930401 & 9.82544117551733 & -76.7824693040054 & 0.177131888049883 \tabularnewline
49 & 4675 & 4753.61771073408 & 9.89400979181789 & -78.6177107340801 & -0.718814133672006 \tabularnewline
50 & 4900 & 4844.1362100428 & 10.1266406496914 & 55.8637899571959 & 1.50229398587273 \tabularnewline
51 & 4945 & 4918.20728747123 & 10.5675004809271 & 26.7927125287648 & 1.18119376806075 \tabularnewline
52 & 4905 & 4907.39549658337 & 10.4131434588906 & -2.395496583369 & -0.398478244516544 \tabularnewline
53 & 4955 & 4949.0317502186 & 10.585097344973 & 5.968249781399 & 0.586638320491522 \tabularnewline
54 & 5120 & 5018.588140727 & 10.8147555855 & 101.411859273003 & 1.11066689567929 \tabularnewline
55 & 4860 & 4984.10993498851 & 10.6736666562806 & -124.109934988514 & -0.853298020248565 \tabularnewline
56 & 5040 & 5016.71540867525 & 10.7379573338749 & 23.2845913247462 & 0.413170894249888 \tabularnewline
57 & 5140 & 5056.84289093971 & 10.8207191757773 & 83.1571090602867 & 0.553589167809747 \tabularnewline
58 & 5240 & 5157.25819554226 & 11.0198147774379 & 82.7418044577406 & 1.6866956390063 \tabularnewline
59 & 5145 & 5155.29972363485 & 11.0087689925578 & -10.299723634851 & -0.244186340685241 \tabularnewline
60 & 5070 & 5147.88328453638 & 11.0212879123911 & -77.8832845363762 & -0.347171255571034 \tabularnewline
61 & 5085 & 5181.7486656507 & 11.0110111853039 & -96.7486656507029 & 0.43051403406793 \tabularnewline
62 & 5215 & 5183.52867772958 & 10.9867754822195 & 31.4713222704237 & -0.172306754681611 \tabularnewline
63 & 5255 & 5214.5559026085 & 11.0986478889761 & 40.4440973914951 & 0.371757433350082 \tabularnewline
64 & 5275 & 5271.06952627735 & 11.3842322628625 & 3.93047372264817 & 0.846855714913087 \tabularnewline
65 & 5315 & 5313.05876212373 & 11.5463564865893 & 1.94123787626727 & 0.574515269325488 \tabularnewline
66 & 5450 & 5333.42092797785 & 11.5817579920777 & 116.579072022146 & 0.16597468737076 \tabularnewline
67 & 5205 & 5339.2047075922 & 11.5632317091636 & -134.204707592195 & -0.109232030675924 \tabularnewline
68 & 5370 & 5356.35051379736 & 11.5789394600043 & 13.6494862026429 & 0.105175371600565 \tabularnewline
69 & 5500 & 5420.37059290008 & 11.7093249762417 & 79.6294070999198 & 0.987694965532432 \tabularnewline
70 & 5490 & 5413.69716729192 & 11.6760321424012 & 76.3028327080755 & -0.345997200193849 \tabularnewline
71 & 5440 & 5438.82380827673 & 11.6855362863287 & 1.17619172327291 & 0.253061426792983 \tabularnewline
72 & 5360 & 5446.91589850794 & 11.6862585029541 & -86.9158985079428 & -0.0676600808244737 \tabularnewline
73 & 5380 & 5470.57077036601 & 11.6896849708273 & -90.5707703660101 & 0.225117582111718 \tabularnewline
74 & 5460 & 5451.03650506936 & 11.6117757030086 & 8.96349493064373 & -0.583428077596071 \tabularnewline
75 & 5450 & 5433.74062856976 & 11.4749404064052 & 16.2593714302408 & -0.537731532138754 \tabularnewline
76 & 5520 & 5499.95485306638 & 11.7781945397717 & 20.0451469336211 & 1.02147980329709 \tabularnewline
77 & 5475 & 5488.09322172837 & 11.6597757667938 & -13.0932217283702 & -0.44352554345378 \tabularnewline
78 & 5600 & 5485.70101772228 & 11.6032096996028 & 114.298982277716 & -0.26445302395943 \tabularnewline
79 & 5250 & 5419.73338754056 & 11.3528004571164 & -169.733387540562 & -1.46128154912632 \tabularnewline
80 & 5465 & 5451.49977155704 & 11.4081563895763 & 13.5002284429598 & 0.384575627158918 \tabularnewline
81 & 5515 & 5440.97837271062 & 11.3590882370695 & 74.0216272893837 & -0.412972409414303 \tabularnewline
82 & 5425 & 5380.45842004815 & 11.2476866120071 & 44.5415799518457 & -1.35270159849366 \tabularnewline
83 & 5325 & 5339.08835844188 & 11.2117116264126 & -14.0883584418826 & -0.989891499686242 \tabularnewline
84 & 5275 & 5355.92087999901 & 11.2126200904476 & -80.9208799990106 & 0.105770852776278 \tabularnewline
85 & 5160 & 5276.38291946508 & 11.1472952737226 & -116.382919465076 & -1.7051846104674 \tabularnewline
86 & 5360 & 5322.83840652044 & 11.2322488967179 & 37.1615934795644 & 0.660225081738722 \tabularnewline
87 & 5435 & 5406.38152475788 & 11.5325598975655 & 28.6184752421238 & 1.34766742737272 \tabularnewline
88 & 5285 & 5308.13143652083 & 10.9895176111615 & -23.1314365208303 & -2.05022865516719 \tabularnewline
