Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationTue, 20 Dec 2016 21:22:15 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t14822653645sl5rk5y352idf7.htm/, Retrieved Fri, 01 Nov 2024 03:43:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301798, Retrieved Fri, 01 Nov 2024 03:43:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact99
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [] [2016-12-20 20:22:15] [672675941468e072e71d9fb024f2b817] [Current]
Feedback Forum

Post a new message
Dataseries X:
112
118
132
129
121
135
148
148
136
119
104
118
115
126
141
135
125
149
170
170
158
133
114
140
145
150
178
163
172
178
199
199
184
162
146
166
171
180
193
181
183
218
230
242
209
191
172
194
196
196
236
235
229
243
264
272
237
211
180
201
204
188
235
227
234
264
302
293
259
229
203
229
242
233
267
269
270
315
364
347
312
274
237
278
284
277
317
313
318
374
413
405
355
306
271
306
315
301
356
348
355
422
465
467
404
347
305
336
340
318
362
348
363
435
491
505
404
359
310
337
360
342
406
396
420
472
548
559
463
407
362
405
417
391
419
461
472
535
622
606
508
461
390
432




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301798&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301798&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301798&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.3871-0.0466-0.16660.1075-0.9629-0.9753-0.2753
(p-val)(0.3974 )(0.7847 )(0.0999 )(0.8133 )(0 )(0 )(0.0615 )
Estimates ( 2 )-0.2808-0.0131-0.16130-0.963-0.9756-0.2538
(p-val)(0.0016 )(0.888 )(0.0894 )(NA )(0 )(0 )(0.0245 )
Estimates ( 3 )-0.27680-0.1570-0.9626-0.9754-0.2517
(p-val)(0.0011 )(NA )(0.0802 )(NA )(0 )(0 )(0.0237 )
Estimates ( 4 )-0.2864000-0.9623-0.9781-0.1749
(p-val)(8e-04 )(NA )(NA )(NA )(0 )(0 )(0.082 )
Estimates ( 5 )-0.274000-0.9685-0.98110
(p-val)(0.0013 )(NA )(NA )(NA )(0 )(0 )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & -0.3871 & -0.0466 & -0.1666 & 0.1075 & -0.9629 & -0.9753 & -0.2753 \tabularnewline
(p-val) & (0.3974 ) & (0.7847 ) & (0.0999 ) & (0.8133 ) & (0 ) & (0 ) & (0.0615 ) \tabularnewline
Estimates ( 2 ) & -0.2808 & -0.0131 & -0.1613 & 0 & -0.963 & -0.9756 & -0.2538 \tabularnewline
(p-val) & (0.0016 ) & (0.888 ) & (0.0894 ) & (NA ) & (0 ) & (0 ) & (0.0245 ) \tabularnewline
Estimates ( 3 ) & -0.2768 & 0 & -0.157 & 0 & -0.9626 & -0.9754 & -0.2517 \tabularnewline
(p-val) & (0.0011 ) & (NA ) & (0.0802 ) & (NA ) & (0 ) & (0 ) & (0.0237 ) \tabularnewline
Estimates ( 4 ) & -0.2864 & 0 & 0 & 0 & -0.9623 & -0.9781 & -0.1749 \tabularnewline
(p-val) & (8e-04 ) & (NA ) & (NA ) & (NA ) & (0 ) & (0 ) & (0.082 ) \tabularnewline
Estimates ( 5 ) & -0.274 & 0 & 0 & 0 & -0.9685 & -0.9811 & 0 \tabularnewline
(p-val) & (0.0013 ) & (NA ) & (NA ) & (NA ) & (0 ) & (0 ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301798&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.3871[/C][C]-0.0466[/C][C]-0.1666[/C][C]0.1075[/C][C]-0.9629[/C][C]-0.9753[/C][C]-0.2753[/C][/ROW]
