Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationTue, 20 Dec 2016 22:32:54 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t148227003090oftzzff7dv7mz.htm/, Retrieved Fri, 01 Nov 2024 03:34:50 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301812, Retrieved Fri, 01 Nov 2024 03:34:50 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [Classical dec. by...] [2016-12-20 21:32:54] [168e69cfb1c001c8b9ca70e943ef53ff] [Current]
Feedback Forum

Post a new message
Dataseries X:
1.894
1.757
3.582
5.321
5.561
5.907
4.944
4.966
3.258
1.964
1.743
1.262
2.086
1.793
3.548
5.672
6.084
4.914
4.990
5.139
3.218
2.179
2.238
1.442
2.205
2.025
3.531
4.977
7.998
4.880
5.231
5.202
3.303
2.683
2.202
1.376
2.422
1.997
3.163
5.964
5.657
6.415
6.208
4.500
2.939
2.702
2.090
1.504
2.549
1.931
3.013
6.204
5.788
5.611
5.594
4.647
3.490
2.487
1.992
1.507
2.306
2.002
3.075
5.331
5.589
5.813
4.876
4.665
3.601
2.192
2.111
1.580
2.288
1.993
3.228
5.000
5.480
5.770
4.962
4.685
3.607
2.222
2.467
1.594
2.228
1.910
3.157
4.809
6.249
4.607
4.975
4.784
3.028
2.461
2.218
1.351
2.070
1.887
3.024
4.596
6.398
4.459
5.382
4.359
2.687
2.249
2.154
1.169
2.429
1.762
2.846
5.627
5.749
4.502
5.720
4.403
2.867
2.635
2.059
1.511
2.359
1.741
2.917
6.249
5.760
6.250
5.134
4.831
3.695
2.462
2.146
1.579




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301812&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301812&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301812&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal13210133
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1321 & 0 & 133 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301812&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1321[/C][C]0[/C][C]133[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301812&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301812&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal13210133
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
11.8941.59652385562986-1.348792950256013.54026909462615-0.297476144370135
21.7571.69200805380737-1.717276828058073.53926877425071-0.0649919461926332
33.5824.04567426981546-0.4199427236907213.538268453875260.463674269815458
45.3215.283443627784111.821240518160413.53731585405548-0.0375563722158905
55.5615.168939926845652.416696818918653.53636325423569-0.392060073154348
65.9076.516198695033951.761059460230883.536741844735170.60919869503395
74.9444.693366359269311.657513205496053.53712043523464-0.250633640730695
84.9665.268361340897711.124957281551753.538681377550540.302361340897709
93.2583.35181054075524-0.3760528606216763.540242319866440.0938105407552374
101.9641.62571151157865-1.238082013816773.54037050223812-0.338288488421346
111.7431.44188523298909-1.496383917598883.54049868460979-0.301114767010914
121.2621.1695892217735-2.184935949951973.53934672817847-0.0924107782265016
132.0861.98259817850887-1.348792950256013.53819477174714-0.10340182149113
141.7931.76088208439094-1.717276828058073.54239474366713-0.0321179156090619
153.5483.9693480081036-0.4199427236907213.546594715587130.421348008103596
165.6725.95890387244091.821240518160413.563855609398690.286903872440903
176.0846.17018667787112.416696818918653.581116503210250.0861866778711002
184.9144.472080476739191.761059460230883.59486006302993-0.441919523260808
194.994.713883171654341.657513205496053.6086036228496-0.276116828345657
205.1395.540148113647611.124957281551753.612894604800640.40114811364761
213.2183.19486727387-0.3760528606216763.61718558675167-0.0231327261299987
222.1791.95530188797671-1.238082013816773.64078012584006-0.223698112023294
232.2382.30800925267042-1.496383917598883.664374664928450.0700092526704248
241.4421.3695856461688-2.184935949951973.69935030378316-0.0724143538311974
252.2052.02446700761814-1.348792950256013.73432594263787-0.180532992381862
262.0252.00908463323662-1.717276828058073.75819219482145-0.0159153667633785
273.5313.69988427668569-0.4199427236907213.782058447005030.168884276685694
284.9774.336011996383231.821240518160413.79674748545636-0.640988003616772
297.9989.767866657173652.416696818918653.81143652390771.76986665717365
304.884.181841328334781.761059460230883.81709921143434-0.698158671665223
315.2314.981724895542961.657513205496053.82276189896099-0.249275104457039
325.2025.465295923765991.124957281551753.813746794682260.26329592376599
333.3033.17732117021815-0.3760528606216763.80473169040353-0.125678829781855
342.6832.81333656372327-1.238082013816773.79074545009350.130336563723265
352.2022.1236247078154-1.496383917598883.77675920978348-0.0783752921846004
361.3761.15180041930949-2.184935949951973.78513553064248-0.224199580690514
372.4222.39928109875453-1.348792950256013.79351185150148-0.0227189012454678
381.9971.90601699365985-1.717276828058073.80525983439823-0.0909830063401538
393.1632.92893490639575-0.4199427236907213.81700781729497-0.23406509360425
405.9646.291698496456871.821240518160413.815060985382720.32769849645687
415.6575.084189027610882.416696818918653.81311415347047-0.57281097238912
426.4157.256962141971251.761059460230883.811978397797870.84196214197125
436.2086.947644152378681.657513205496053.810842642125270.739644152378677
444.54.068167382279651.124957281551753.8068753361686-0.431832617720349
452.9392.45114483040975-0.3760528606216763.80290803021192-0.487855169590248
462.7022.8528358535914-1.238082013816773.789246160225370.150835853591401
472.091.90079962736006-1.496383917598883.77558429023881-0.189200372639935
481.5041.43421101749321-2.184935949951973.75872493245876-0.0697889825067946
492.5492.7049273755773-1.348792950256013.741865574678710.155927375577305
501.9311.83993703129463-1.717276828058073.73933979676344-0.0910629687053706
513.0132.70912870484254-0.4199427236907213.73681401884818-0.303871295157456
526.2046.846276592131431.821240518160413.740482889708160.642276592131431
535.7885.415151420513212.416696818918653.74415176056814-0.37284857948679
545.6115.722928654003381.761059460230883.738011885765740.111928654003377
555.5945.79861478354061.657513205496053.731872010963340.204614783540602
564.6474.44970359971331.124957281551753.71933911873495-0.197296400286699
573.493.64924663411513-0.3760528606216763.706806226506550.159246634115127
582.4872.52707039804184-1.238082013816773.685011615774930.0400703980418391
591.9921.81716691255557-1.496383917598883.66321700504331-0.174833087444434
601.5071.55805872983445-2.184935949951973.640877220117510.0510587298344509
612.3062.3422555150643-1.348792950256013.618537435191720.0362555150642958
622.0022.11643196588954-1.717276828058073.604844862168530.114431965889545