89 & 5415 & 5386.00622021374 & 11.3038529010342 & 28.9937797862623 & 1.25453747123868 \tabularnewline
90 & 5575 & 5431.28752556355 & 11.4382005963561 & 143.712474436454 & 0.639215122801707 \tabularnewline
91 & 5265 & 5443.21415178904 & 11.4397690797735 & -178.214151789045 & 0.00919946955570706 \tabularnewline
92 & 5480 & 5456.89767716854 & 11.4456458099366 & 23.1023228314611 & 0.0422658848160823 \tabularnewline
93 & 5565 & 5468.44084842509 & 11.4458466202135 & 96.5591515749103 & 0.0018363081591892 \tabularnewline
94 & 5500 & 5452.00656039046 & 11.4069460909094 & 47.9934396095363 & -0.52462484197446 \tabularnewline
95 & 5280 & 5340.44917637386 & 11.3186166268481 & -60.4491763738611 & -2.31311151912908 \tabularnewline
96 & 5135 & 5231.74533320397 & 11.2666749991947 & -96.7453332039734 & -2.25754382840491 \tabularnewline
97 & 5050 & 5191.05077509073 & 11.2152366115548 & -141.050775090733 & -0.975804561663801 \tabularnewline
98 & 5100 & 5109.9164421363 & 10.9998825688849 & -9.91644213630502 & -1.72783733972018 \tabularnewline
99 & 5070 & 5037.00780038443 & 10.6865752240277 & 32.9921996155679 & -1.56597495143903 \tabularnewline
100 & 5115 & 5121.05163086917 & 11.0146244361212 & -6.05163086917495 & 1.37097136262116 \tabularnewline
101 & 5140 & 5127.50003534117 & 10.994551770403 & 12.499964658827 & -0.0856376668906752 \tabularnewline
102 & 5330 & 5173.05862637486 & 11.1269667083222 & 156.94137362514 & 0.650051490347818 \tabularnewline
103 & 5080 & 5240.57839522176 & 11.3049074793053 & -160.578395221761 & 1.06193087757605 \tabularnewline
104 & 5285 & 5263.04674077665 & 11.3331888891283 & 21.953259223355 & 0.210253773842462 \tabularnewline
105 & 5405 & 5290.8844596828 & 11.3651201693819 & 114.115540317201 & 0.310718814943399 \tabularnewline
106 & 5385 & 5299.54526177818 & 11.3615717894506 & 85.4547382218185 & -0.0508830807871 \tabularnewline
107 & 5255 & 5288.01765482129 & 11.3437514463396 & -33.0176548212947 & -0.430531384165491 \tabularnewline
108 & 5100 & 5211.61258411404 & 11.2878035089218 & -111.61258411404 & -1.64995422621925 \tabularnewline
109 & 5040 & 5166.33322744624 & 11.2218921190444 & -126.333227446244 & -1.06199153063641 \tabularnewline
110 & 5235 & 5206.63660002878 & 11.2877591895843 & 28.3633999712198 & 0.544371403753452 \tabularnewline
111 & 5310 & 5275.46975335408 & 11.4843489096568 & 34.530246645917 & 1.07509007530484 \tabularnewline
112 & 5265 & 5278.19857834223 & 11.4485731191916 & -13.1985783422329 & -0.16373875243559 \tabularnewline
113 & 5380 & 5353.10966148973 & 11.7094259327984 & 26.8903385102752 & 1.19022067589306 \tabularnewline
114 & 5465 & 5340.44861680518 & 11.619760662452 & 124.551383194822 & -0.458223704400965 \tabularnewline
115 & 5225 & 5378.07615317977 & 11.6996785570102 & -153.076153179774 & 0.48963753356729 \tabularnewline
116 & 5445 & 5418.52483360375 & 11.7702049019361 & 26.4751663962468 & 0.541363649942739 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301951&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]3455[/C][C]3455[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]3585[/C][C]3570.50985801196[/C][C]6.0563835363316[/C][C]14.4901419880383[/C][C]1.35365190179988[/C][/ROW]
[ROW][C]3[/C][C]3675[/C][C]3651.17388108278[/C][C]8.08057854128328[/C][C]23.8261189172172[/C][C]1.35298460644082[/C][/ROW]
[ROW][C]4[/C][C]3680[/C][C]3674.57059816055[/C][C]8.21023718585265[/C][C]5.42940183945076[/C][C]0.289089563251874[/C][/ROW]
[ROW][C]5[/C][C]3735[/C][C]3718.11080043465[/C][C]8.39100228799658[/C][C]16.8891995653548[/C][C]0.666348795899597[/C][/ROW]
[ROW][C]6[/C][C]3860[/C][C]3826.27701053745[/C][C]8.94645354681594[/C][C]33.7229894625451[/C][C]1.88098395198488[/C][/ROW]
[ROW][C]7[/C][C]3765[/C][C]3782.11009164982[/C][C]8.63057593483279[/C][C]-17.1100916498242[/C][C]-1.00117020755265[/C][/ROW]
[ROW][C]8[/C][C]3905[/C][C]3868.15900433218[/C][C]9.09490574307998[/C][C]36.8409956678188[/C][C]1.45929918088176[/C][/ROW]
[ROW][C]9[/C][C]4110[/C][C]4056.72987061204[/C][C]10.1635708016636[/C][C]53.2701293879634[/C][C]3.38304185315863[/C][/ROW]
[ROW][C]10[/C][C]4170[/C][C]4153.5460104582[/C][C]10.6756756663295[/C][C]16.4539895417994[/C][C]1.6333498352701[/C][/ROW]
[ROW][C]11[/C][C]4110[/C][C]4121.07698825981[/C][C]10.4222887645959[/C][C]-11.0769882598058[/C][C]-0.813243168500529[/C][/ROW]