[ROW][C](p-val)[/C][C](0.3974 )[/C][C](0.7847 )[/C][C](0.0999 )[/C][C](0.8133 )[/C][C](0 )[/C][C](0 )[/C][C](0.0615 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-0.2808[/C][C]-0.0131[/C][C]-0.1613[/C][C]0[/C][C]-0.963[/C][C]-0.9756[/C][C]-0.2538[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0016 )[/C][C](0.888 )[/C][C](0.0894 )[/C][C](NA )[/C][C](0 )[/C][C](0 )[/C][C](0.0245 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-0.2768[/C][C]0[/C][C]-0.157[/C][C]0[/C][C]-0.9626[/C][C]-0.9754[/C][C]-0.2517[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0011 )[/C][C](NA )[/C][C](0.0802 )[/C][C](NA )[/C][C](0 )[/C][C](0 )[/C][C](0.0237 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]-0.2864[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.9623[/C][C]-0.9781[/C][C]-0.1749[/C][/ROW]
[ROW][C](p-val)[/C][C](8e-04 )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](0 )[/C][C](0.082 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]-0.274[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.9685[/C][C]-0.9811[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0013 )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](0 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301798&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301798&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.3871-0.0466-0.16660.1075-0.9629-0.9753-0.2753
(p-val)(0.3974 )(0.7847 )(0.0999 )(0.8133 )(0 )(0 )(0.0615 )
Estimates ( 2 )-0.2808-0.0131-0.16130-0.963-0.9756-0.2538
(p-val)(0.0016 )(0.888 )(0.0894 )(NA )(0 )(0 )(0.0245 )
Estimates ( 3 )-0.27680-0.1570-0.9626-0.9754-0.2517
(p-val)(0.0011 )(NA )(0.0802 )(NA )(0 )(0 )(0.0237 )
Estimates ( 4 )-0.2864000-0.9623-0.9781-0.1749
(p-val)(8e-04 )(NA )(NA )(NA )(0 )(0 )(0.082 )
Estimates ( 5 )-0.274000-0.9685-0.98110
(p-val)(0.0013 )(NA )(NA )(NA )(0 )(0 )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-0.239312984338178
1.27528894113256
0.1995085632877
0.499618646335281
-0.705246453646099
-5.3277039421537
-6.87185302371468
1.30090235481978
2.56824359727177
5.61013929298757
3.49239684470968
-2.84231851312968
-3.39855693781794
9.91077978773008
10.8370002309925
2.10322025577936
-0.404640879258781
-7.35339047293521
-5.5966552490261
11.1809213574873
11.65630458359
-3.36848933986343
12.1243677525466
-4.03782858539087
17.5457973275203
-13.3732425332513
-3.94516529454867
0.012180483471449
-0.175991874815088
-1.04280988210618
2.20396386305923
-5.02440560265204
-0.837784970274074
5.08387670912052
-11.6263890475126
-2.81408964347181
-6.82422521346251
27.2650622417916
-3.16591592044346
9.61606036228505
-15.861668866217
1.86007201210971
-3.48074004517432
2.44843634668424
-3.87504680161628
-7.7117153007792
25.4110565894094
18.6003370325133
-6.33618137523619
-24.3142351219159
6.02431579727119
2.03570923197734
-4.53420912210562
-13.8796725245348
-14.0796258862766
-4.08167028438405
1.23532930437095
-16.5781512030744
2.67290752299325
-5.71521430249217
10.2187583486352
17.0970399306359
20.3961392499989
-12.8375887283122
-2.83486000888041
-2.95689929849964
5.49139938216376
4.46800909337644
12.5855919827701
11.0158427499786
-7.06895734604397
6.50827571668361
-2.1773512003981
15.4821144098918
13.3538654776015
-3.81972199419628
-4.21125797656575
-8.23840976346119
-13.5504635451356
11.8841373735527
-1.46550698563662
0.959988359472977
7.66941052741796
-3.13740915035507
0.763730120868485
12.7489642583902
-6.33621211652171
5.71969065334164
-13.0279745871867
-16.3656293838459
-4.78281125205007
-3.76271924998692
1.42182232128981
-5.82961860625307
15.7041175403062
-1.08835912132593
-0.35228190026867
11.2454168031304
8.41122660776502
11.1260989805286
