Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationTue, 20 Dec 2016 13:39:59 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t14822389078dvsel8c9lb8muj.htm/, Retrieved Fri, 01 Nov 2024 03:35:44 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301639, Retrieved Fri, 01 Nov 2024 03:35:44 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact92
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [] [2016-12-20 12:39:59] [361c8dad91b3f1ef2e651cd04783c23b] [Current]
Feedback Forum

Post a new message
Dataseries X:
2755
2765
3000
2890
2940
3290
2815
3035
3070
3040
2685
2540
3090
2995
3440
3335
3205
3285
2790
3225
3360
3275
3505
3185
3470
3510
3840
3605
3655
3555
3140
3380
3255
3460
3245
3120
3265
3220
3140
3050
3300
2950
2630
2795
2840
2945
2790
2605
4590
4230
4245
4300
4475
3910
4100
3500
4390
3550
3865
3715
3310
3945
5050
4350
4060
4345
4360
4915
4650
4805
4775
4220
3975
3820
5515
4895
5535
4230
3695
5590
5000
4875
4360
4405
4500
4070
4800
4080
4850
4105
3805
5060
4060
4600
4635
3900
4120
3960
4400
3700
3970
4550
5140
5000
3650
4300
3650
3355
4000
3450
3295
3390
3415
3440
3680
3900
3965
4295
4210
4100
4690
3860
4250
4495
3800
3845




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301639&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301639&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301639&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
12755NANA-18.1034NA
22765NANA-150.557NA
33000NANA344.073NA
42890NANA-1.43673NA
52940NANA181.248NA
63290NANA-65.8117NA
728152730.612916.04-185.4384.3881
830353166.032939.58226.445-131.029
930702968.172967.50.674383101.826
1030403083.653004.3779.2785-43.6535
1126852960.473033.96-73.4923-275.466
1225402707.93044.79-336.888-167.904
1330903025.443043.54-18.103464.5617
1429952899.863050.42-150.55795.1404
1534403414.493070.42344.07325.5108
1633353090.853092.29-1.43673244.145
1732053317.53136.25181.248-112.498
1832853131.483197.29-65.8117153.52
1927903054.573240-185.43-264.57
2032253503.743277.29226.445-278.737
2133603316.093315.420.67438343.909
2232753422.613343.3379.2785-147.612
2335053299.843373.33-73.4923205.159
2431853066.453403.33-336.888118.555
2534703411.063429.17-18.103458.9367
2635103299.653450.21-150.557210.349
2738403796.363452.29344.07343.6358
2836053454.193455.62-1.43673150.812
2936553633.753452.5181.24821.2515
3035553373.153438.96-65.8117181.853
3131403242.283427.71-185.43-102.279
3233803633.533407.08226.445-253.529
3332553366.513365.830.674383-111.508
3434603392.823313.5479.278567.1798
3532453202.133275.62-73.492342.8673
3631202898.743235.62-336.888221.263
3732653171.063189.17-18.103493.9367
3832202992.983143.54-150.557227.015
3931403445.953101.88344.073-305.948
4030503061.693063.12-1.43673-11.6883
4133003203.963022.71181.24896.0432
4229502916.482982.29-65.811733.5201
4326302830.613016.04-185.43-200.612