[ROW][C]12[/C][C]4025[/C][C]4037.44411992793[/C][C]9.87312353004861[/C][C]-12.4441199279282[/C][C]-1.77284490673896[/C][/ROW]
[ROW][C]13[/C][C]4145[/C][C]4159.31445926176[/C][C]5.68638993355625[/C][C]-14.3144592617604[/C][C]2.40659896386576[/C][/ROW]
[ROW][C]14[/C][C]4285[/C][C]4270.01667441523[/C][C]7.19061103587323[/C][C]14.9833255847665[/C][C]1.82121458371245[/C][/ROW]
[ROW][C]15[/C][C]4370[/C][C]4338.65698243577[/C][C]8.3205332054962[/C][C]31.343017564233[/C][C]1.10420367010779[/C][/ROW]
[ROW][C]16[/C][C]4355[/C][C]4359.83301327568[/C][C]8.44358486390188[/C][C]-4.83301327567941[/C][C]0.24138857854894[/C][/ROW]
[ROW][C]17[/C][C]4385[/C][C]4384.49795909055[/C][C]8.51687040115452[/C][C]0.502040909449263[/C][C]0.305797207091728[/C][/ROW]
[ROW][C]18[/C][C]4525[/C][C]4453.19572360694[/C][C]8.72411951512202[/C][C]71.804276393063[/C][C]1.13392236727243[/C][/ROW]
[ROW][C]19[/C][C]4375[/C][C]4425.89942657566[/C][C]8.5929031147527[/C][C]-50.8994265756632[/C][C]-0.678461017588801[/C][/ROW]
[ROW][C]20[/C][C]4525[/C][C]4500.47388423446[/C][C]8.85038235777565[/C][C]24.5261157655388[/C][C]1.24262037147069[/C][/ROW]
[ROW][C]21[/C][C]4610[/C][C]4565.28809164426[/C][C]9.07960666215466[/C][C]44.7119083557353[/C][C]1.05403263691235[/C][/ROW]
[ROW][C]22[/C][C]4595[/C][C]4575.30688222264[/C][C]9.08365148038417[/C][C]19.6931177773566[/C][C]0.0176943703704555[/C][/ROW]
[ROW][C]23[/C][C]4500[/C][C]4514.9417045548[/C][C]8.82506201437639[/C][C]-14.9417045548031[/C][C]-1.30826201744407[/C][/ROW]
[ROW][C]24[/C][C]4370[/C][C]4436.65026370409[/C][C]8.90773017658594[/C][C]-66.6502637040918[/C][C]-1.64063300071295[/C][/ROW]
[ROW][C]25[/C][C]4390[/C][C]4439.86807698168[/C][C]8.97390750698301[/C][C]-49.8680769816822[/C][C]-0.111381618105193[/C][/ROW]
[ROW][C]26[/C][C]4530[/C][C]4510.24121255108[/C][C]9.33423951066528[/C][C]19.7587874489235[/C][C]1.12475318985226[/C][/ROW]
[ROW][C]27[/C][C]4590[/C][C]4553.44286455913[/C][C]9.76005721140882[/C][C]36.5571354408718[/C][C]0.615273605195006[/C][/ROW]
[ROW][C]28[/C][C]4580[/C][C]4584.0778817952[/C][C]9.95467511532824[/C][C]-4.07788179520152[/C][C]0.390075380421277[/C][/ROW]
[ROW][C]29[/C][C]4595[/C][C]4605.00474707247[/C][C]10.0119550209194[/C][C]-10.0047470724675[/C][C]0.20667828079003[/C][/ROW]
[ROW][C]30[/C][C]4685[/C][C]4606.88909502605[/C][C]9.98447072726096[/C][C]78.1109049739496[/C][C]-0.153139654015114[/C][/ROW]
[ROW][C]31[/C][C]4490[/C][C]4576.01366362724[/C][C]9.85836222719175[/C][C]-86.0136636272392[/C][C]-0.769619675283284[/C][/ROW]
[ROW][C]32[/C][C]4635[/C][C]4612.89046792415[/C][C]9.94836849403826[/C][C]22.1095320758455[/C][C]0.508827982137878[/C][/ROW]
[ROW][C]33[/C][C]4710[/C][C]4654.62983800575[/C][C]10.0639693352016[/C][C]55.3701619942488[/C][C]0.59878376032298[/C][/ROW]
[ROW][C]34[/C][C]4655[/C][C]4630.19147008808[/C][C]9.94077516470988[/C][C]24.8085299119204[/C][C]-0.649949649495515[/C][/ROW]
[ROW][C]35[/C][C]4665[/C][C]4647.50864686918[/C][C]9.95638859862809[/C][C]17.4913531308229[/C][C]0.138842684376564[/C][/ROW]
[ROW][C]36[/C][C]4550[/C][C]4628.65106833876[/C][C]10.0058183107799[/C][C]-78.6510683387599[/C][C]-0.543368167872241[/C][/ROW]
[ROW][C]37[/C][C]4590[/C][C]4652.40330393818[/C][C]9.94237703444966[/C][C]-62.4033039381813[/C][C]0.262478665854311[/C][/ROW]
[ROW][C]38[/C][C]4675[/C][C]4666.30871950932[/C][C]9.9565826462251[/C][C]8.69128049067904[/C][C]0.0735442282075865[/C][/ROW]
[ROW][C]39[/C][C]4645[/C][C]4632.72960725776[/C][C]9.56375254326801[/C][C]12.2703927422405[/C][C]-0.798877542376784[/C][/ROW]
[ROW][C]40[/C][C]4665[/C][C]4661.07045096354[/C][C]9.71972009794912[/C][C]3.92954903645648[/C][C]0.350106103644323[/C][/ROW]
[ROW][C]41[/C][C]4635[/C][C]4650.43632085263[/C][C]9.60706929850194[/C][C]-15.4363208526316[/C][C]-0.382892015115855[/C][/ROW]
[ROW][C]42[/C][C]4720[/C][C]4638.36165440122[/C][C]9.52782528553413[/C][C]81.6383455987786[/C][C]-0.40847308436749[/C][/ROW]
[ROW][C]43[/C][C]4565[/C][C]4655.42623094268[/C][C]9.5506627171448[/C][C]-90.4262309426809[/C][C]0.141975635421419[/C][/ROW]
[ROW][C]44[/C][C]4720[/C][C]4694.56558190099[/C][C]9.64188820432266[/C][C]25.4344180990134[/C][C]0.557333251632185[/C][/ROW]