633.0752.97879043454538-0.4199427236907213.59115228914534-0.096209565454616
645.3315.254164445681241.821240518160413.58659503615835-0.0768355543187598
655.5895.179265397909992.416696818918653.58203778317136-0.409734602090013
665.8136.279907509097611.761059460230883.585033030671510.466907509097608
674.8764.506458516332291.657513205496053.58802827817166-0.369541483667711
684.6654.612264815532541.124957281551753.59277790291571-0.0527351844674637
693.6013.98052533296191-0.3760528606216763.597527527659770.37952533296191
702.1922.02751115931371-1.238082013816773.59457085450306-0.164488840686294
712.1112.12676973625252-1.496383917598883.591614181346360.0157697362525151
721.581.76171261635184-2.184935949951973.583223333600130.181712616351838
732.2882.34996046440212-1.348792950256013.574832485853890.061960464402119
741.9932.13200470181743-1.717276828058073.571272126240640.139004701817433
753.2283.30823095706334-0.4199427236907213.567711766627390.0802309570633355
7654.607043372226091.821240518160413.5717161096135-0.392956627773908
775.484.967582728481742.416696818918653.57572045259961-0.512417271518261
785.776.194354607860941.761059460230883.584585931908180.424354607860939
794.9624.67303538328721.657513205496053.59345141121675-0.288964616712803
804.6854.644154690957611.124957281551753.60088802749064-0.0408453090423904
813.6073.98172821685715-0.3760528606216763.608324643764530.374728216857149
822.2222.07336522427409-1.238082013816773.60871678954268-0.148634775725906
832.4672.82127498227805-1.496383917598883.609108935320820.354274982278054
841.5941.7825930978236-2.184935949951973.590342852128360.188593097823603
852.2282.23321618132011-1.348792950256013.57157676893590.00521618132010904
861.911.99144586154911-1.717276828058073.545830966508960.0814458615491085
873.1573.2138575596087-0.4199427236907213.520085164082020.056857559608698
884.8094.29498095750851.821240518160413.50177852433109-0.514019042491497
896.2496.59783129650122.416696818918653.483471884580150.348831296501198
904.6073.977835341137651.761059460230883.47510519863146-0.629164658862345
914.9754.825748281821171.657513205496053.46673851268278-0.149251718178832
924.7844.977370335651291.124957281551753.465672382796960.193370335651292
933.0282.96744660771054-0.3760528606216763.46460625291113-0.060553392289457
942.4612.6949196455561-1.238082013816773.465162368260670.233919645556099
952.2182.46666543398867-1.496383917598883.465718483610210.248665433988669
961.3511.42597592063746-2.184935949951973.46096002931450.0749759206374625
972.072.03259137523722-1.348792950256013.4562015750188-0.0374086247627847
981.8872.05356415078577-1.717276828058073.437712677272310.166564150785765
993.0243.0487189441649-0.4199427236907213.419223779525820.0247189441649045
1004.5963.971714819678251.821240518160413.39904466216134-0.624285180321751
1016.3987.000437636284482.416696818918653.378865544796860.602437636284484
1024.4593.781709165768491.761059460230883.37523137400063-0.677290834231508
1035.3825.734889591299561.657513205496053.371597203204390.352889591299557
1044.3594.209741435520941.124957281551753.38330128292731-0.149258564479065
1052.6872.35504749797144-0.3760528606216763.39500536265024-0.331952502028562
1062.2492.32723347702621-1.238082013816773.408848536790560.0782334770262052
1072.1542.38169220666799-1.496383917598883.422691710930890.227692206667986
1081.1691.09143108949931-2.184935949951973.43150486045265-0.0775689105006867
1092.4292.7664749402816-1.348792950256013.440318009974410.3374749402816
1101.7621.79334102852248-1.717276828058073.44793579953560.0313410285224767
1112.8462.65638913459394-0.4199427236907213.45555358909678-0.189610865406057
1125.6275.968440878842131.821240518160413.464318602997460.341440878842127
1135.7495.60821956418322.416696818918653.47308361689814-0.140780435816798
1144.5023.761877017283951.761059460230883.48106352248516-0.740122982716045
1155.726.293443366431761.657513205496053.489043428072180.573443366431766
1164.4034.178429969291481.124957281551753.50261274915677-0.224570030708522
1172.8672.59387079038032-0.3760528606216763.51618207024136-0.273129209619683
1182.6352.96107709646633-1.238082013816773.547004917350440.326077096466331
1192.0592.03655615313936-1.496383917598883.57782776445952-0.0224438468606394
1201.5111.58845275192609-2.184935949951973.618483198025880.0774527519260877
1212.3592.40765431866377-1.348792950256013.659138631592240.048654318663774
1221.7411.5090389938038-1.717276828058073.69023783425427-0.231961006196202
1232.9172.53260568677441-0.4199427236907213.72133703691631-0.38439431322559
1246.2496.942989819631541.821240518160413.733769662208050.693989819631539
1255.765.357100893581562.416696818918653.74620228749979-0.402899106418442
1266.256.981199106503251.761059460230883.757741433265870.731199106503251
1275.1344.8412062154721.657513205496053.76928057903194-0.292793784527997
1284.8314.756921096808171.124957281551753.78012162164008-0.0740789031918316
1293.6953.97509019637346-0.3760528606216763.790962664248220.280090196373459
1302.4622.3622642114943-1.238082013816773.79981780232247-0.0997357885057029
1312.1461.97971097720215-1.496383917598883.80867294039673-0.166289022797852
1321.5791.52746314065333-2.184935949951973.81547280929864-0.0515368593466734

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 1.894 & 1.59652385562986 & -1.34879295025601 & 3.54026909462615 & -0.297476144370135 \tabularnewline
2 & 1.757 & 1.69200805380737 & -1.71727682805807 & 3.53926877425071 & -0.0649919461926332 \tabularnewline
3 & 3.582 & 4.04567426981546 & -0.419942723690721 & 3.53826845387526 & 0.463674269815458 \tabularnewline
4 & 5.321 & 5.28344362778411 & 1.82124051816041 & 3.53731585405548 & -0.0375563722158905 \tabularnewline
5 & 5.561 & 5.16893992684565 & 2.41669681891865 & 3.53636325423569 & -0.392060073154348 \tabularnewline
6 & 5.907 & 6.51619869503395 & 1.76105946023088 & 3.53674184473517 & 0.60919869503395 \tabularnewline
7 & 4.944 & 4.69336635926931 & 1.65751320549605 & 3.53712043523464 & -0.250633640730695 \tabularnewline
8 & 4.966 & 5.26836134089771 & 1.12495728155175 & 3.53868137755054 & 0.302361340897709 \tabularnewline
9 & 3.258 & 3.35181054075524 & -0.376052860621676 & 3.54024231986644 & 0.0938105407552374 \tabularnewline
10 & 1.964 & 1.62571151157865 & -1.23808201381677 & 3.54037050223812 & -0.338288488421346 \tabularnewline
11 & 1.743 & 1.44188523298909 & -1.49638391759888 & 3.54049868460979 & -0.301114767010914 \tabularnewline
12 & 1.262 & 1.1695892217735 & -2.18493594995197 & 3.53934672817847 & -0.0924107782265016 \tabularnewline
13 & 2.086 & 1.98259817850887 & -1.34879295025601 & 3.53819477174714 & -0.10340182149113 \tabularnewline