4427953339.783113.33226.445-544.779
4528403202.133201.460.674383-362.133
4629453378.863299.5879.2785-433.862
4727903327.133400.62-73.4923-537.133
4826053152.73489.58-336.888-547.695
4945903572.733590.83-18.10341017.27
5042303530.93681.46-150.557699.099
5142454119.493775.42344.073125.511
5243003863.773865.21-1.43673436.228
5344754116.463935.21181.248358.543
5439103960.444026.25-65.8117-50.4383
5541003833.744019.17-185.43266.263
5635004180.43953.96226.445-680.404
5743903976.33975.620.674383413.701
5835504090.534011.2579.2785-540.529
5938653922.553996.04-73.4923-57.5494
6037153659.993996.88-336.88855.0131
6133104007.734025.83-18.1034-697.73
6239453945.074095.63-150.557-0.0679012
6350504509.494165.42344.073540.511
6443504227.14228.54-1.43673122.895
65406045004318.75181.248-439.998
6643454311.94377.71-65.811733.1034
6743604241.034426.46-185.43118.971
6849154675.44448.96226.445239.596
6946504463.84463.130.674383186.201
7048054584.494505.2179.2785220.513
7147754515.884589.38-73.4923259.117
7242204309.154646.04-336.888-89.1535
7339754595.444613.54-18.1034-620.438
7438204463.44613.96-150.557-643.401
7555155000.744656.67344.073514.261
7648954672.734674.17-1.43673222.27
7755354841.044659.79181.248693.96
7842304584.44650.21-65.8117-354.397
7936954494.364679.79-185.43-799.362
8055904938.534712.08226.445651.471
8150004693.384692.710.674383306.617
8248754708.244628.9679.2785166.763
8343604492.974566.46-73.4923-132.966
8444054195.824532.71-336.888209.18
8545004513.984532.08-18.1034-13.9799
8640704364.034514.58-150.557-294.026
8748004797.414453.33344.0732.59414
8840804401.274402.71-1.43673-321.272
8948504583.964402.71181.248266.043
9041054327.314393.12-65.8117-222.313
9138054170.824356.25-185.43-365.82
9250604562.284335.83226.445497.721
9340604315.264314.580.674383-255.258
9446004361.364282.0879.2785238.638
9546354156.094229.58-73.4923478.909
9639003874.574211.46-336.88825.4298
9741204267.524285.63-18.1034-147.522
9839604188.194338.75-150.557-228.193
9944004663.244319.17344.073-263.239
10037004288.154289.58-1.43673-588.147
10139704417.294236.04181.248-447.29
10245504106.484172.29-65.8117443.52
10351403959.154144.58-185.431180.85
10450004344.784118.33226.445655.221
10536504051.724051.040.674383-401.716
10643004071.363992.0879.2785228.638
10736503882.553956.04-73.4923-232.549
10833553549.783886.67-336.888-194.779
10940003761.483779.58-18.1034238.52
11034503522.363672.92-150.557-72.3596
11132953984.283640.21344.073-689.281
11233903651.693653.12-1.43673-261.688
11334153857.53676.25181.248-442.498
11434403664.813730.62-65.8117-224.813
11536803604.993790.42-185.4375.0131
11639004062.73836.25226.445-162.695
11739653893.83893.120.67438371.2006
11842954058.243978.9679.2785236.763
11942103967.554041.04-73.4923242.451
12041003737.074073.96-336.888362.93
1214690NANA-18.1034NA
1223860NANA-150.557NA
1234250NANA344.073NA
1244495NANA-1.43673NA