[ROW][C]45[/C][C]4830[/C][C]4749.59612801792[/C][C]9.78786549167632[/C][C]80.4038719820764[/C][C]0.854971594797276[/C][/ROW]
[ROW][C]46[/C][C]4830[/C][C]4796.08344614612[/C][C]9.89129570186477[/C][C]33.9165538538763[/C][C]0.691110660295923[/C][/ROW]
[ROW][C]47[/C][C]4765[/C][C]4762.55089328562[/C][C]9.83726283229493[/C][C]2.44910671437727[/C][C]-0.817086248276353[/C][/ROW]
[ROW][C]48[/C][C]4705[/C][C]4781.78246930401[/C][C]9.82544117551733[/C][C]-76.7824693040054[/C][C]0.177131888049883[/C][/ROW]
[ROW][C]49[/C][C]4675[/C][C]4753.61771073408[/C][C]9.89400979181789[/C][C]-78.6177107340801[/C][C]-0.718814133672006[/C][/ROW]
[ROW][C]50[/C][C]4900[/C][C]4844.1362100428[/C][C]10.1266406496914[/C][C]55.8637899571959[/C][C]1.50229398587273[/C][/ROW]
[ROW][C]51[/C][C]4945[/C][C]4918.20728747123[/C][C]10.5675004809271[/C][C]26.7927125287648[/C][C]1.18119376806075[/C][/ROW]
[ROW][C]52[/C][C]4905[/C][C]4907.39549658337[/C][C]10.4131434588906[/C][C]-2.395496583369[/C][C]-0.398478244516544[/C][/ROW]
[ROW][C]53[/C][C]4955[/C][C]4949.0317502186[/C][C]10.585097344973[/C][C]5.968249781399[/C][C]0.586638320491522[/C][/ROW]
[ROW][C]54[/C][C]5120[/C][C]5018.588140727[/C][C]10.8147555855[/C][C]101.411859273003[/C][C]1.11066689567929[/C][/ROW]
[ROW][C]55[/C][C]4860[/C][C]4984.10993498851[/C][C]10.6736666562806[/C][C]-124.109934988514[/C][C]-0.853298020248565[/C][/ROW]
[ROW][C]56[/C][C]5040[/C][C]5016.71540867525[/C][C]10.7379573338749[/C][C]23.2845913247462[/C][C]0.413170894249888[/C][/ROW]
[ROW][C]57[/C][C]5140[/C][C]5056.84289093971[/C][C]10.8207191757773[/C][C]83.1571090602867[/C][C]0.553589167809747[/C][/ROW]
[ROW][C]58[/C][C]5240[/C][C]5157.25819554226[/C][C]11.0198147774379[/C][C]82.7418044577406[/C][C]1.6866956390063[/C][/ROW]
[ROW][C]59[/C][C]5145[/C][C]5155.29972363485[/C][C]11.0087689925578[/C][C]-10.299723634851[/C][C]-0.244186340685241[/C][/ROW]
[ROW][C]60[/C][C]5070[/C][C]5147.88328453638[/C][C]11.0212879123911[/C][C]-77.8832845363762[/C][C]-0.347171255571034[/C][/ROW]
[ROW][C]61[/C][C]5085[/C][C]5181.7486656507[/C][C]11.0110111853039[/C][C]-96.7486656507029[/C][C]0.43051403406793[/C][/ROW]
[ROW][C]62[/C][C]5215[/C][C]5183.52867772958[/C][C]10.9867754822195[/C][C]31.4713222704237[/C][C]-0.172306754681611[/C][/ROW]
[ROW][C]63[/C][C]5255[/C][C]5214.5559026085[/C][C]11.0986478889761[/C][C]40.4440973914951[/C][C]0.371757433350082[/C][/ROW]
[ROW][C]64[/C][C]5275[/C][C]5271.06952627735[/C][C]11.3842322628625[/C][C]3.93047372264817[/C][C]0.846855714913087[/C][/ROW]
[ROW][C]65[/C][C]5315[/C][C]5313.05876212373[/C][C]11.5463564865893[/C][C]1.94123787626727[/C][C]0.574515269325488[/C][/ROW]
[ROW][C]66[/C][C]5450[/C][C]5333.42092797785[/C][C]11.5817579920777[/C][C]116.579072022146[/C][C]0.16597468737076[/C][/ROW]
[ROW][C]67[/C][C]5205[/C][C]5339.2047075922[/C][C]11.5632317091636[/C][C]-134.204707592195[/C][C]-0.109232030675924[/C][/ROW]
[ROW][C]68[/C][C]5370[/C][C]5356.35051379736[/C][C]11.5789394600043[/C][C]13.6494862026429[/C][C]0.105175371600565[/C][/ROW]
[ROW][C]69[/C][C]5500[/C][C]5420.37059290008[/C][C]11.7093249762417[/C][C]79.6294070999198[/C][C]0.987694965532432[/C][/ROW]
[ROW][C]70[/C][C]5490[/C][C]5413.69716729192[/C][C]11.6760321424012[/C][C]76.3028327080755[/C][C]-0.345997200193849[/C][/ROW]
[ROW][C]71[/C][C]5440[/C][C]5438.82380827673[/C][C]11.6855362863287[/C][C]1.17619172327291[/C][C]0.253061426792983[/C][/ROW]
[ROW][C]72[/C][C]5360[/C][C]5446.91589850794[/C][C]11.6862585029541[/C][C]-86.9158985079428[/C][C]-0.0676600808244737[/C][/ROW]
[ROW][C]73[/C][C]5380[/C][C]5470.57077036601[/C][C]11.6896849708273[/C][C]-90.5707703660101[/C][C]0.225117582111718[/C][/ROW]
[ROW][C]74[/C][C]5460[/C][C]5451.03650506936[/C][C]11.6117757030086[/C][C]8.96349493064373[/C][C]-0.583428077596071[/C][/ROW]
[ROW][C]75[/C][C]5450[/C][C]5433.74062856976[/C][C]11.4749404064052[/C][C]16.2593714302408[/C][C]-0.537731532138754[/C][/ROW]
[ROW][C]76[/C][C]5520[/C][C]5499.95485306638[/C][C]11.7781945397717[/C][C]20.0451469336211[/C][C]1.02147980329709[/C][/ROW]
[ROW][C]77[/C][C]5475[/C][C]5488.09322172837[/C][C]11.6597757667938[/C][C]-13.0932217283702[/C][C]-0.44352554345378[/C][/ROW]
[ROW][C]78[/C][C]5600[/C][C]5485.70101772228[/C][C]11.6032096996028[/C][C]114.298982277716[/C][C]-0.26445302395943[/C][/ROW]