-11.2209000815646
-13.9233330406778
-10.4345976489761
-3.92931411732626
-5.26609776737695
-8.20503516435786
-10.8233978652574
-10.157006056881
3.99593907133345
6.97296346411854
11.5647681973156
14.6126392299391
-35.4430482478976
-2.51156579050621
-5.11054629005951
-4.18739004726035
15.7639890459573
12.5312819257306
24.6150097541692
8.95080663881746
10.4590875359784
-14.292754977076
17.0644800167895
4.84274917784657
3.53201154241838
-16.0838901701641
-0.0197013858965561
17.173892325955
-1.29664964882612
-10.142464804389
-33.2760540490225
44.2556816959389
-0.245649719654287
6.32807377633343
8.58921238156619
-16.8017812644962
-12.2962189746497
4.85764833975409
-26.8898412597241
-10.2743188453722

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-0.239312984338178 \tabularnewline
1.27528894113256 \tabularnewline
0.1995085632877 \tabularnewline
0.499618646335281 \tabularnewline
-0.705246453646099 \tabularnewline
-5.3277039421537 \tabularnewline
-6.87185302371468 \tabularnewline
1.30090235481978 \tabularnewline
2.56824359727177 \tabularnewline
5.61013929298757 \tabularnewline
3.49239684470968 \tabularnewline
-2.84231851312968 \tabularnewline
-3.39855693781794 \tabularnewline
9.91077978773008 \tabularnewline
10.8370002309925 \tabularnewline
2.10322025577936 \tabularnewline
-0.404640879258781 \tabularnewline
-7.35339047293521 \tabularnewline
-5.5966552490261 \tabularnewline
11.1809213574873 \tabularnewline
11.65630458359 \tabularnewline
-3.36848933986343 \tabularnewline
12.1243677525466 \tabularnewline
-4.03782858539087 \tabularnewline
17.5457973275203 \tabularnewline
-13.3732425332513 \tabularnewline
-3.94516529454867 \tabularnewline
0.012180483471449 \tabularnewline
-0.175991874815088 \tabularnewline
-1.04280988210618 \tabularnewline
2.20396386305923 \tabularnewline
-5.02440560265204 \tabularnewline
-0.837784970274074 \tabularnewline
5.08387670912052 \tabularnewline
-11.6263890475126 \tabularnewline
-2.81408964347181 \tabularnewline
-6.82422521346251 \tabularnewline
27.2650622417916 \tabularnewline
-3.16591592044346 \tabularnewline
9.61606036228505 \tabularnewline
-15.861668866217 \tabularnewline
1.86007201210971 \tabularnewline
-3.48074004517432 \tabularnewline
2.44843634668424 \tabularnewline
-3.87504680161628 \tabularnewline
-7.7117153007792 \tabularnewline
25.4110565894094 \tabularnewline
18.6003370325133 \tabularnewline
-6.33618137523619 \tabularnewline
-24.3142351219159 \tabularnewline
6.02431579727119 \tabularnewline
2.03570923197734 \tabularnewline
-4.53420912210562 \tabularnewline
-13.8796725245348 \tabularnewline
-14.0796258862766 \tabularnewline
-4.08167028438405 \tabularnewline
1.23532930437095 \tabularnewline
-16.5781512030744 \tabularnewline
2.67290752299325 \tabularnewline
-5.71521430249217 \tabularnewline
10.2187583486352 \tabularnewline
17.0970399306359 \tabularnewline
20.3961392499989 \tabularnewline
-12.8375887283122 \tabularnewline
-2.83486000888041 \tabularnewline
-2.95689929849964 \tabularnewline
5.49139938216376 \tabularnewline
4.46800909337644 \tabularnewline
12.5855919827701 \tabularnewline
11.0158427499786 \tabularnewline
-7.06895734604397 \tabularnewline
6.50827571668361 \tabularnewline
-2.1773512003981 \tabularnewline
15.4821144098918 \tabularnewline
13.3538654776015 \tabularnewline
-3.81972199419628 \tabularnewline