1253800NANA181.248NA
1263845NANA-65.8117NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 2755 & NA & NA & -18.1034 & NA \tabularnewline
2 & 2765 & NA & NA & -150.557 & NA \tabularnewline
3 & 3000 & NA & NA & 344.073 & NA \tabularnewline
4 & 2890 & NA & NA & -1.43673 & NA \tabularnewline
5 & 2940 & NA & NA & 181.248 & NA \tabularnewline
6 & 3290 & NA & NA & -65.8117 & NA \tabularnewline
7 & 2815 & 2730.61 & 2916.04 & -185.43 & 84.3881 \tabularnewline
8 & 3035 & 3166.03 & 2939.58 & 226.445 & -131.029 \tabularnewline
9 & 3070 & 2968.17 & 2967.5 & 0.674383 & 101.826 \tabularnewline
10 & 3040 & 3083.65 & 3004.37 & 79.2785 & -43.6535 \tabularnewline
11 & 2685 & 2960.47 & 3033.96 & -73.4923 & -275.466 \tabularnewline
12 & 2540 & 2707.9 & 3044.79 & -336.888 & -167.904 \tabularnewline
13 & 3090 & 3025.44 & 3043.54 & -18.1034 & 64.5617 \tabularnewline
14 & 2995 & 2899.86 & 3050.42 & -150.557 & 95.1404 \tabularnewline
15 & 3440 & 3414.49 & 3070.42 & 344.073 & 25.5108 \tabularnewline
16 & 3335 & 3090.85 & 3092.29 & -1.43673 & 244.145 \tabularnewline
17 & 3205 & 3317.5 & 3136.25 & 181.248 & -112.498 \tabularnewline
18 & 3285 & 3131.48 & 3197.29 & -65.8117 & 153.52 \tabularnewline
19 & 2790 & 3054.57 & 3240 & -185.43 & -264.57 \tabularnewline
20 & 3225 & 3503.74 & 3277.29 & 226.445 & -278.737 \tabularnewline
21 & 3360 & 3316.09 & 3315.42 & 0.674383 & 43.909 \tabularnewline
22 & 3275 & 3422.61 & 3343.33 & 79.2785 & -147.612 \tabularnewline
23 & 3505 & 3299.84 & 3373.33 & -73.4923 & 205.159 \tabularnewline
24 & 3185 & 3066.45 & 3403.33 & -336.888 & 118.555 \tabularnewline
25 & 3470 & 3411.06 & 3429.17 & -18.1034 & 58.9367 \tabularnewline
26 & 3510 & 3299.65 & 3450.21 & -150.557 & 210.349 \tabularnewline
27 & 3840 & 3796.36 & 3452.29 & 344.073 & 43.6358 \tabularnewline
28 & 3605 & 3454.19 & 3455.62 & -1.43673 & 150.812 \tabularnewline
29 & 3655 & 3633.75 & 3452.5 & 181.248 & 21.2515 \tabularnewline
30 & 3555 & 3373.15 & 3438.96 & -65.8117 & 181.853 \tabularnewline
31 & 3140 & 3242.28 & 3427.71 & -185.43 & -102.279 \tabularnewline
32 & 3380 & 3633.53 & 3407.08 & 226.445 & -253.529 \tabularnewline
33 & 3255 & 3366.51 & 3365.83 & 0.674383 & -111.508 \tabularnewline
34 & 3460 & 3392.82 & 3313.54 & 79.2785 & 67.1798 \tabularnewline
35 & 3245 & 3202.13 & 3275.62 & -73.4923 & 42.8673 \tabularnewline
36 & 3120 & 2898.74 & 3235.62 & -336.888 & 221.263 \tabularnewline
37 & 3265 & 3171.06 & 3189.17 & -18.1034 & 93.9367 \tabularnewline
38 & 3220 & 2992.98 & 3143.54 & -150.557 & 227.015 \tabularnewline
39 & 3140 & 3445.95 & 3101.88 & 344.073 & -305.948 \tabularnewline
40 & 3050 & 3061.69 & 3063.12 & -1.43673 & -11.6883 \tabularnewline
41 & 3300 & 3203.96 & 3022.71 & 181.248 & 96.0432 \tabularnewline
42 & 2950 & 2916.48 & 2982.29 & -65.8117 & 33.5201 \tabularnewline
43 & 2630 & 2830.61 & 3016.04 & -185.43 & -200.612 \tabularnewline