[ROW][C]79[/C][C]5250[/C][C]5419.73338754056[/C][C]11.3528004571164[/C][C]-169.733387540562[/C][C]-1.46128154912632[/C][/ROW]
[ROW][C]80[/C][C]5465[/C][C]5451.49977155704[/C][C]11.4081563895763[/C][C]13.5002284429598[/C][C]0.384575627158918[/C][/ROW]
[ROW][C]81[/C][C]5515[/C][C]5440.97837271062[/C][C]11.3590882370695[/C][C]74.0216272893837[/C][C]-0.412972409414303[/C][/ROW]
[ROW][C]82[/C][C]5425[/C][C]5380.45842004815[/C][C]11.2476866120071[/C][C]44.5415799518457[/C][C]-1.35270159849366[/C][/ROW]
[ROW][C]83[/C][C]5325[/C][C]5339.08835844188[/C][C]11.2117116264126[/C][C]-14.0883584418826[/C][C]-0.989891499686242[/C][/ROW]
[ROW][C]84[/C][C]5275[/C][C]5355.92087999901[/C][C]11.2126200904476[/C][C]-80.9208799990106[/C][C]0.105770852776278[/C][/ROW]
[ROW][C]85[/C][C]5160[/C][C]5276.38291946508[/C][C]11.1472952737226[/C][C]-116.382919465076[/C][C]-1.7051846104674[/C][/ROW]
[ROW][C]86[/C][C]5360[/C][C]5322.83840652044[/C][C]11.2322488967179[/C][C]37.1615934795644[/C][C]0.660225081738722[/C][/ROW]
[ROW][C]87[/C][C]5435[/C][C]5406.38152475788[/C][C]11.5325598975655[/C][C]28.6184752421238[/C][C]1.34766742737272[/C][/ROW]
[ROW][C]88[/C][C]5285[/C][C]5308.13143652083[/C][C]10.9895176111615[/C][C]-23.1314365208303[/C][C]-2.05022865516719[/C][/ROW]
[ROW][C]89[/C][C]5415[/C][C]5386.00622021374[/C][C]11.3038529010342[/C][C]28.9937797862623[/C][C]1.25453747123868[/C][/ROW]
[ROW][C]90[/C][C]5575[/C][C]5431.28752556355[/C][C]11.4382005963561[/C][C]143.712474436454[/C][C]0.639215122801707[/C][/ROW]
[ROW][C]91[/C][C]5265[/C][C]5443.21415178904[/C][C]11.4397690797735[/C][C]-178.214151789045[/C][C]0.00919946955570706[/C][/ROW]
[ROW][C]92[/C][C]5480[/C][C]5456.89767716854[/C][C]11.4456458099366[/C][C]23.1023228314611[/C][C]0.0422658848160823[/C][/ROW]
[ROW][C]93[/C][C]5565[/C][C]5468.44084842509[/C][C]11.4458466202135[/C][C]96.5591515749103[/C][C]0.0018363081591892[/C][/ROW]
[ROW][C]94[/C][C]5500[/C][C]5452.00656039046[/C][C]11.4069460909094[/C][C]47.9934396095363[/C][C]-0.52462484197446[/C][/ROW]
[ROW][C]95[/C][C]5280[/C][C]5340.44917637386[/C][C]11.3186166268481[/C][C]-60.4491763738611[/C][C]-2.31311151912908[/C][/ROW]
[ROW][C]96[/C][C]5135[/C][C]5231.74533320397[/C][C]11.2666749991947[/C][C]-96.7453332039734[/C][C]-2.25754382840491[/C][/ROW]
[ROW][C]97[/C][C]5050[/C][C]5191.05077509073[/C][C]11.2152366115548[/C][C]-141.050775090733[/C][C]-0.975804561663801[/C][/ROW]
[ROW][C]98[/C][C]5100[/C][C]5109.9164421363[/C][C]10.9998825688849[/C][C]-9.91644213630502[/C][C]-1.72783733972018[/C][/ROW]
[ROW][C]99[/C][C]5070[/C][C]5037.00780038443[/C][C]10.6865752240277[/C][C]32.9921996155679[/C][C]-1.56597495143903[/C][/ROW]
[ROW][C]100[/C][C]5115[/C][C]5121.05163086917[/C][C]11.0146244361212[/C][C]-6.05163086917495[/C][C]1.37097136262116[/C][/ROW]
[ROW][C]101[/C][C]5140[/C][C]5127.50003534117[/C][C]10.994551770403[/C][C]12.499964658827[/C][C]-0.0856376668906752[/C][/ROW]
[ROW][C]102[/C][C]5330[/C][C]5173.05862637486[/C][C]11.1269667083222[/C][C]156.94137362514[/C][C]0.650051490347818[/C][/ROW]
[ROW][C]103[/C][C]5080[/C][C]5240.57839522176[/C][C]11.3049074793053[/C][C]-160.578395221761[/C][C]1.06193087757605[/C][/ROW]
[ROW][C]104[/C][C]5285[/C][C]5263.04674077665[/C][C]11.3331888891283[/C][C]21.953259223355[/C][C]0.210253773842462[/C][/ROW]
[ROW][C]105[/C][C]5405[/C][C]5290.8844596828[/C][C]11.3651201693819[/C][C]114.115540317201[/C][C]0.310718814943399[/C][/ROW]
[ROW][C]106[/C][C]5385[/C][C]5299.54526177818[/C][C]11.3615717894506[/C][C]85.4547382218185[/C][C]-0.0508830807871[/C][/ROW]
[ROW][C]107[/C][C]5255[/C][C]5288.01765482129[/C][C]11.3437514463396[/C][C]-33.0176548212947[/C][C]-0.430531384165491[/C][/ROW]
[ROW][C]108[/C][C]5100[/C][C]5211.61258411404[/C][C]11.2878035089218[/C][C]-111.61258411404[/C][C]-1.64995422621925[/C][/ROW]
[ROW][C]109[/C][C]5040[/C][C]5166.33322744624[/C][C]11.2218921190444[/C][C]-126.333227446244[/C][C]-1.06199153063641[/C][/ROW]
[ROW][C]110[/C][C]5235[/C][C]5206.63660002878[/C][C]11.2877591895843[/C][C]28.3633999712198[/C][C]0.544371403753452[/C][/ROW]
[ROW][C]111[/C][C]5310[/C][C]5275.46975335408[/C][C]11.4843489096568[/C][C]34.530246645917[/C][C]1.07509007530484[/C][/ROW]
[ROW][C]112[/C][C]5265[/C][C]5278.19857834223[/C][C]11.4485731191916[/C][C]-13.1985783422329[/C][C]-0.16373875243559[/C][/ROW]