-4.21125797656575 \tabularnewline
-8.23840976346119 \tabularnewline
-13.5504635451356 \tabularnewline
11.8841373735527 \tabularnewline
-1.46550698563662 \tabularnewline
0.959988359472977 \tabularnewline
7.66941052741796 \tabularnewline
-3.13740915035507 \tabularnewline
0.763730120868485 \tabularnewline
12.7489642583902 \tabularnewline
-6.33621211652171 \tabularnewline
5.71969065334164 \tabularnewline
-13.0279745871867 \tabularnewline
-16.3656293838459 \tabularnewline
-4.78281125205007 \tabularnewline
-3.76271924998692 \tabularnewline
1.42182232128981 \tabularnewline
-5.82961860625307 \tabularnewline
15.7041175403062 \tabularnewline
-1.08835912132593 \tabularnewline
-0.35228190026867 \tabularnewline
11.2454168031304 \tabularnewline
8.41122660776502 \tabularnewline
11.1260989805286 \tabularnewline
-11.2209000815646 \tabularnewline
-13.9233330406778 \tabularnewline
-10.4345976489761 \tabularnewline
-3.92931411732626 \tabularnewline
-5.26609776737695 \tabularnewline
-8.20503516435786 \tabularnewline
-10.8233978652574 \tabularnewline
-10.157006056881 \tabularnewline
3.99593907133345 \tabularnewline
6.97296346411854 \tabularnewline
11.5647681973156 \tabularnewline
14.6126392299391 \tabularnewline
-35.4430482478976 \tabularnewline
-2.51156579050621 \tabularnewline
-5.11054629005951 \tabularnewline
-4.18739004726035 \tabularnewline
15.7639890459573 \tabularnewline
12.5312819257306 \tabularnewline
24.6150097541692 \tabularnewline
8.95080663881746 \tabularnewline
10.4590875359784 \tabularnewline
-14.292754977076 \tabularnewline
17.0644800167895 \tabularnewline
4.84274917784657 \tabularnewline
3.53201154241838 \tabularnewline
-16.0838901701641 \tabularnewline
-0.0197013858965561 \tabularnewline
17.173892325955 \tabularnewline
-1.29664964882612 \tabularnewline
-10.142464804389 \tabularnewline
-33.2760540490225 \tabularnewline
44.2556816959389 \tabularnewline
-0.245649719654287 \tabularnewline
6.32807377633343 \tabularnewline
8.58921238156619 \tabularnewline
-16.8017812644962 \tabularnewline
-12.2962189746497 \tabularnewline
4.85764833975409 \tabularnewline
-26.8898412597241 \tabularnewline
-10.2743188453722 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301798&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-0.239312984338178[/C][/ROW]
[ROW][C]1.27528894113256[/C][/ROW]
[ROW][C]0.1995085632877[/C][/ROW]
[ROW][C]0.499618646335281[/C][/ROW]
[ROW][C]-0.705246453646099[/C][/ROW]
[ROW][C]-5.3277039421537[/C][/ROW]
[ROW][C]-6.87185302371468[/C][/ROW]
[ROW][C]1.30090235481978[/C][/ROW]
[ROW][C]2.56824359727177[/C][/ROW]
[ROW][C]5.61013929298757[/C][/ROW]
[ROW][C]3.49239684470968[/C][/ROW]
[ROW][C]-2.84231851312968[/C][/ROW]
[ROW][C]-3.39855693781794[/C][/ROW]
[ROW][C]9.91077978773008[/C][/ROW]
[ROW][C]10.8370002309925[/C][/ROW]
[ROW][C]2.10322025577936[/C][/ROW]
[ROW][C]-0.404640879258781[/C][/ROW]
[ROW][C]-7.35339047293521[/C][/ROW]
[ROW][C]-5.5966552490261[/C][/ROW]
[ROW][C]11.1809213574873[/C][/ROW]
[ROW][C]11.65630458359[/C][/ROW]
[ROW][C]-3.36848933986343[/C][/ROW]
[ROW][C]12.1243677525466[/C][/ROW]
[ROW][C]-4.03782858539087[/C][/ROW]
[ROW][C]17.5457973275203[/C][/ROW]
[ROW][C]-13.3732425332513[/C][/ROW]
[ROW][C]-3.94516529454867[/C][/ROW]
[ROW][C]0.012180483471449[/C][/ROW]
[ROW][C]-0.175991874815088[/C][/ROW]
[ROW][C]-1.04280988210618[/C][/ROW]
