Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 20 Dec 2016 19:55:03 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t1482260177gv4n76rijppltcx.htm/, Retrieved Fri, 01 Nov 2024 03:33:59 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301775, Retrieved Fri, 01 Nov 2024 03:33:59 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact101
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-20 18:55:03] [672675941468e072e71d9fb024f2b817] [Current]
Feedback Forum

Post a new message
Dataseries X:
1932.8
1861.4
2170.2
1999.6
2225.5
2195.7
2713.1
2412
2568.3
2623.7
3185.5
2722.6
3046.3
2854.2
3337.6
2920.3
3058.3
2933.7
3773.4
3193.5
3472.2
3345.5
4028.4
3463.1
3675.4
3500.8
4142.1
3598
3765.3
3557.7
4303.6
3620.1
3691.1
3678.1
4505.8
3695
3894.1
3718.9
4749.8
3855.9
4011.7
3907.6
4812.5
4071.3
4163.4
4077.6
5109.2
4207.6
4320.8
4396.9
5358.8




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301775&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301775&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301775&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.630865-4.46092.3e-05
20.3349752.36860.01088
3-0.637162-4.50542e-05
40.8956226.3330
5-0.581775-4.11387.3e-05
60.3176732.24630.014567
7-0.590917-4.17845.9e-05
80.815135.76380
9-0.531057-3.75510.000226
100.2935372.07560.021546
11-0.534854-3.7820.000208
120.7196135.08843e-06
13-0.460113-3.25350.001023
140.2530731.78950.039796
15-0.457139-3.23250.001087
160.617254.36463.2e-05
17-0.41037-2.90180.002753

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.630865 & -4.4609 & 2.3e-05 \tabularnewline
2 & 0.334975 & 2.3686 & 0.01088 \tabularnewline
3 & -0.637162 & -4.5054 & 2e-05 \tabularnewline
4 & 0.895622 & 6.333 & 0 \tabularnewline
5 & -0.581775 & -4.1138 & 7.3e-05 \tabularnewline
6 & 0.317673 & 2.2463 & 0.014567 \tabularnewline
7 & -0.590917 & -4.1784 & 5.9e-05 \tabularnewline
8 & 0.81513 & 5.7638 & 0 \tabularnewline
9 & -0.531057 & -3.7551 & 0.000226 \tabularnewline
10 & 0.293537 & 2.0756 & 0.021546 \tabularnewline
11 & -0.534854 & -3.782 & 0.000208 \tabularnewline
12 & 0.719613 & 5.0884 & 3e-06 \tabularnewline
13 & -0.460113 & -3.2535 & 0.001023 \tabularnewline
14 & 0.253073 & 1.7895 & 0.039796 \tabularnewline
15 & -0.457139 & -3.2325 & 0.001087 \tabularnewline
16 & 0.61725 & 4.3646 & 3.2e-05 \tabularnewline
17 & -0.41037 & -2.9018 & 0.002753 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301775&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.630865[/C][C]-4.4609[/C][C]2.3e-05[/C][/ROW]
[ROW][C]2[/C][C]0.334975[/C][C]2.3686[/C][C]0.01088[/C][/ROW]
[ROW][C]3[/C][C]-0.637162[/C][C]-4.5054[/C][C]2e-05[/C][/ROW]
[ROW][C]4[/C][C]0.895622[/C][C]6.333[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]-0.581775[/C][C]-4.1138[/C][C]7.3e-05[/C][/ROW]
[ROW][C]6[/C][C]0.317673[/C][C]2.2463[/C][C]0.014567[/C][/ROW]
[ROW][C]7[/C][C]-0.590917[/C][C]-4.1784[/C][C]5.9e-05[/C][/ROW]
[ROW][C]8[/C][C]0.81513[/C][C]5.7638[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]-0.531057[/C][C]-3.7551[/C][C]0.000226[/C][/ROW]
[ROW][C]10[/C][C]0.293537[/C][C]2.0756[/C][C]0.021546[/C][/ROW]
[ROW][C]11[/C][C]-0.534854[/C][C]-3.782[/C][C]0.000208[/C][/ROW]
[ROW][C]12[/C][C]0.719613[/C][C]5.0884[/C][C]3e-06[/C][/ROW]
[ROW][C]13[/C][C]-0.460113[/C][C]-3.2535[/C][C]0.001023[/C][/ROW]
[ROW][C]14[/C][C]0.253073[/C][C]1.7895[/C][C]0.039796[/C][/ROW]
[ROW][C]15[/C][C]-0.457139[/C][C]-3.2325[/C][C]0.001087[/C][/ROW]
[ROW][C]16[/C][C]0.61725[/C][C]4.3646[/C][C]3.2e-05[/C][/ROW]
[ROW][C]17[/C][C]-0.41037[/C][C]-2.9018[/C][C]0.002753[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301775&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301775&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.630865-4.46092.3e-05
20.3349752.36860.01088
3-0.637162-4.50542e-05
40.8956226.3330
5-0.581775-4.11387.3e-05
60.3176732.24630.014567
7-0.590917-4.17845.9e-05
80.815135.76380
9-0.531057-3.75510.000226
100.2935372.07560.021546
11-0.534854-3.7820.000208
120.7196135.08843e-06
13-0.460113-3.25350.001023
140.2530731.78950.039796
15-0.457139-3.23250.001087
160.617254.36463.2e-05
17-0.41037-2.90180.002753