[ROW][C]113[/C][C]5380[/C][C]5353.10966148973[/C][C]11.7094259327984[/C][C]26.8903385102752[/C][C]1.19022067589306[/C][/ROW]
[ROW][C]114[/C][C]5465[/C][C]5340.44861680518[/C][C]11.619760662452[/C][C]124.551383194822[/C][C]-0.458223704400965[/C][/ROW]
[ROW][C]115[/C][C]5225[/C][C]5378.07615317977[/C][C]11.6996785570102[/C][C]-153.076153179774[/C][C]0.48963753356729[/C][/ROW]
[ROW][C]116[/C][C]5445[/C][C]5418.52483360375[/C][C]11.7702049019361[/C][C]26.4751663962468[/C][C]0.541363649942739[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301951&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301951&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
134553455000
235853570.509858011966.056383536331614.49014198803831.35365190179988
336753651.173881082788.0805785412832823.82611891721721.35298460644082
436803674.570598160558.210237185852655.429401839450760.289089563251874
537353718.110800434658.3910022879965816.88919956535480.666348795899597
638603826.277010537458.9464535468159433.72298946254511.88098395198488
737653782.110091649828.63057593483279-17.1100916498242-1.00117020755265
839053868.159004332189.0949057430799836.84099566781881.45929918088176
941104056.7298706120410.163570801663653.27012938796343.38304185315863
1041704153.546010458210.675675666329516.45398954179941.6333498352701
1141104121.0769882598110.4222887645959-11.0769882598058-0.813243168500529
1240254037.444119927939.87312353004861-12.4441199279282-1.77284490673896
1341454159.314459261765.68638993355625-14.31445926176042.40659896386576
1442854270.016674415237.1906110358732314.98332558476651.82121458371245
1543704338.656982435778.320533205496231.3430175642331.10420367010779
1643554359.833013275688.44358486390188-4.833013275679410.24138857854894
1743854384.497959090558.516870401154520.5020409094492630.305797207091728
1845254453.195723606948.7241195151220271.8042763930631.13392236727243
1943754425.899426575668.5929031147527-50.8994265756632-0.678461017588801
2045254500.473884234468.8503823577756524.52611576553881.24262037147069
2146104565.288091644269.0796066621546644.71190835573531.05403263691235
2245954575.306882222649.0836514803841719.69311777735660.0176943703704555
2345004514.94170455488.82506201437639-14.9417045548031-1.30826201744407
2443704436.650263704098.90773017658594-66.6502637040918-1.64063300071295
2543904439.868076981688.97390750698301-49.8680769816822-0.111381618105193
2645304510.241212551089.3342395106652819.75878744892351.12475318985226
2745904553.442864559139.7600572114088236.55713544087180.615273605195006
2845804584.07788179529.95467511532824-4.077881795201520.390075380421277
2945954605.0047470724710.0119550209194-10.00474707246750.20667828079003
3046854606.889095026059.9844707272609678.1109049739496-0.153139654015114
3144904576.013663627249.85836222719175-86.0136636272392-0.769619675283284
3246354612.890467924159.9483684940382622.10953207584550.508827982137878
3347104654.6298380057510.063969335201655.37016199424880.59878376032298
3446554630.191470088089.9407751647098824.8085299119204-0.649949649495515
3546654647.508646869189.9563885986280917.49135313082290.138842684376564
3645504628.6510683387610.0058183107799-78.6510683387599-0.543368167872241
3745904652.403303938189.94237703444966-62.40330393818130.262478665854311
3846754666.308719509329.95658264622518.691280490679040.0735442282075865
3946454632.729607257769.5637525432680112.2703927422405-0.798877542376784
4046654661.070450963549.719720097949123.929549036456480.350106103644323
4146354650.436320852639.60706929850194-15.4363208526316-0.382892015115855
4247204638.361654401229.5278252855341381.6383455987786-0.40847308436749
4345654655.426230942689.5506627171448-90.42623094268090.141975635421419
4447204694.565581900999.6418882043226625.43441809901340.557333251632185
4548304749.596128017929.7878654916763280.40387198207640.854971594797276
4648304796.083446146129.8912957018647733.91655385387630.691110660295923
4747654762.550893285629.837262832294932.44910671437727-0.817086248276353
4847054781.782469304019.82544117551733-76.78246930400540.177131888049883
4946754753.617710734089.89400979181789-78.6177107340801-0.718814133672006
5049004844.136210042810.126640649691455.86378995719591.50229398587273