14 & 1.793 & 1.76088208439094 & -1.71727682805807 & 3.54239474366713 & -0.0321179156090619 \tabularnewline
15 & 3.548 & 3.9693480081036 & -0.419942723690721 & 3.54659471558713 & 0.421348008103596 \tabularnewline
16 & 5.672 & 5.9589038724409 & 1.82124051816041 & 3.56385560939869 & 0.286903872440903 \tabularnewline
17 & 6.084 & 6.1701866778711 & 2.41669681891865 & 3.58111650321025 & 0.0861866778711002 \tabularnewline
18 & 4.914 & 4.47208047673919 & 1.76105946023088 & 3.59486006302993 & -0.441919523260808 \tabularnewline
19 & 4.99 & 4.71388317165434 & 1.65751320549605 & 3.6086036228496 & -0.276116828345657 \tabularnewline
20 & 5.139 & 5.54014811364761 & 1.12495728155175 & 3.61289460480064 & 0.40114811364761 \tabularnewline
21 & 3.218 & 3.19486727387 & -0.376052860621676 & 3.61718558675167 & -0.0231327261299987 \tabularnewline
22 & 2.179 & 1.95530188797671 & -1.23808201381677 & 3.64078012584006 & -0.223698112023294 \tabularnewline
23 & 2.238 & 2.30800925267042 & -1.49638391759888 & 3.66437466492845 & 0.0700092526704248 \tabularnewline
24 & 1.442 & 1.3695856461688 & -2.18493594995197 & 3.69935030378316 & -0.0724143538311974 \tabularnewline
25 & 2.205 & 2.02446700761814 & -1.34879295025601 & 3.73432594263787 & -0.180532992381862 \tabularnewline
26 & 2.025 & 2.00908463323662 & -1.71727682805807 & 3.75819219482145 & -0.0159153667633785 \tabularnewline
27 & 3.531 & 3.69988427668569 & -0.419942723690721 & 3.78205844700503 & 0.168884276685694 \tabularnewline
28 & 4.977 & 4.33601199638323 & 1.82124051816041 & 3.79674748545636 & -0.640988003616772 \tabularnewline
29 & 7.998 & 9.76786665717365 & 2.41669681891865 & 3.8114365239077 & 1.76986665717365 \tabularnewline
30 & 4.88 & 4.18184132833478 & 1.76105946023088 & 3.81709921143434 & -0.698158671665223 \tabularnewline
31 & 5.231 & 4.98172489554296 & 1.65751320549605 & 3.82276189896099 & -0.249275104457039 \tabularnewline
32 & 5.202 & 5.46529592376599 & 1.12495728155175 & 3.81374679468226 & 0.26329592376599 \tabularnewline
33 & 3.303 & 3.17732117021815 & -0.376052860621676 & 3.80473169040353 & -0.125678829781855 \tabularnewline
34 & 2.683 & 2.81333656372327 & -1.23808201381677 & 3.7907454500935 & 0.130336563723265 \tabularnewline
35 & 2.202 & 2.1236247078154 & -1.49638391759888 & 3.77675920978348 & -0.0783752921846004 \tabularnewline
36 & 1.376 & 1.15180041930949 & -2.18493594995197 & 3.78513553064248 & -0.224199580690514 \tabularnewline
37 & 2.422 & 2.39928109875453 & -1.34879295025601 & 3.79351185150148 & -0.0227189012454678 \tabularnewline
38 & 1.997 & 1.90601699365985 & -1.71727682805807 & 3.80525983439823 & -0.0909830063401538 \tabularnewline
39 & 3.163 & 2.92893490639575 & -0.419942723690721 & 3.81700781729497 & -0.23406509360425 \tabularnewline
40 & 5.964 & 6.29169849645687 & 1.82124051816041 & 3.81506098538272 & 0.32769849645687 \tabularnewline
41 & 5.657 & 5.08418902761088 & 2.41669681891865 & 3.81311415347047 & -0.57281097238912 \tabularnewline
42 & 6.415 & 7.25696214197125 & 1.76105946023088 & 3.81197839779787 & 0.84196214197125 \tabularnewline
43 & 6.208 & 6.94764415237868 & 1.65751320549605 & 3.81084264212527 & 0.739644152378677 \tabularnewline
44 & 4.5 & 4.06816738227965 & 1.12495728155175 & 3.8068753361686 & -0.431832617720349 \tabularnewline
45 & 2.939 & 2.45114483040975 & -0.376052860621676 & 3.80290803021192 & -0.487855169590248 \tabularnewline
46 & 2.702 & 2.8528358535914 & -1.23808201381677 & 3.78924616022537 & 0.150835853591401 \tabularnewline
47 & 2.09 & 1.90079962736006 & -1.49638391759888 & 3.77558429023881 & -0.189200372639935 \tabularnewline
48 & 1.504 & 1.43421101749321 & -2.18493594995197 & 3.75872493245876 & -0.0697889825067946 \tabularnewline
49 & 2.549 & 2.7049273755773 & -1.34879295025601 & 3.74186557467871 & 0.155927375577305 \tabularnewline
50 & 1.931 & 1.83993703129463 & -1.71727682805807 & 3.73933979676344 & -0.0910629687053706 \tabularnewline
51 & 3.013 & 2.70912870484254 & -0.419942723690721 & 3.73681401884818 & -0.303871295157456 \tabularnewline
52 & 6.204 & 6.84627659213143 & 1.82124051816041 & 3.74048288970816 & 0.642276592131431 \tabularnewline
53 & 5.788 & 5.41515142051321 & 2.41669681891865 & 3.74415176056814 & -0.37284857948679 \tabularnewline
54 & 5.611 & 5.72292865400338 & 1.76105946023088 & 3.73801188576574 & 0.111928654003377 \tabularnewline
55 & 5.594 & 5.7986147835406 & 1.65751320549605 & 3.73187201096334 & 0.204614783540602 \tabularnewline
56 & 4.647 & 4.4497035997133 & 1.12495728155175 & 3.71933911873495 & -0.197296400286699 \tabularnewline
57 & 3.49 & 3.64924663411513 & -0.376052860621676 & 3.70680622650655 & 0.159246634115127 \tabularnewline
58 & 2.487 & 2.52707039804184 & -1.23808201381677 & 3.68501161577493 & 0.0400703980418391 \tabularnewline
59 & 1.992 & 1.81716691255557 & -1.49638391759888 & 3.66321700504331 & -0.174833087444434 \tabularnewline
60 & 1.507 & 1.55805872983445 & -2.18493594995197 & 3.64087722011751 & 0.0510587298344509 \tabularnewline
61 & 2.306 & 2.3422555150643 & -1.34879295025601 & 3.61853743519172 & 0.0362555150642958 \tabularnewline
62 & 2.002 & 2.11643196588954 & -1.71727682805807 & 3.60484486216853 & 0.114431965889545 \tabularnewline
63 & 3.075 & 2.97879043454538 & -0.419942723690721 & 3.59115228914534 & -0.096209565454616 \tabularnewline
64 & 5.331 & 5.25416444568124 & 1.82124051816041 & 3.58659503615835 & -0.0768355543187598 \tabularnewline
65 & 5.589 & 5.17926539790999 & 2.41669681891865 & 3.58203778317136 & -0.409734602090013 \tabularnewline
66 & 5.813 & 6.27990750909761 & 1.76105946023088 & 3.58503303067151 & 0.466907509097608 \tabularnewline
67 & 4.876 & 4.50645851633229 & 1.65751320549605 & 3.58802827817166 & -0.369541483667711 \tabularnewline
68 & 4.665 & 4.61226481553254 & 1.12495728155175 & 3.59277790291571 & -0.0527351844674637 \tabularnewline
69 & 3.601 & 3.98052533296191 & -0.376052860621676 & 3.59752752765977 & 0.37952533296191 \tabularnewline
70 & 2.192 & 2.02751115931371 & -1.23808201381677 & 3.59457085450306 & -0.164488840686294 \tabularnewline
71 & 2.111 & 2.12676973625252 & -1.49638391759888 & 3.59161418134636 & 0.0157697362525151 \tabularnewline
72 & 1.58 & 1.76171261635184 & -2.18493594995197 & 3.58322333360013 & 0.181712616351838 \tabularnewline
73 & 2.288 & 2.34996046440212 & -1.34879295025601 & 3.57483248585389 & 0.061960464402119 \tabularnewline
74 & 1.993 & 2.13200470181743 & -1.71727682805807 & 3.57127212624064 & 0.139004701817433 \tabularnewline
75 & 3.228 & 3.30823095706334 & -0.419942723690721 & 3.56771176662739 & 0.0802309570633355 \tabularnewline
76 & 5 & 4.60704337222609 & 1.82124051816041 & 3.5717161096135 & -0.392956627773908 \tabularnewline