[ROW][C]2.20396386305923[/C][/ROW]
[ROW][C]-5.02440560265204[/C][/ROW]
[ROW][C]-0.837784970274074[/C][/ROW]
[ROW][C]5.08387670912052[/C][/ROW]
[ROW][C]-11.6263890475126[/C][/ROW]
[ROW][C]-2.81408964347181[/C][/ROW]
[ROW][C]-6.82422521346251[/C][/ROW]
[ROW][C]27.2650622417916[/C][/ROW]
[ROW][C]-3.16591592044346[/C][/ROW]
[ROW][C]9.61606036228505[/C][/ROW]
[ROW][C]-15.861668866217[/C][/ROW]
[ROW][C]1.86007201210971[/C][/ROW]
[ROW][C]-3.48074004517432[/C][/ROW]
[ROW][C]2.44843634668424[/C][/ROW]
[ROW][C]-3.87504680161628[/C][/ROW]
[ROW][C]-7.7117153007792[/C][/ROW]
[ROW][C]25.4110565894094[/C][/ROW]
[ROW][C]18.6003370325133[/C][/ROW]
[ROW][C]-6.33618137523619[/C][/ROW]
[ROW][C]-24.3142351219159[/C][/ROW]
[ROW][C]6.02431579727119[/C][/ROW]
[ROW][C]2.03570923197734[/C][/ROW]
[ROW][C]-4.53420912210562[/C][/ROW]
[ROW][C]-13.8796725245348[/C][/ROW]
[ROW][C]-14.0796258862766[/C][/ROW]
[ROW][C]-4.08167028438405[/C][/ROW]
[ROW][C]1.23532930437095[/C][/ROW]
[ROW][C]-16.5781512030744[/C][/ROW]
[ROW][C]2.67290752299325[/C][/ROW]
[ROW][C]-5.71521430249217[/C][/ROW]
[ROW][C]10.2187583486352[/C][/ROW]
[ROW][C]17.0970399306359[/C][/ROW]
[ROW][C]20.3961392499989[/C][/ROW]
[ROW][C]-12.8375887283122[/C][/ROW]
[ROW][C]-2.83486000888041[/C][/ROW]
[ROW][C]-2.95689929849964[/C][/ROW]
[ROW][C]5.49139938216376[/C][/ROW]
[ROW][C]4.46800909337644[/C][/ROW]
[ROW][C]12.5855919827701[/C][/ROW]
[ROW][C]11.0158427499786[/C][/ROW]
[ROW][C]-7.06895734604397[/C][/ROW]
[ROW][C]6.50827571668361[/C][/ROW]
[ROW][C]-2.1773512003981[/C][/ROW]
[ROW][C]15.4821144098918[/C][/ROW]
[ROW][C]13.3538654776015[/C][/ROW]
[ROW][C]-3.81972199419628[/C][/ROW]
[ROW][C]-4.21125797656575[/C][/ROW]
[ROW][C]-8.23840976346119[/C][/ROW]
[ROW][C]-13.5504635451356[/C][/ROW]
[ROW][C]11.8841373735527[/C][/ROW]
[ROW][C]-1.46550698563662[/C][/ROW]
[ROW][C]0.959988359472977[/C][/ROW]
[ROW][C]7.66941052741796[/C][/ROW]
[ROW][C]-3.13740915035507[/C][/ROW]
[ROW][C]0.763730120868485[/C][/ROW]
[ROW][C]12.7489642583902[/C][/ROW]
[ROW][C]-6.33621211652171[/C][/ROW]
[ROW][C]5.71969065334164[/C][/ROW]
[ROW][C]-13.0279745871867[/C][/ROW]
[ROW][C]-16.3656293838459[/C][/ROW]
[ROW][C]-4.78281125205007[/C][/ROW]
[ROW][C]-3.76271924998692[/C][/ROW]
[ROW][C]1.42182232128981[/C][/ROW]
[ROW][C]-5.82961860625307[/C][/ROW]
[ROW][C]15.7041175403062[/C][/ROW]
[ROW][C]-1.08835912132593[/C][/ROW]
[ROW][C]-0.35228190026867[/C][/ROW]
[ROW][C]11.2454168031304[/C][/ROW]
[ROW][C]8.41122660776502[/C][/ROW]
[ROW][C]11.1260989805286[/C][/ROW]
[ROW][C]-11.2209000815646[/C][/ROW]
[ROW][C]-13.9233330406778[/C][/ROW]
[ROW][C]-10.4345976489761[/C][/ROW]
[ROW][C]-3.92931411732626[/C][/ROW]
[ROW][C]-5.26609776737695[/C][/ROW]
[ROW][C]-8.20503516435786[/C][/ROW]
[ROW][C]-10.8233978652574[/C][/ROW]
[ROW][C]-10.157006056881[/C][/ROW]
[ROW][C]3.99593907133345[/C][/ROW]
[ROW][C]6.97296346411854[/C][/ROW]
[ROW][C]11.5647681973156[/C][/ROW]
[ROW][C]14.6126392299391[/C][/ROW]
[ROW][C]-35.4430482478976[/C][/ROW]
[ROW][C]-2.51156579050621[/C][/ROW]
[ROW][C]-5.11054629005951[/C][/ROW]
[ROW][C]-4.18739004726035[/C][/ROW]
[ROW][C]15.7639890459573[/C][/ROW]
[ROW][C]12.5312819257306[/C][/ROW]
[ROW][C]24.6150097541692[/C][/ROW]
[ROW][C]8.95080663881746[/C][/ROW]
[ROW][C]10.4590875359784[/C][/ROW]
[ROW][C]-14.292754977076[/C][/ROW]