5149454918.2072874712310.567500480927126.79271252876481.18119376806075
5249054907.3954965833710.4131434588906-2.395496583369-0.398478244516544
5349554949.031750218610.5850973449735.9682497813990.586638320491522
5451205018.58814072710.8147555855101.4118592730031.11066689567929
5548604984.1099349885110.6736666562806-124.109934988514-0.853298020248565
5650405016.7154086752510.737957333874923.28459132474620.413170894249888
5751405056.8428909397110.820719175777383.15710906028670.553589167809747
5852405157.2581955422611.019814777437982.74180445774061.6866956390063
5951455155.2997236348511.0087689925578-10.299723634851-0.244186340685241
6050705147.8832845363811.0212879123911-77.8832845363762-0.347171255571034
6150855181.748665650711.0110111853039-96.74866565070290.43051403406793
6252155183.5286777295810.986775482219531.4713222704237-0.172306754681611
6352555214.555902608511.098647888976140.44409739149510.371757433350082
6452755271.0695262773511.38423226286253.930473722648170.846855714913087
6553155313.0587621237311.54635648658931.941237876267270.574515269325488
6654505333.4209279778511.5817579920777116.5790720221460.16597468737076
6752055339.204707592211.5632317091636-134.204707592195-0.109232030675924
6853705356.3505137973611.578939460004313.64948620264290.105175371600565
6955005420.3705929000811.709324976241779.62940709991980.987694965532432
7054905413.6971672919211.676032142401276.3028327080755-0.345997200193849
7154405438.8238082767311.68553628632871.176191723272910.253061426792983
7253605446.9158985079411.6862585029541-86.9158985079428-0.0676600808244737
7353805470.5707703660111.6896849708273-90.57077036601010.225117582111718
7454605451.0365050693611.61177570300868.96349493064373-0.583428077596071
7554505433.7406285697611.474940406405216.2593714302408-0.537731532138754
7655205499.9548530663811.778194539771720.04514693362111.02147980329709
7754755488.0932217283711.6597757667938-13.0932217283702-0.44352554345378
7856005485.7010177222811.6032096996028114.298982277716-0.26445302395943
7952505419.7333875405611.3528004571164-169.733387540562-1.46128154912632
8054655451.4997715570411.408156389576313.50022844295980.384575627158918
8155155440.9783727106211.359088237069574.0216272893837-0.412972409414303
8254255380.4584200481511.247686612007144.5415799518457-1.35270159849366
8353255339.0883584418811.2117116264126-14.0883584418826-0.989891499686242
8452755355.9208799990111.2126200904476-80.92087999901060.105770852776278
8551605276.3829194650811.1472952737226-116.382919465076-1.7051846104674
8653605322.8384065204411.232248896717937.16159347956440.660225081738722
8754355406.3815247578811.532559897565528.61847524212381.34766742737272
8852855308.1314365208310.9895176111615-23.1314365208303-2.05022865516719
8954155386.0062202137411.303852901034228.99377978626231.25453747123868
9055755431.2875255635511.4382005963561143.7124744364540.639215122801707
9152655443.2141517890411.4397690797735-178.2141517890450.00919946955570706
9254805456.8976771685411.445645809936623.10232283146110.0422658848160823
9355655468.4408484250911.445846620213596.55915157491030.0018363081591892
9455005452.0065603904611.406946090909447.9934396095363-0.52462484197446
9552805340.4491763738611.3186166268481-60.4491763738611-2.31311151912908
9651355231.7453332039711.2666749991947-96.7453332039734-2.25754382840491
9750505191.0507750907311.2152366115548-141.050775090733-0.975804561663801
9851005109.916442136310.9998825688849-9.91644213630502-1.72783733972018
9950705037.0078003844310.686575224027732.9921996155679-1.56597495143903
10051155121.0516308691711.0146244361212-6.051630869174951.37097136262116
10151405127.5000353411710.99455177040312.499964658827-0.0856376668906752
10253305173.0586263748611.1269667083222156.941373625140.650051490347818
10350805240.5783952217611.3049074793053-160.5783952217611.06193087757605
10452855263.0467407766511.333188889128321.9532592233550.210253773842462
10554055290.884459682811.3651201693819114.1155403172010.310718814943399
10653855299.5452617781811.361571789450685.4547382218185-0.0508830807871
10752555288.0176548212911.3437514463396-33.0176548212947-0.430531384165491
10851005211.6125841140411.2878035089218-111.61258411404-1.64995422621925
10950405166.3332274462411.2218921190444-126.333227446244-1.06199153063641