77 & 5.48 & 4.96758272848174 & 2.41669681891865 & 3.57572045259961 & -0.512417271518261 \tabularnewline
78 & 5.77 & 6.19435460786094 & 1.76105946023088 & 3.58458593190818 & 0.424354607860939 \tabularnewline
79 & 4.962 & 4.6730353832872 & 1.65751320549605 & 3.59345141121675 & -0.288964616712803 \tabularnewline
80 & 4.685 & 4.64415469095761 & 1.12495728155175 & 3.60088802749064 & -0.0408453090423904 \tabularnewline
81 & 3.607 & 3.98172821685715 & -0.376052860621676 & 3.60832464376453 & 0.374728216857149 \tabularnewline
82 & 2.222 & 2.07336522427409 & -1.23808201381677 & 3.60871678954268 & -0.148634775725906 \tabularnewline
83 & 2.467 & 2.82127498227805 & -1.49638391759888 & 3.60910893532082 & 0.354274982278054 \tabularnewline
84 & 1.594 & 1.7825930978236 & -2.18493594995197 & 3.59034285212836 & 0.188593097823603 \tabularnewline
85 & 2.228 & 2.23321618132011 & -1.34879295025601 & 3.5715767689359 & 0.00521618132010904 \tabularnewline
86 & 1.91 & 1.99144586154911 & -1.71727682805807 & 3.54583096650896 & 0.0814458615491085 \tabularnewline
87 & 3.157 & 3.2138575596087 & -0.419942723690721 & 3.52008516408202 & 0.056857559608698 \tabularnewline
88 & 4.809 & 4.2949809575085 & 1.82124051816041 & 3.50177852433109 & -0.514019042491497 \tabularnewline
89 & 6.249 & 6.5978312965012 & 2.41669681891865 & 3.48347188458015 & 0.348831296501198 \tabularnewline
90 & 4.607 & 3.97783534113765 & 1.76105946023088 & 3.47510519863146 & -0.629164658862345 \tabularnewline
91 & 4.975 & 4.82574828182117 & 1.65751320549605 & 3.46673851268278 & -0.149251718178832 \tabularnewline
92 & 4.784 & 4.97737033565129 & 1.12495728155175 & 3.46567238279696 & 0.193370335651292 \tabularnewline
93 & 3.028 & 2.96744660771054 & -0.376052860621676 & 3.46460625291113 & -0.060553392289457 \tabularnewline
94 & 2.461 & 2.6949196455561 & -1.23808201381677 & 3.46516236826067 & 0.233919645556099 \tabularnewline
95 & 2.218 & 2.46666543398867 & -1.49638391759888 & 3.46571848361021 & 0.248665433988669 \tabularnewline
96 & 1.351 & 1.42597592063746 & -2.18493594995197 & 3.4609600293145 & 0.0749759206374625 \tabularnewline
97 & 2.07 & 2.03259137523722 & -1.34879295025601 & 3.4562015750188 & -0.0374086247627847 \tabularnewline
98 & 1.887 & 2.05356415078577 & -1.71727682805807 & 3.43771267727231 & 0.166564150785765 \tabularnewline
99 & 3.024 & 3.0487189441649 & -0.419942723690721 & 3.41922377952582 & 0.0247189441649045 \tabularnewline
100 & 4.596 & 3.97171481967825 & 1.82124051816041 & 3.39904466216134 & -0.624285180321751 \tabularnewline
101 & 6.398 & 7.00043763628448 & 2.41669681891865 & 3.37886554479686 & 0.602437636284484 \tabularnewline
102 & 4.459 & 3.78170916576849 & 1.76105946023088 & 3.37523137400063 & -0.677290834231508 \tabularnewline
103 & 5.382 & 5.73488959129956 & 1.65751320549605 & 3.37159720320439 & 0.352889591299557 \tabularnewline
104 & 4.359 & 4.20974143552094 & 1.12495728155175 & 3.38330128292731 & -0.149258564479065 \tabularnewline
105 & 2.687 & 2.35504749797144 & -0.376052860621676 & 3.39500536265024 & -0.331952502028562 \tabularnewline
106 & 2.249 & 2.32723347702621 & -1.23808201381677 & 3.40884853679056 & 0.0782334770262052 \tabularnewline
107 & 2.154 & 2.38169220666799 & -1.49638391759888 & 3.42269171093089 & 0.227692206667986 \tabularnewline
108 & 1.169 & 1.09143108949931 & -2.18493594995197 & 3.43150486045265 & -0.0775689105006867 \tabularnewline
109 & 2.429 & 2.7664749402816 & -1.34879295025601 & 3.44031800997441 & 0.3374749402816 \tabularnewline
110 & 1.762 & 1.79334102852248 & -1.71727682805807 & 3.4479357995356 & 0.0313410285224767 \tabularnewline
111 & 2.846 & 2.65638913459394 & -0.419942723690721 & 3.45555358909678 & -0.189610865406057 \tabularnewline
112 & 5.627 & 5.96844087884213 & 1.82124051816041 & 3.46431860299746 & 0.341440878842127 \tabularnewline
113 & 5.749 & 5.6082195641832 & 2.41669681891865 & 3.47308361689814 & -0.140780435816798 \tabularnewline
114 & 4.502 & 3.76187701728395 & 1.76105946023088 & 3.48106352248516 & -0.740122982716045 \tabularnewline
115 & 5.72 & 6.29344336643176 & 1.65751320549605 & 3.48904342807218 & 0.573443366431766 \tabularnewline
116 & 4.403 & 4.17842996929148 & 1.12495728155175 & 3.50261274915677 & -0.224570030708522 \tabularnewline
117 & 2.867 & 2.59387079038032 & -0.376052860621676 & 3.51618207024136 & -0.273129209619683 \tabularnewline
118 & 2.635 & 2.96107709646633 & -1.23808201381677 & 3.54700491735044 & 0.326077096466331 \tabularnewline
119 & 2.059 & 2.03655615313936 & -1.49638391759888 & 3.57782776445952 & -0.0224438468606394 \tabularnewline
120 & 1.511 & 1.58845275192609 & -2.18493594995197 & 3.61848319802588 & 0.0774527519260877 \tabularnewline
121 & 2.359 & 2.40765431866377 & -1.34879295025601 & 3.65913863159224 & 0.048654318663774 \tabularnewline
122 & 1.741 & 1.5090389938038 & -1.71727682805807 & 3.69023783425427 & -0.231961006196202 \tabularnewline
123 & 2.917 & 2.53260568677441 & -0.419942723690721 & 3.72133703691631 & -0.38439431322559 \tabularnewline
124 & 6.249 & 6.94298981963154 & 1.82124051816041 & 3.73376966220805 & 0.693989819631539 \tabularnewline
125 & 5.76 & 5.35710089358156 & 2.41669681891865 & 3.74620228749979 & -0.402899106418442 \tabularnewline
126 & 6.25 & 6.98119910650325 & 1.76105946023088 & 3.75774143326587 & 0.731199106503251 \tabularnewline
127 & 5.134 & 4.841206215472 & 1.65751320549605 & 3.76928057903194 & -0.292793784527997 \tabularnewline
128 & 4.831 & 4.75692109680817 & 1.12495728155175 & 3.78012162164008 & -0.0740789031918316 \tabularnewline
129 & 3.695 & 3.97509019637346 & -0.376052860621676 & 3.79096266424822 & 0.280090196373459 \tabularnewline
130 & 2.462 & 2.3622642114943 & -1.23808201381677 & 3.79981780232247 & -0.0997357885057029 \tabularnewline
131 & 2.146 & 1.97971097720215 & -1.49638391759888 & 3.80867294039673 & -0.166289022797852 \tabularnewline
132 & 1.579 & 1.52746314065333 & -2.18493594995197 & 3.81547280929864 & -0.0515368593466734 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301812&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]1.894[/C][C]1.59652385562986[/C][C]-1.34879295025601[/C][C]3.54026909462615[/C][C]-0.297476144370135[/C][/ROW]
[ROW][C]2[/C][C]1.757[/C][C]1.69200805380737[/C][C]-1.71727682805807[/C][C]3.53926877425071[/C][C]-0.0649919461926332[/C][/ROW]
[ROW][C]3[/C][C]3.582[/C][C]4.04567426981546[/C][C]-0.419942723690721[/C][C]3.53826845387526[/C][C]0.463674269815458[/C][/ROW]
[ROW][C]4[/C][C]5.321[/C][C]5.28344362778411[/C][C]1.82124051816041[/C][C]3.53731585405548[/C][C]-0.0375563722158905[/C][/ROW]