44 & 2795 & 3339.78 & 3113.33 & 226.445 & -544.779 \tabularnewline
45 & 2840 & 3202.13 & 3201.46 & 0.674383 & -362.133 \tabularnewline
46 & 2945 & 3378.86 & 3299.58 & 79.2785 & -433.862 \tabularnewline
47 & 2790 & 3327.13 & 3400.62 & -73.4923 & -537.133 \tabularnewline
48 & 2605 & 3152.7 & 3489.58 & -336.888 & -547.695 \tabularnewline
49 & 4590 & 3572.73 & 3590.83 & -18.1034 & 1017.27 \tabularnewline
50 & 4230 & 3530.9 & 3681.46 & -150.557 & 699.099 \tabularnewline
51 & 4245 & 4119.49 & 3775.42 & 344.073 & 125.511 \tabularnewline
52 & 4300 & 3863.77 & 3865.21 & -1.43673 & 436.228 \tabularnewline
53 & 4475 & 4116.46 & 3935.21 & 181.248 & 358.543 \tabularnewline
54 & 3910 & 3960.44 & 4026.25 & -65.8117 & -50.4383 \tabularnewline
55 & 4100 & 3833.74 & 4019.17 & -185.43 & 266.263 \tabularnewline
56 & 3500 & 4180.4 & 3953.96 & 226.445 & -680.404 \tabularnewline
57 & 4390 & 3976.3 & 3975.62 & 0.674383 & 413.701 \tabularnewline
58 & 3550 & 4090.53 & 4011.25 & 79.2785 & -540.529 \tabularnewline
59 & 3865 & 3922.55 & 3996.04 & -73.4923 & -57.5494 \tabularnewline
60 & 3715 & 3659.99 & 3996.88 & -336.888 & 55.0131 \tabularnewline
61 & 3310 & 4007.73 & 4025.83 & -18.1034 & -697.73 \tabularnewline
62 & 3945 & 3945.07 & 4095.63 & -150.557 & -0.0679012 \tabularnewline
63 & 5050 & 4509.49 & 4165.42 & 344.073 & 540.511 \tabularnewline
64 & 4350 & 4227.1 & 4228.54 & -1.43673 & 122.895 \tabularnewline
65 & 4060 & 4500 & 4318.75 & 181.248 & -439.998 \tabularnewline
66 & 4345 & 4311.9 & 4377.71 & -65.8117 & 33.1034 \tabularnewline
67 & 4360 & 4241.03 & 4426.46 & -185.43 & 118.971 \tabularnewline
68 & 4915 & 4675.4 & 4448.96 & 226.445 & 239.596 \tabularnewline
69 & 4650 & 4463.8 & 4463.13 & 0.674383 & 186.201 \tabularnewline
70 & 4805 & 4584.49 & 4505.21 & 79.2785 & 220.513 \tabularnewline
71 & 4775 & 4515.88 & 4589.38 & -73.4923 & 259.117 \tabularnewline
72 & 4220 & 4309.15 & 4646.04 & -336.888 & -89.1535 \tabularnewline
73 & 3975 & 4595.44 & 4613.54 & -18.1034 & -620.438 \tabularnewline
74 & 3820 & 4463.4 & 4613.96 & -150.557 & -643.401 \tabularnewline
75 & 5515 & 5000.74 & 4656.67 & 344.073 & 514.261 \tabularnewline
76 & 4895 & 4672.73 & 4674.17 & -1.43673 & 222.27 \tabularnewline
77 & 5535 & 4841.04 & 4659.79 & 181.248 & 693.96 \tabularnewline
78 & 4230 & 4584.4 & 4650.21 & -65.8117 & -354.397 \tabularnewline
79 & 3695 & 4494.36 & 4679.79 & -185.43 & -799.362 \tabularnewline
80 & 5590 & 4938.53 & 4712.08 & 226.445 & 651.471 \tabularnewline
81 & 5000 & 4693.38 & 4692.71 & 0.674383 & 306.617 \tabularnewline
82 & 4875 & 4708.24 & 4628.96 & 79.2785 & 166.763 \tabularnewline
83 & 4360 & 4492.97 & 4566.46 & -73.4923 & -132.966 \tabularnewline
84 & 4405 & 4195.82 & 4532.71 & -336.888 & 209.18 \tabularnewline
85 & 4500 & 4513.98 & 4532.08 & -18.1034 & -13.9799 \tabularnewline
86 & 4070 & 4364.03 & 4514.58 & -150.557 & -294.026 \tabularnewline