11052355206.6366000287811.287759189584328.36339997121980.544371403753452
11153105275.4697533540811.484348909656834.5302466459171.07509007530484
11252655278.1985783422311.4485731191916-13.1985783422329-0.16373875243559
11353805353.1096614897311.709425932798426.89033851027521.19022067589306
11454655340.4486168051811.619760662452124.551383194822-0.458223704400965
11552255378.0761531797711.6996785570102-153.0761531797740.48963753356729
11654455418.5248336037511.770204901936126.47516639624680.541363649942739







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15553.480190402785412.55762517823140.922565224543
25542.921189737135428.41737123065114.503818506481
35441.927581633355444.27711728307-2.34953564971903
45348.925555860655460.13686333549-111.211307474841
55313.936881190965475.99660938791-162.059728196956
65478.573581130775491.85635544034-13.28277430956
75522.505249390695507.7161014927614.7891478979385
85481.942120914565523.57584754518-41.6337266306198
95571.577127176295539.435593597632.141533578697
105679.249637786375555.29533965002123.954298136347
115427.078673745945571.15508570244-144.076411956498
125635.316952629055587.0148317548648.3021208741881

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 5553.48019040278 & 5412.55762517823 & 140.922565224543 \tabularnewline
2 & 5542.92118973713 & 5428.41737123065 & 114.503818506481 \tabularnewline
3 & 5441.92758163335 & 5444.27711728307 & -2.34953564971903 \tabularnewline
4 & 5348.92555586065 & 5460.13686333549 & -111.211307474841 \tabularnewline
5 & 5313.93688119096 & 5475.99660938791 & -162.059728196956 \tabularnewline
6 & 5478.57358113077 & 5491.85635544034 & -13.28277430956 \tabularnewline
7 & 5522.50524939069 & 5507.71610149276 & 14.7891478979385 \tabularnewline
8 & 5481.94212091456 & 5523.57584754518 & -41.6337266306198 \tabularnewline
9 & 5571.57712717629 & 5539.4355935976 & 32.141533578697 \tabularnewline
10 & 5679.24963778637 & 5555.29533965002 & 123.954298136347 \tabularnewline
11 & 5427.07867374594 & 5571.15508570244 & -144.076411956498 \tabularnewline
12 & 5635.31695262905 & 5587.01483175486 & 48.3021208741881 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301951&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]5553.48019040278[/C][C]5412.55762517823[/C][C]140.922565224543[/C][/ROW]
[ROW][C]2[/C][C]5542.92118973713[/C][C]5428.41737123065[/C][C]114.503818506481[/C][/ROW]
[ROW][C]3[/C][C]5441.92758163335[/C][C]5444.27711728307[/C][C]-2.34953564971903[/C][/ROW]
[ROW][C]4[/C][C]5348.92555586065[/C][C]5460.13686333549[/C][C]-111.211307474841[/C][/ROW]
[ROW][C]5[/C][C]5313.93688119096[/C][C]5475.99660938791[/C][C]-162.059728196956[/C][/ROW]
[ROW][C]6[/C][C]5478.57358113077[/C][C]5491.85635544034[/C][C]-13.28277430956[/C][/ROW]
[ROW][C]7[/C][C]5522.50524939069[/C][C]5507.71610149276[/C][C]14.7891478979385[/C][/ROW]
[ROW][C]8[/C][C]5481.94212091456[/C][C]5523.57584754518[/C][C]-41.6337266306198[/C][/ROW]
[ROW][C]9[/C][C]5571.57712717629[/C][C]5539.4355935976[/C][C]32.141533578697[/C][/ROW]
[ROW][C]10[/C][C]5679.24963778637[/C][C]5555.29533965002[/C][C]123.954298136347[/C][/ROW]
[ROW][C]11[/C][C]5427.07867374594[/C][C]5571.15508570244[/C][C]-144.076411956498[/C][/ROW]
[ROW][C]12[/C][C]5635.31695262905[/C][C]5587.01483175486[/C][C]48.3021208741881[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301951&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301951&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15553.480190402785412.55762517823140.922565224543
25542.921189737135428.41737123065114.503818506481
35441.927581633355444.27711728307-2.34953564971903
45348.925555860655460.13686333549-111.211307474841
55313.936881190965475.99660938791-162.059728196956
65478.573581130775491.85635544034-13.28277430956
75522.505249390695507.7161014927614.7891478979385
85481.942120914565523.57584754518-41.6337266306198
95571.577127176295539.435593597632.141533578697
105679.249637786375555.29533965002123.954298136347
115427.078673745945571.15508570244-144.076411956498
125635.316952629055587.0148317548648.3021208741881



Parameters (Session):
par1 = 12 ; par2 = -0.3 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 0 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')