[ROW][C]5[/C][C]5.561[/C][C]5.16893992684565[/C][C]2.41669681891865[/C][C]3.53636325423569[/C][C]-0.392060073154348[/C][/ROW]
[ROW][C]6[/C][C]5.907[/C][C]6.51619869503395[/C][C]1.76105946023088[/C][C]3.53674184473517[/C][C]0.60919869503395[/C][/ROW]
[ROW][C]7[/C][C]4.944[/C][C]4.69336635926931[/C][C]1.65751320549605[/C][C]3.53712043523464[/C][C]-0.250633640730695[/C][/ROW]
[ROW][C]8[/C][C]4.966[/C][C]5.26836134089771[/C][C]1.12495728155175[/C][C]3.53868137755054[/C][C]0.302361340897709[/C][/ROW]
[ROW][C]9[/C][C]3.258[/C][C]3.35181054075524[/C][C]-0.376052860621676[/C][C]3.54024231986644[/C][C]0.0938105407552374[/C][/ROW]
[ROW][C]10[/C][C]1.964[/C][C]1.62571151157865[/C][C]-1.23808201381677[/C][C]3.54037050223812[/C][C]-0.338288488421346[/C][/ROW]
[ROW][C]11[/C][C]1.743[/C][C]1.44188523298909[/C][C]-1.49638391759888[/C][C]3.54049868460979[/C][C]-0.301114767010914[/C][/ROW]
[ROW][C]12[/C][C]1.262[/C][C]1.1695892217735[/C][C]-2.18493594995197[/C][C]3.53934672817847[/C][C]-0.0924107782265016[/C][/ROW]
[ROW][C]13[/C][C]2.086[/C][C]1.98259817850887[/C][C]-1.34879295025601[/C][C]3.53819477174714[/C][C]-0.10340182149113[/C][/ROW]
[ROW][C]14[/C][C]1.793[/C][C]1.76088208439094[/C][C]-1.71727682805807[/C][C]3.54239474366713[/C][C]-0.0321179156090619[/C][/ROW]
[ROW][C]15[/C][C]3.548[/C][C]3.9693480081036[/C][C]-0.419942723690721[/C][C]3.54659471558713[/C][C]0.421348008103596[/C][/ROW]
[ROW][C]16[/C][C]5.672[/C][C]5.9589038724409[/C][C]1.82124051816041[/C][C]3.56385560939869[/C][C]0.286903872440903[/C][/ROW]
[ROW][C]17[/C][C]6.084[/C][C]6.1701866778711[/C][C]2.41669681891865[/C][C]3.58111650321025[/C][C]0.0861866778711002[/C][/ROW]
[ROW][C]18[/C][C]4.914[/C][C]4.47208047673919[/C][C]1.76105946023088[/C][C]3.59486006302993[/C][C]-0.441919523260808[/C][/ROW]
[ROW][C]19[/C][C]4.99[/C][C]4.71388317165434[/C][C]1.65751320549605[/C][C]3.6086036228496[/C][C]-0.276116828345657[/C][/ROW]
[ROW][C]20[/C][C]5.139[/C][C]5.54014811364761[/C][C]1.12495728155175[/C][C]3.61289460480064[/C][C]0.40114811364761[/C][/ROW]
[ROW][C]21[/C][C]3.218[/C][C]3.19486727387[/C][C]-0.376052860621676[/C][C]3.61718558675167[/C][C]-0.0231327261299987[/C][/ROW]
[ROW][C]22[/C][C]2.179[/C][C]1.95530188797671[/C][C]-1.23808201381677[/C][C]3.64078012584006[/C][C]-0.223698112023294[/C][/ROW]
[ROW][C]23[/C][C]2.238[/C][C]2.30800925267042[/C][C]-1.49638391759888[/C][C]3.66437466492845[/C][C]0.0700092526704248[/C][/ROW]
[ROW][C]24[/C][C]1.442[/C][C]1.3695856461688[/C][C]-2.18493594995197[/C][C]3.69935030378316[/C][C]-0.0724143538311974[/C][/ROW]
[ROW][C]25[/C][C]2.205[/C][C]2.02446700761814[/C][C]-1.34879295025601[/C][C]3.73432594263787[/C][C]-0.180532992381862[/C][/ROW]
[ROW][C]26[/C][C]2.025[/C][C]2.00908463323662[/C][C]-1.71727682805807[/C][C]3.75819219482145[/C][C]-0.0159153667633785[/C][/ROW]
[ROW][C]27[/C][C]3.531[/C][C]3.69988427668569[/C][C]-0.419942723690721[/C][C]3.78205844700503[/C][C]0.168884276685694[/C][/ROW]
[ROW][C]28[/C][C]4.977[/C][C]4.33601199638323[/C][C]1.82124051816041[/C][C]3.79674748545636[/C][C]-0.640988003616772[/C][/ROW]
[ROW][C]29[/C][C]7.998[/C][C]9.76786665717365[/C][C]2.41669681891865[/C][C]3.8114365239077[/C][C]1.76986665717365[/C][/ROW]
[ROW][C]30[/C][C]4.88[/C][C]4.18184132833478[/C][C]1.76105946023088[/C][C]3.81709921143434[/C][C]-0.698158671665223[/C][/ROW]
[ROW][C]31[/C][C]5.231[/C][C]4.98172489554296[/C][C]1.65751320549605[/C][C]3.82276189896099[/C][C]-0.249275104457039[/C][/ROW]
[ROW][C]32[/C][C]5.202[/C][C]5.46529592376599[/C][C]1.12495728155175[/C][C]3.81374679468226[/C][C]0.26329592376599[/C][/ROW]
[ROW][C]33[/C][C]3.303[/C][C]3.17732117021815[/C][C]-0.376052860621676[/C][C]3.80473169040353[/C][C]-0.125678829781855[/C][/ROW]
[ROW][C]34[/C][C]2.683[/C][C]2.81333656372327[/C][C]-1.23808201381677[/C][C]3.7907454500935[/C][C]0.130336563723265[/C][/ROW]
[ROW][C]35[/C][C]2.202[/C][C]2.1236247078154[/C][C]-1.49638391759888[/C][C]3.77675920978348[/C][C]-0.0783752921846004[/C][/ROW]
[ROW][C]36[/C][C]1.376[/C][C]1.15180041930949[/C][C]-2.18493594995197[/C][C]3.78513553064248[/C][C]-0.224199580690514[/C][/ROW]
[ROW][C]37[/C][C]2.422[/C][C]2.39928109875453[/C][C]-1.34879295025601[/C][C]3.79351185150148[/C][C]-0.0227189012454678[/C][/ROW]
[ROW][C]38[/C][C]1.997[/C][C]1.90601699365985[/C][C]-1.71727682805807[/C][C]3.80525983439823[/C][C]-0.0909830063401538[/C][/ROW]
[ROW][C]39[/C][C]3.163[/C][C]2.92893490639575[/C][C]-0.419942723690721[/C][C]3.81700781729497[/C][C]-0.23406509360425[/C][/ROW]
[ROW][C]40[/C][C]5.964[/C][C]6.29169849645687[/C][C]1.82124051816041[/C][C]3.81506098538272[/C][C]0.32769849645687[/C][/ROW]
[ROW][C]41[/C][C]5.657[/C][C]5.08418902761088[/C][C]2.41669681891865[/C][C]3.81311415347047[/C][C]-0.57281097238912[/C][/ROW]
[ROW][C]42[/C][C]6.415[/C][C]7.25696214197125[/C][C]1.76105946023088[/C][C]3.81197839779787[/C][C]0.84196214197125[/C][/ROW]
[ROW][C]43[/C][C]6.208[/C][C]6.94764415237868[/C][C]1.65751320549605[/C][C]3.81084264212527[/C][C]0.739644152378677[/C][/ROW]
[ROW][C]44[/C][C]4.5[/C][C]4.06816738227965[/C][C]1.12495728155175[/C][C]3.8068753361686[/C][C]-0.431832617720349[/C][/ROW]
[ROW][C]45[/C][C]2.939[/C][C]2.45114483040975[/C][C]-0.376052860621676[/C][C]3.80290803021192[/C][C]-0.487855169590248[/C][/ROW]
[ROW][C]46[/C][C]2.702[/C][C]2.8528358535914[/C][C]-1.23808201381677[/C][C]3.78924616022537[/C][C]0.150835853591401[/C][/ROW]
[ROW][C]47[/C][C]2.09[/C][C]1.90079962736006[/C][C]-1.49638391759888[/C][C]3.77558429023881[/C][C]-0.189200372639935[/C][/ROW]
[ROW][C]48[/C][C]1.504[/C][C]1.43421101749321[/C][C]-2.18493594995197[/C][C]3.75872493245876[/C][C]-0.0697889825067946[/C][/ROW]
[ROW][C]49[/C][C]2.549[/C][C]2.7049273755773[/C][C]-1.34879295025601[/C][C]3.74186557467871[/C][C]0.155927375577305[/C][/ROW]
[ROW][C]50[/C][C]1.931[/C][C]1.83993703129463[/C][C]-1.71727682805807[/C][C]3.73933979676344[/C][C]-0.0910629687053706[/C][/ROW]
[ROW][C]51[/C][C]3.013[/C][C]2.70912870484254[/C][C]-0.419942723690721[/C][C]3.73681401884818[/C][C]-0.303871295157456[/C][/ROW]
[ROW][C]52[/C][C]6.204[/C][C]6.84627659213143[/C][C]1.82124051816041[/C][C]3.74048288970816[/C][C]0.642276592131431[/C][/ROW]
[ROW][C]53[/C][C]5.788[/C][C]5.41515142051321[/C][C]2.41669681891865[/C][C]3.74415176056814[/C][C]-0.37284857948679[/C][/ROW]
[ROW][C]54[/C][C]5.611[/C][C]5.72292865400338[/C][C]1.76105946023088[/C][C]3.73801188576574[/C][C]0.111928654003377[/C][/ROW]
[ROW][C]55[/C][C]5.594[/C][C]5.7986147835406[/C][C]1.65751320549605[/C][C]3.73187201096334[/C][C]0.204614783540602[/C][/ROW]
[ROW][C]56[/C][C]4.647[/C][C]4.4497035997133[/C][C]1.12495728155175[/C][C]3.71933911873495[/C][C]-0.197296400286699[/C][/ROW]