87 & 4800 & 4797.41 & 4453.33 & 344.073 & 2.59414 \tabularnewline
88 & 4080 & 4401.27 & 4402.71 & -1.43673 & -321.272 \tabularnewline
89 & 4850 & 4583.96 & 4402.71 & 181.248 & 266.043 \tabularnewline
90 & 4105 & 4327.31 & 4393.12 & -65.8117 & -222.313 \tabularnewline
91 & 3805 & 4170.82 & 4356.25 & -185.43 & -365.82 \tabularnewline
92 & 5060 & 4562.28 & 4335.83 & 226.445 & 497.721 \tabularnewline
93 & 4060 & 4315.26 & 4314.58 & 0.674383 & -255.258 \tabularnewline
94 & 4600 & 4361.36 & 4282.08 & 79.2785 & 238.638 \tabularnewline
95 & 4635 & 4156.09 & 4229.58 & -73.4923 & 478.909 \tabularnewline
96 & 3900 & 3874.57 & 4211.46 & -336.888 & 25.4298 \tabularnewline
97 & 4120 & 4267.52 & 4285.63 & -18.1034 & -147.522 \tabularnewline
98 & 3960 & 4188.19 & 4338.75 & -150.557 & -228.193 \tabularnewline
99 & 4400 & 4663.24 & 4319.17 & 344.073 & -263.239 \tabularnewline
100 & 3700 & 4288.15 & 4289.58 & -1.43673 & -588.147 \tabularnewline
101 & 3970 & 4417.29 & 4236.04 & 181.248 & -447.29 \tabularnewline
102 & 4550 & 4106.48 & 4172.29 & -65.8117 & 443.52 \tabularnewline
103 & 5140 & 3959.15 & 4144.58 & -185.43 & 1180.85 \tabularnewline
104 & 5000 & 4344.78 & 4118.33 & 226.445 & 655.221 \tabularnewline
105 & 3650 & 4051.72 & 4051.04 & 0.674383 & -401.716 \tabularnewline
106 & 4300 & 4071.36 & 3992.08 & 79.2785 & 228.638 \tabularnewline
107 & 3650 & 3882.55 & 3956.04 & -73.4923 & -232.549 \tabularnewline
108 & 3355 & 3549.78 & 3886.67 & -336.888 & -194.779 \tabularnewline
109 & 4000 & 3761.48 & 3779.58 & -18.1034 & 238.52 \tabularnewline
110 & 3450 & 3522.36 & 3672.92 & -150.557 & -72.3596 \tabularnewline
111 & 3295 & 3984.28 & 3640.21 & 344.073 & -689.281 \tabularnewline
112 & 3390 & 3651.69 & 3653.12 & -1.43673 & -261.688 \tabularnewline
113 & 3415 & 3857.5 & 3676.25 & 181.248 & -442.498 \tabularnewline
114 & 3440 & 3664.81 & 3730.62 & -65.8117 & -224.813 \tabularnewline
115 & 3680 & 3604.99 & 3790.42 & -185.43 & 75.0131 \tabularnewline
116 & 3900 & 4062.7 & 3836.25 & 226.445 & -162.695 \tabularnewline
117 & 3965 & 3893.8 & 3893.12 & 0.674383 & 71.2006 \tabularnewline
118 & 4295 & 4058.24 & 3978.96 & 79.2785 & 236.763 \tabularnewline
119 & 4210 & 3967.55 & 4041.04 & -73.4923 & 242.451 \tabularnewline
120 & 4100 & 3737.07 & 4073.96 & -336.888 & 362.93 \tabularnewline
121 & 4690 & NA & NA & -18.1034 & NA \tabularnewline
122 & 3860 & NA & NA & -150.557 & NA \tabularnewline
123 & 4250 & NA & NA & 344.073 & NA \tabularnewline
124 & 4495 & NA & NA & -1.43673 & NA \tabularnewline
125 & 3800 & NA & NA & 181.248 & NA \tabularnewline