[ROW][C]17.0644800167895[/C][/ROW]
[ROW][C]4.84274917784657[/C][/ROW]
[ROW][C]3.53201154241838[/C][/ROW]
[ROW][C]-16.0838901701641[/C][/ROW]
[ROW][C]-0.0197013858965561[/C][/ROW]
[ROW][C]17.173892325955[/C][/ROW]
[ROW][C]-1.29664964882612[/C][/ROW]
[ROW][C]-10.142464804389[/C][/ROW]
[ROW][C]-33.2760540490225[/C][/ROW]
[ROW][C]44.2556816959389[/C][/ROW]
[ROW][C]-0.245649719654287[/C][/ROW]
[ROW][C]6.32807377633343[/C][/ROW]
[ROW][C]8.58921238156619[/C][/ROW]
[ROW][C]-16.8017812644962[/C][/ROW]
[ROW][C]-12.2962189746497[/C][/ROW]
[ROW][C]4.85764833975409[/C][/ROW]
[ROW][C]-26.8898412597241[/C][/ROW]
[ROW][C]-10.2743188453722[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301798&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301798&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-0.239312984338178
1.27528894113256
0.1995085632877
0.499618646335281
-0.705246453646099
-5.3277039421537
-6.87185302371468
1.30090235481978
2.56824359727177
5.61013929298757
3.49239684470968
-2.84231851312968
-3.39855693781794
9.91077978773008
10.8370002309925
2.10322025577936
-0.404640879258781
-7.35339047293521
-5.5966552490261
11.1809213574873
11.65630458359
-3.36848933986343
12.1243677525466
-4.03782858539087
17.5457973275203
-13.3732425332513
-3.94516529454867
0.012180483471449
-0.175991874815088
-1.04280988210618
2.20396386305923
-5.02440560265204
-0.837784970274074
5.08387670912052
-11.6263890475126
-2.81408964347181
-6.82422521346251
27.2650622417916
-3.16591592044346
9.61606036228505
-15.861668866217
1.86007201210971
-3.48074004517432
2.44843634668424
-3.87504680161628
-7.7117153007792
25.4110565894094
18.6003370325133
-6.33618137523619
-24.3142351219159
6.02431579727119
2.03570923197734
-4.53420912210562
-13.8796725245348
-14.0796258862766
-4.08167028438405
1.23532930437095
-16.5781512030744
2.67290752299325
-5.71521430249217
10.2187583486352
17.0970399306359
20.3961392499989
-12.8375887283122
-2.83486000888041
-2.95689929849964
5.49139938216376
4.46800909337644
12.5855919827701
11.0158427499786
-7.06895734604397
6.50827571668361
-2.1773512003981
15.4821144098918
13.3538654776015
-3.81972199419628
-4.21125797656575
-8.23840976346119
-13.5504635451356
11.8841373735527
-1.46550698563662
0.959988359472977
7.66941052741796
-3.13740915035507
0.763730120868485
12.7489642583902
-6.33621211652171
5.71969065334164
-13.0279745871867
-16.3656293838459
-4.78281125205007
-3.76271924998692
1.42182232128981
-5.82961860625307
15.7041175403062
-1.08835912132593
-0.35228190026867
11.2454168031304
8.41122660776502
11.1260989805286
-11.2209000815646
-13.9233330406778
-10.4345976489761
-3.92931411732626
-5.26609776737695
-8.20503516435786
-10.8233978652574
-10.157006056881
3.99593907133345
6.97296346411854
11.5647681973156
14.6126392299391
-35.4430482478976
-2.51156579050621
-5.11054629005951
-4.18739004726035
15.7639890459573
12.5312819257306
24.6150097541692
8.95080663881746
10.4590875359784
-14.292754977076
17.0644800167895
4.84274917784657
3.53201154241838
-16.0838901701641
-0.0197013858965561
17.173892325955
-1.29664964882612
-10.142464804389
-33.2760540490225
44.2556816959389
-0.245649719654287
6.32807377633343
8.58921238156619
-16.8017812644962
-12.2962189746497
4.85764833975409
-26.8898412597241
-10.2743188453722



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')