[ROW][C]57[/C][C]3.49[/C][C]3.64924663411513[/C][C]-0.376052860621676[/C][C]3.70680622650655[/C][C]0.159246634115127[/C][/ROW]
[ROW][C]58[/C][C]2.487[/C][C]2.52707039804184[/C][C]-1.23808201381677[/C][C]3.68501161577493[/C][C]0.0400703980418391[/C][/ROW]
[ROW][C]59[/C][C]1.992[/C][C]1.81716691255557[/C][C]-1.49638391759888[/C][C]3.66321700504331[/C][C]-0.174833087444434[/C][/ROW]
[ROW][C]60[/C][C]1.507[/C][C]1.55805872983445[/C][C]-2.18493594995197[/C][C]3.64087722011751[/C][C]0.0510587298344509[/C][/ROW]
[ROW][C]61[/C][C]2.306[/C][C]2.3422555150643[/C][C]-1.34879295025601[/C][C]3.61853743519172[/C][C]0.0362555150642958[/C][/ROW]
[ROW][C]62[/C][C]2.002[/C][C]2.11643196588954[/C][C]-1.71727682805807[/C][C]3.60484486216853[/C][C]0.114431965889545[/C][/ROW]
[ROW][C]63[/C][C]3.075[/C][C]2.97879043454538[/C][C]-0.419942723690721[/C][C]3.59115228914534[/C][C]-0.096209565454616[/C][/ROW]
[ROW][C]64[/C][C]5.331[/C][C]5.25416444568124[/C][C]1.82124051816041[/C][C]3.58659503615835[/C][C]-0.0768355543187598[/C][/ROW]
[ROW][C]65[/C][C]5.589[/C][C]5.17926539790999[/C][C]2.41669681891865[/C][C]3.58203778317136[/C][C]-0.409734602090013[/C][/ROW]
[ROW][C]66[/C][C]5.813[/C][C]6.27990750909761[/C][C]1.76105946023088[/C][C]3.58503303067151[/C][C]0.466907509097608[/C][/ROW]
[ROW][C]67[/C][C]4.876[/C][C]4.50645851633229[/C][C]1.65751320549605[/C][C]3.58802827817166[/C][C]-0.369541483667711[/C][/ROW]
[ROW][C]68[/C][C]4.665[/C][C]4.61226481553254[/C][C]1.12495728155175[/C][C]3.59277790291571[/C][C]-0.0527351844674637[/C][/ROW]
[ROW][C]69[/C][C]3.601[/C][C]3.98052533296191[/C][C]-0.376052860621676[/C][C]3.59752752765977[/C][C]0.37952533296191[/C][/ROW]
[ROW][C]70[/C][C]2.192[/C][C]2.02751115931371[/C][C]-1.23808201381677[/C][C]3.59457085450306[/C][C]-0.164488840686294[/C][/ROW]
[ROW][C]71[/C][C]2.111[/C][C]2.12676973625252[/C][C]-1.49638391759888[/C][C]3.59161418134636[/C][C]0.0157697362525151[/C][/ROW]
[ROW][C]72[/C][C]1.58[/C][C]1.76171261635184[/C][C]-2.18493594995197[/C][C]3.58322333360013[/C][C]0.181712616351838[/C][/ROW]
[ROW][C]73[/C][C]2.288[/C][C]2.34996046440212[/C][C]-1.34879295025601[/C][C]3.57483248585389[/C][C]0.061960464402119[/C][/ROW]
[ROW][C]74[/C][C]1.993[/C][C]2.13200470181743[/C][C]-1.71727682805807[/C][C]3.57127212624064[/C][C]0.139004701817433[/C][/ROW]
[ROW][C]75[/C][C]3.228[/C][C]3.30823095706334[/C][C]-0.419942723690721[/C][C]3.56771176662739[/C][C]0.0802309570633355[/C][/ROW]
[ROW][C]76[/C][C]5[/C][C]4.60704337222609[/C][C]1.82124051816041[/C][C]3.5717161096135[/C][C]-0.392956627773908[/C][/ROW]
[ROW][C]77[/C][C]5.48[/C][C]4.96758272848174[/C][C]2.41669681891865[/C][C]3.57572045259961[/C][C]-0.512417271518261[/C][/ROW]
[ROW][C]78[/C][C]5.77[/C][C]6.19435460786094[/C][C]1.76105946023088[/C][C]3.58458593190818[/C][C]0.424354607860939[/C][/ROW]
[ROW][C]79[/C][C]4.962[/C][C]4.6730353832872[/C][C]1.65751320549605[/C][C]3.59345141121675[/C][C]-0.288964616712803[/C][/ROW]
[ROW][C]80[/C][C]4.685[/C][C]4.64415469095761[/C][C]1.12495728155175[/C][C]3.60088802749064[/C][C]-0.0408453090423904[/C][/ROW]
[ROW][C]81[/C][C]3.607[/C][C]3.98172821685715[/C][C]-0.376052860621676[/C][C]3.60832464376453[/C][C]0.374728216857149[/C][/ROW]
[ROW][C]82[/C][C]2.222[/C][C]2.07336522427409[/C][C]-1.23808201381677[/C][C]3.60871678954268[/C][C]-0.148634775725906[/C][/ROW]
[ROW][C]83[/C][C]2.467[/C][C]2.82127498227805[/C][C]-1.49638391759888[/C][C]3.60910893532082[/C][C]0.354274982278054[/C][/ROW]
[ROW][C]84[/C][C]1.594[/C][C]1.7825930978236[/C][C]-2.18493594995197[/C][C]3.59034285212836[/C][C]0.188593097823603[/C][/ROW]
[ROW][C]85[/C][C]2.228[/C][C]2.23321618132011[/C][C]-1.34879295025601[/C][C]3.5715767689359[/C][C]0.00521618132010904[/C][/ROW]
[ROW][C]86[/C][C]1.91[/C][C]1.99144586154911[/C][C]-1.71727682805807[/C][C]3.54583096650896[/C][C]0.0814458615491085[/C][/ROW]
[ROW][C]87[/C][C]3.157[/C][C]3.2138575596087[/C][C]-0.419942723690721[/C][C]3.52008516408202[/C][C]0.056857559608698[/C][/ROW]
[ROW][C]88[/C][C]4.809[/C][C]4.2949809575085[/C][C]1.82124051816041[/C][C]3.50177852433109[/C][C]-0.514019042491497[/C][/ROW]
[ROW][C]89[/C][C]6.249[/C][C]6.5978312965012[/C][C]2.41669681891865[/C][C]3.48347188458015[/C][C]0.348831296501198[/C][/ROW]
[ROW][C]90[/C][C]4.607[/C][C]3.97783534113765[/C][C]1.76105946023088[/C][C]3.47510519863146[/C][C]-0.629164658862345[/C][/ROW]
[ROW][C]91[/C][C]4.975[/C][C]4.82574828182117[/C][C]1.65751320549605[/C][C]3.46673851268278[/C][C]-0.149251718178832[/C][/ROW]
[ROW][C]92[/C][C]4.784[/C][C]4.97737033565129[/C][C]1.12495728155175[/C][C]3.46567238279696[/C][C]0.193370335651292[/C][/ROW]
[ROW][C]93[/C][C]3.028[/C][C]2.96744660771054[/C][C]-0.376052860621676[/C][C]3.46460625291113[/C][C]-0.060553392289457[/C][/ROW]
[ROW][C]94[/C][C]2.461[/C][C]2.6949196455561[/C][C]-1.23808201381677[/C][C]3.46516236826067[/C][C]0.233919645556099[/C][/ROW]
[ROW][C]95[/C][C]2.218[/C][C]2.46666543398867[/C][C]-1.49638391759888[/C][C]3.46571848361021[/C][C]0.248665433988669[/C][/ROW]
[ROW][C]96[/C][C]1.351[/C][C]1.42597592063746[/C][C]-2.18493594995197[/C][C]3.4609600293145[/C][C]0.0749759206374625[/C][/ROW]
[ROW][C]97[/C][C]2.07[/C][C]2.03259137523722[/C][C]-1.34879295025601[/C][C]3.4562015750188[/C][C]-0.0374086247627847[/C][/ROW]
[ROW][C]98[/C][C]1.887[/C][C]2.05356415078577[/C][C]-1.71727682805807[/C][C]3.43771267727231[/C][C]0.166564150785765[/C][/ROW]
[ROW][C]99[/C][C]3.024[/C][C]3.0487189441649[/C][C]-0.419942723690721[/C][C]3.41922377952582[/C][C]0.0247189441649045[/C][/ROW]
[ROW][C]100[/C][C]4.596[/C][C]3.97171481967825[/C][C]1.82124051816041[/C][C]3.39904466216134[/C][C]-0.624285180321751[/C][/ROW]
[ROW][C]101[/C][C]6.398[/C][C]7.00043763628448[/C][C]2.41669681891865[/C][C]3.37886554479686[/C][C]0.602437636284484[/C][/ROW]
[ROW][C]102[/C][C]4.459[/C][C]3.78170916576849[/C][C]1.76105946023088[/C][C]3.37523137400063[/C][C]-0.677290834231508[/C][/ROW]
[ROW][C]103[/C][C]5.382[/C][C]5.73488959129956[/C][C]1.65751320549605[/C][C]3.37159720320439[/C][C]0.352889591299557[/C][/ROW]
[ROW][C]104[/C][C]4.359[/C][C]4.20974143552094[/C][C]1.12495728155175[/C][C]3.38330128292731[/C][C]-0.149258564479065[/C][/ROW]
[ROW][C]105[/C][C]2.687[/C][C]2.35504749797144[/C][C]-0.376052860621676[/C][C]3.39500536265024[/C][C]-0.331952502028562[/C][/ROW]
[ROW][C]106[/C][C]2.249[/C][C]2.32723347702621[/C][C]-1.23808201381677[/C][C]3.40884853679056[/C][C]0.0782334770262052[/C][/ROW]
[ROW][C]107[/C][C]2.154[/C][C]2.38169220666799[/C][C]-1.49638391759888[/C][C]3.42269171093089[/C][C]0.227692206667986[/C][/ROW]
[ROW][C]108[/C][C]1.169[/C][C]1.09143108949931[/C][C]-2.18493594995197[/C][C]3.43150486045265[/C][C]-0.0775689105006867[/C][/ROW]