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.630865-4.46092.3e-05
2-0.104676-0.74020.231329
3-0.788954-5.57870
40.5359493.78970.000203
50.0410490.29030.386408
6-0.195944-1.38550.08602
70.0537230.37990.352822
80.0581440.41110.341365
9-0.023417-0.16560.434576
10-0.05314-0.37580.354345
110.0659260.46620.321561
12-0.102921-0.72780.235077
130.048890.34570.365508
14-0.036117-0.25540.399736
150.0725370.51290.305135
16-0.018964-0.13410.446933
17-0.13153-0.93010.178406

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.630865 & -4.4609 & 2.3e-05 \tabularnewline
2 & -0.104676 & -0.7402 & 0.231329 \tabularnewline
3 & -0.788954 & -5.5787 & 0 \tabularnewline
4 & 0.535949 & 3.7897 & 0.000203 \tabularnewline
5 & 0.041049 & 0.2903 & 0.386408 \tabularnewline
6 & -0.195944 & -1.3855 & 0.08602 \tabularnewline
7 & 0.053723 & 0.3799 & 0.352822 \tabularnewline
8 & 0.058144 & 0.4111 & 0.341365 \tabularnewline
9 & -0.023417 & -0.1656 & 0.434576 \tabularnewline
10 & -0.05314 & -0.3758 & 0.354345 \tabularnewline
11 & 0.065926 & 0.4662 & 0.321561 \tabularnewline
12 & -0.102921 & -0.7278 & 0.235077 \tabularnewline
13 & 0.04889 & 0.3457 & 0.365508 \tabularnewline
14 & -0.036117 & -0.2554 & 0.399736 \tabularnewline
15 & 0.072537 & 0.5129 & 0.305135 \tabularnewline
16 & -0.018964 & -0.1341 & 0.446933 \tabularnewline
17 & -0.13153 & -0.9301 & 0.178406 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301775&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.630865[/C][C]-4.4609[/C][C]2.3e-05[/C][/ROW]
[ROW][C]2[/C][C]-0.104676[/C][C]-0.7402[/C][C]0.231329[/C][/ROW]
[ROW][C]3[/C][C]-0.788954[/C][C]-5.5787[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.535949[/C][C]3.7897[/C][C]0.000203[/C][/ROW]
[ROW][C]5[/C][C]0.041049[/C][C]0.2903[/C][C]0.386408[/C][/ROW]
[ROW][C]6[/C][C]-0.195944[/C][C]-1.3855[/C][C]0.08602[/C][/ROW]
[ROW][C]7[/C][C]0.053723[/C][C]0.3799[/C][C]0.352822[/C][/ROW]
[ROW][C]8[/C][C]0.058144[/C][C]0.4111[/C][C]0.341365[/C][/ROW]
[ROW][C]9[/C][C]-0.023417[/C][C]-0.1656[/C][C]0.434576[/C][/ROW]
[ROW][C]10[/C][C]-0.05314[/C][C]-0.3758[/C][C]0.354345[/C][/ROW]
[ROW][C]11[/C][C]0.065926[/C][C]0.4662[/C][C]0.321561[/C][/ROW]
[ROW][C]12[/C][C]-0.102921[/C][C]-0.7278[/C][C]0.235077[/C][/ROW]
[ROW][C]13[/C][C]0.04889[/C][C]0.3457[/C][C]0.365508[/C][/ROW]
[ROW][C]14[/C][C]-0.036117[/C][C]-0.2554[/C][C]0.399736[/C][/ROW]
[ROW][C]15[/C][C]0.072537[/C][C]0.5129[/C][C]0.305135[/C][/ROW]
[ROW][C]16[/C][C]-0.018964[/C][C]-0.1341[/C][C]0.446933[/C][/ROW]
[ROW][C]17[/C][C]-0.13153[/C][C]-0.9301[/C][C]0.178406[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301775&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301775&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.630865-4.46092.3e-05
2-0.104676-0.74020.231329
3-0.788954-5.57870
40.5359493.78970.000203
50.0410490.29030.386408
6-0.195944-1.38550.08602
70.0537230.37990.352822
80.0581440.41110.341365
9-0.023417-0.16560.434576
10-0.05314-0.37580.354345
110.0659260.46620.321561
12-0.102921-0.72780.235077
130.048890.34570.365508
14-0.036117-0.25540.399736
150.0725370.51290.305135
16-0.018964-0.13410.446933
17-0.13153-0.93010.178406



Parameters (Session):
par1 = 12 ; par2 = Single ; par3 = multiplicative ; par4 = 12 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '0'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')