[ROW][C]109[/C][C]2.429[/C][C]2.7664749402816[/C][C]-1.34879295025601[/C][C]3.44031800997441[/C][C]0.3374749402816[/C][/ROW]
[ROW][C]110[/C][C]1.762[/C][C]1.79334102852248[/C][C]-1.71727682805807[/C][C]3.4479357995356[/C][C]0.0313410285224767[/C][/ROW]
[ROW][C]111[/C][C]2.846[/C][C]2.65638913459394[/C][C]-0.419942723690721[/C][C]3.45555358909678[/C][C]-0.189610865406057[/C][/ROW]
[ROW][C]112[/C][C]5.627[/C][C]5.96844087884213[/C][C]1.82124051816041[/C][C]3.46431860299746[/C][C]0.341440878842127[/C][/ROW]
[ROW][C]113[/C][C]5.749[/C][C]5.6082195641832[/C][C]2.41669681891865[/C][C]3.47308361689814[/C][C]-0.140780435816798[/C][/ROW]
[ROW][C]114[/C][C]4.502[/C][C]3.76187701728395[/C][C]1.76105946023088[/C][C]3.48106352248516[/C][C]-0.740122982716045[/C][/ROW]
[ROW][C]115[/C][C]5.72[/C][C]6.29344336643176[/C][C]1.65751320549605[/C][C]3.48904342807218[/C][C]0.573443366431766[/C][/ROW]
[ROW][C]116[/C][C]4.403[/C][C]4.17842996929148[/C][C]1.12495728155175[/C][C]3.50261274915677[/C][C]-0.224570030708522[/C][/ROW]
[ROW][C]117[/C][C]2.867[/C][C]2.59387079038032[/C][C]-0.376052860621676[/C][C]3.51618207024136[/C][C]-0.273129209619683[/C][/ROW]
[ROW][C]118[/C][C]2.635[/C][C]2.96107709646633[/C][C]-1.23808201381677[/C][C]3.54700491735044[/C][C]0.326077096466331[/C][/ROW]
[ROW][C]119[/C][C]2.059[/C][C]2.03655615313936[/C][C]-1.49638391759888[/C][C]3.57782776445952[/C][C]-0.0224438468606394[/C][/ROW]
[ROW][C]120[/C][C]1.511[/C][C]1.58845275192609[/C][C]-2.18493594995197[/C][C]3.61848319802588[/C][C]0.0774527519260877[/C][/ROW]
[ROW][C]121[/C][C]2.359[/C][C]2.40765431866377[/C][C]-1.34879295025601[/C][C]3.65913863159224[/C][C]0.048654318663774[/C][/ROW]
[ROW][C]122[/C][C]1.741[/C][C]1.5090389938038[/C][C]-1.71727682805807[/C][C]3.69023783425427[/C][C]-0.231961006196202[/C][/ROW]
[ROW][C]123[/C][C]2.917[/C][C]2.53260568677441[/C][C]-0.419942723690721[/C][C]3.72133703691631[/C][C]-0.38439431322559[/C][/ROW]
[ROW][C]124[/C][C]6.249[/C][C]6.94298981963154[/C][C]1.82124051816041[/C][C]3.73376966220805[/C][C]0.693989819631539[/C][/ROW]
[ROW][C]125[/C][C]5.76[/C][C]5.35710089358156[/C][C]2.41669681891865[/C][C]3.74620228749979[/C][C]-0.402899106418442[/C][/ROW]
[ROW][C]126[/C][C]6.25[/C][C]6.98119910650325[/C][C]1.76105946023088[/C][C]3.75774143326587[/C][C]0.731199106503251[/C][/ROW]
[ROW][C]127[/C][C]5.134[/C][C]4.841206215472[/C][C]1.65751320549605[/C][C]3.76928057903194[/C][C]-0.292793784527997[/C][/ROW]
[ROW][C]128[/C][C]4.831[/C][C]4.75692109680817[/C][C]1.12495728155175[/C][C]3.78012162164008[/C][C]-0.0740789031918316[/C][/ROW]
[ROW][C]129[/C][C]3.695[/C][C]3.97509019637346[/C][C]-0.376052860621676[/C][C]3.79096266424822[/C][C]0.280090196373459[/C][/ROW]
[ROW][C]130[/C][C]2.462[/C][C]2.3622642114943[/C][C]-1.23808201381677[/C][C]3.79981780232247[/C][C]-0.0997357885057029[/C][/ROW]
[ROW][C]131[/C][C]2.146[/C][C]1.97971097720215[/C][C]-1.49638391759888[/C][C]3.80867294039673[/C][C]-0.166289022797852[/C][/ROW]
[ROW][C]132[/C][C]1.579[/C][C]1.52746314065333[/C][C]-2.18493594995197[/C][C]3.81547280929864[/C][C]-0.0515368593466734[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301812&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301812&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
11.8941.59652385562986-1.348792950256013.54026909462615-0.297476144370135
21.7571.69200805380737-1.717276828058073.53926877425071-0.0649919461926332
33.5824.04567426981546-0.4199427236907213.538268453875260.463674269815458
45.3215.283443627784111.821240518160413.53731585405548-0.0375563722158905
55.5615.168939926845652.416696818918653.53636325423569-0.392060073154348
65.9076.516198695033951.761059460230883.536741844735170.60919869503395
74.9444.693366359269311.657513205496053.53712043523464-0.250633640730695
84.9665.268361340897711.124957281551753.538681377550540.302361340897709
93.2583.35181054075524-0.3760528606216763.540242319866440.0938105407552374
101.9641.62571151157865-1.238082013816773.54037050223812-0.338288488421346
111.7431.44188523298909-1.496383917598883.54049868460979-0.301114767010914
121.2621.1695892217735-2.184935949951973.53934672817847-0.0924107782265016
132.0861.98259817850887-1.348792950256013.53819477174714-0.10340182149113
141.7931.76088208439094-1.717276828058073.54239474366713-0.0321179156090619
153.5483.9693480081036-0.4199427236907213.546594715587130.421348008103596
165.6725.95890387244091.821240518160413.563855609398690.286903872440903
176.0846.17018667787112.416696818918653.581116503210250.0861866778711002
184.9144.472080476739191.761059460230883.59486006302993-0.441919523260808
194.994.713883171654341.657513205496053.6086036228496-0.276116828345657
205.1395.540148113647611.124957281551753.612894604800640.40114811364761
213.2183.19486727387-0.3760528606216763.61718558675167-0.0231327261299987
222.1791.95530188797671-1.238082013816773.64078012584006-0.223698112023294
232.2382.30800925267042-1.496383917598883.664374664928450.0700092526704248
241.4421.3695856461688-2.184935949951973.69935030378316-0.0724143538311974
252.2052.02446700761814-1.348792950256013.73432594263787-0.180532992381862
262.0252.00908463323662-1.717276828058073.75819219482145-0.0159153667633785
273.5313.69988427668569-0.4199427236907213.782058447005030.168884276685694
284.9774.336011996383231.821240518160413.79674748545636-0.640988003616772
297.9989.767866657173652.416696818918653.81143652390771.76986665717365
304.884.181841328334781.761059460230883.81709921143434-0.698158671665223
315.2314.981724895542961.657513205496053.82276189896099-0.249275104457039
325.2025.465295923765991.124957281551753.813746794682260.26329592376599
333.3033.17732117021815-0.3760528606216763.80473169040353-0.125678829781855
342.6832.81333656372327-1.238082013816773.79074545009350.130336563723265
352.2022.1236247078154-1.496383917598883.77675920978348-0.0783752921846004
361.3761.15180041930949-2.184935949951973.78513553064248-0.224199580690514
372.4222.39928109875453-1.348792950256013.79351185150148-0.0227189012454678
381.9971.90601699365985-1.717276828058073.80525983439823-0.0909830063401538
393.1632.92893490639575-0.4199427236907213.81700781729497-0.23406509360425
405.9646.291698496456871.821240518160413.815060985382720.32769849645687
415.6575.084189027610882.416696818918653.81311415347047-0.57281097238912
426.4157.256962141971251.761059460230883.811978397797870.84196214197125
436.2086.947644152378681.657513205496053.810842642125270.739644152378677
444.54.068167382279651.124957281551753.8068753361686-0.431832617720349
452.9392.45114483040975-0.3760528606216763.80290803021192-0.487855169590248
462.7022.8528358535914-1.238082013816773.789246160225370.150835853591401
472.091.90079962736006-1.496383917598883.77558429023881-0.189200372639935
481.5041.43421101749321-2.184935949951973.75872493245876-0.0697889825067946
492.5492.7049273755773-1.348792950256013.741865574678710.155927375577305
501.9311.83993703129463-1.717276828058073.73933979676344-0.0910629687053706
513.0132.70912870484254-0.4199427236907213.73681401884818-0.303871295157456
526.2046.846276592131431.821240518160413.740482889708160.642276592131431
535.7885.415151420513212.416696818918653.74415176056814-0.37284857948679
545.6115.722928654003381.761059460230883.738011885765740.111928654003377
555.5945.79861478354061.657513205496053.731872010963340.204614783540602
564.6474.44970359971331.124957281551753.71933911873495-0.197296400286699
573.493.64924663411513-0.3760528606216763.706806226506550.159246634115127
582.4872.52707039804184-1.238082013816773.685011615774930.0400703980418391
591.9921.81716691255557-1.496383917598883.66321700504331-0.174833087444434
601.5071.55805872983445-2.184935949951973.640877220117510.0510587298344509
612.3062.3422555150643-1.348792950256013.618537435191720.0362555150642958
622.0022.11643196588954-1.717276828058073.604844862168530.114431965889545
633.0752.97879043454538-0.4199427236907213.59115228914534-0.096209565454616
645.3315.254164445681241.821240518160413.58659503615835-0.0768355543187598
655.5895.179265397909992.416696818918653.58203778317136-0.409734602090013
665.8136.279907509097611.761059460230883.585033030671510.466907509097608
674.8764.506458516332291.657513205496053.58802827817166-0.369541483667711
684.6654.612264815532541.124957281551753.59277790291571-0.0527351844674637
693.6013.98052533296191-0.3760528606216763.597527527659770.37952533296191
702.1922.02751115931371-1.238082013816773.59457085450306-0.164488840686294
712.1112.12676973625252-1.496383917598883.591614181346360.0157697362525151
721.581.76171261635184-2.184935949951973.583223333600130.181712616351838
732.2882.34996046440212-1.348792950256013.574832485853890.061960464402119
741.9932.13200470181743-1.717276828058073.571272126240640.139004701817433
753.2283.30823095706334-0.4199427236907213.567711766627390.0802309570633355
7654.607043372226091.821240518160413.5717161096135-0.392956627773908
775.484.967582728481742.416696818918653.57572045259961-0.512417271518261
785.776.194354607860941.761059460230883.584585931908180.424354607860939
794.9624.67303538328721.657513205496053.59345141121675-0.288964616712803
804.6854.644154690957611.124957281551753.60088802749064-0.0408453090423904
813.6073.98172821685715-0.3760528606216763.608324643764530.374728216857149
822.2222.07336522427409-1.238082013816773.60871678954268-0.148634775725906
832.4672.82127498227805-1.496383917598883.609108935320820.354274982278054
841.5941.7825930978236-2.184935949951973.590342852128360.188593097823603
852.2282.23321618132011-1.348792950256013.57157676893590.00521618132010904
861.911.99144586154911-1.717276828058073.545830966508960.0814458615491085
873.1573.2138575596087-0.4199427236907213.520085164082020.056857559608698
884.8094.29498095750851.821240518160413.50177852433109-0.514019042491497
896.2496.59783129650122.416696818918653.483471884580150.348831296501198
904.6073.977835341137651.761059460230883.47510519863146-0.629164658862345
914.9754.825748281821171.657513205496053.46673851268278-0.149251718178832
924.7844.977370335651291.124957281551753.465672382796960.193370335651292
933.0282.96744660771054-0.3760528606216763.46460625291113-0.060553392289457
942.4612.6949196455561-1.238082013816773.465162368260670.233919645556099
952.2182.46666543398867-1.496383917598883.465718483610210.248665433988669
961.3511.42597592063746-2.184935949951973.46096002931450.0749759206374625
972.072.03259137523722-1.348792950256013.4562015750188-0.0374086247627847
981.8872.05356415078577-1.717276828058073.437712677272310.166564150785765
993.0243.0487189441649-0.4199427236907213.419223779525820.0247189441649045
1004.5963.971714819678251.821240518160413.39904466216134-0.624285180321751
1016.3987.000437636284482.416696818918653.378865544796860.602437636284484
1024.4593.781709165768491.761059460230883.37523137400063-0.677290834231508
1035.3825.734889591299561.657513205496053.371597203204390.352889591299557
1044.3594.209741435520941.124957281551753.38330128292731-0.149258564479065
1052.6872.35504749797144-0.3760528606216763.39500536265024-0.331952502028562
1062.2492.32723347702621-1.238082013816773.408848536790560.0782334770262052
1072.1542.38169220666799-1.496383917598883.422691710930890.227692206667986
1081.1691.09143108949931-2.184935949951973.43150486045265-0.0775689105006867
1092.4292.7664749402816-1.348792950256013.440318009974410.3374749402816
1101.7621.79334102852248-1.717276828058073.44793579953560.0313410285224767
1112.8462.65638913459394-0.4199427236907213.45555358909678-0.189610865406057
1125.6275.968440878842131.821240518160413.464318602997460.341440878842127
1135.7495.60821956418322.416696818918653.47308361689814-0.140780435816798
1144.5023.761877017283951.761059460230883.48106352248516-0.740122982716045
1155.726.293443366431761.657513205496053.489043428072180.573443366431766
1164.4034.178429969291481.124957281551753.50261274915677-0.224570030708522
1172.8672.59387079038032-0.3760528606216763.51618207024136-0.273129209619683
1182.6352.96107709646633-1.238082013816773.547004917350440.326077096466331
1192.0592.03655615313936-1.496383917598883.57782776445952-0.0224438468606394
1201.5111.58845275192609-2.184935949951973.618483198025880.0774527519260877
1212.3592.40765431866377-1.348792950256013.659138631592240.048654318663774
1221.7411.5090389938038-1.717276828058073.69023783425427-0.231961006196202
1232.9172.53260568677441-0.4199427236907213.72133703691631-0.38439431322559
1246.2496.942989819631541.821240518160413.733769662208050.693989819631539
1255.765.357100893581562.416696818918653.74620228749979-0.402899106418442
1266.256.981199106503251.761059460230883.757741433265870.731199106503251
1275.1344.8412062154721.657513205496053.76928057903194-0.292793784527997
1284.8314.756921096808171.124957281551753.78012162164008-0.0740789031918316
1293.6953.97509019637346-0.3760528606216763.790962664248220.280090196373459
1302.4622.3622642114943-1.238082013816773.79981780232247-0.0997357885057029
1312.1461.97971097720215-1.496383917598883.80867294039673-0.166289022797852
1321.5791.52746314065333-2.184935949951973.81547280929864-0.0515368593466734



Parameters (Session):
par3 = 0,93 ; par4 = two.sided ; par5 = unpaired ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')