126 & 3845 & NA & NA & -65.8117 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301639&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]2755[/C][C]NA[/C][C]NA[/C][C]-18.1034[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]2765[/C][C]NA[/C][C]NA[/C][C]-150.557[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]3000[/C][C]NA[/C][C]NA[/C][C]344.073[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]2890[/C][C]NA[/C][C]NA[/C][C]-1.43673[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]2940[/C][C]NA[/C][C]NA[/C][C]181.248[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3290[/C][C]NA[/C][C]NA[/C][C]-65.8117[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]2815[/C][C]2730.61[/C][C]2916.04[/C][C]-185.43[/C][C]84.3881[/C][/ROW]
[ROW][C]8[/C][C]3035[/C][C]3166.03[/C][C]2939.58[/C][C]226.445[/C][C]-131.029[/C][/ROW]
[ROW][C]9[/C][C]3070[/C][C]2968.17[/C][C]2967.5[/C][C]0.674383[/C][C]101.826[/C][/ROW]
[ROW][C]10[/C][C]3040[/C][C]3083.65[/C][C]3004.37[/C][C]79.2785[/C][C]-43.6535[/C][/ROW]
[ROW][C]11[/C][C]2685[/C][C]2960.47[/C][C]3033.96[/C][C]-73.4923[/C][C]-275.466[/C][/ROW]
[ROW][C]12[/C][C]2540[/C][C]2707.9[/C][C]3044.79[/C][C]-336.888[/C][C]-167.904[/C][/ROW]
[ROW][C]13[/C][C]3090[/C][C]3025.44[/C][C]3043.54[/C][C]-18.1034[/C][C]64.5617[/C][/ROW]
[ROW][C]14[/C][C]2995[/C][C]2899.86[/C][C]3050.42[/C][C]-150.557[/C][C]95.1404[/C][/ROW]
[ROW][C]15[/C][C]3440[/C][C]3414.49[/C][C]3070.42[/C][C]344.073[/C][C]25.5108[/C][/ROW]
[ROW][C]16[/C][C]3335[/C][C]3090.85[/C][C]3092.29[/C][C]-1.43673[/C][C]244.145[/C][/ROW]
[ROW][C]17[/C][C]3205[/C][C]3317.5[/C][C]3136.25[/C][C]181.248[/C][C]-112.498[/C][/ROW]
[ROW][C]18[/C][C]3285[/C][C]3131.48[/C][C]3197.29[/C][C]-65.8117[/C][C]153.52[/C][/ROW]
[ROW][C]19[/C][C]2790[/C][C]3054.57[/C][C]3240[/C][C]-185.43[/C][C]-264.57[/C][/ROW]
[ROW][C]20[/C][C]3225[/C][C]3503.74[/C][C]3277.29[/C][C]226.445[/C][C]-278.737[/C][/ROW]
[ROW][C]21[/C][C]3360[/C][C]3316.09[/C][C]3315.42[/C][C]0.674383[/C][C]43.909[/C][/ROW]
[ROW][C]22[/C][C]3275[/C][C]3422.61[/C][C]3343.33[/C][C]79.2785[/C][C]-147.612[/C][/ROW]
[ROW][C]23[/C][C]3505[/C][C]3299.84[/C][C]3373.33[/C][C]-73.4923[/C][C]205.159[/C][/ROW]
[ROW][C]24[/C][C]3185[/C][C]3066.45[/C][C]3403.33[/C][C]-336.888[/C][C]118.555[/C][/ROW]
[ROW][C]25[/C][C]3470[/C][C]3411.06[/C][C]3429.17[/C][C]-18.1034[/C][C]58.9367[/C][/ROW]
[ROW][C]26[/C][C]3510[/C][C]3299.65[/C][C]3450.21[/C][C]-150.557[/C][C]210.349[/C][/ROW]
[ROW][C]27[/C][C]3840[/C][C]3796.36[/C][C]3452.29[/C][C]344.073[/C][C]43.6358[/C][/ROW]
[ROW][C]28[/C][C]3605[/C][C]3454.19[/C][C]3455.62[/C][C]-1.43673[/C][C]150.812[/C][/ROW]
[ROW][C]29[/C][C]3655[/C][C]3633.75[/C][C]3452.5[/C][C]181.248[/C][C]21.2515[/C][/ROW]
[ROW][C]30[/C][C]3555[/C][C]3373.15[/C][C]3438.96[/C][C]-65.8117[/C][C]181.853[/C][/ROW]
[ROW][C]31[/C][C]3140[/C][C]3242.28[/C][C]3427.71[/C][C]-185.43[/C][C]-102.279[/C][/ROW]
[ROW][C]32[/C][C]3380[/C][C]3633.53[/C][C]3407.08[/C][C]226.445[/C][C]-253.529[/C][/ROW]
[ROW][C]33[/C][C]3255[/C][C]3366.51[/C][C]3365.83[/C][C]0.674383[/C][C]-111.508[/C][/ROW]
[ROW][C]34[/C][C]3460[/C][C]3392.82[/C][C]3313.54[/C][C]79.2785[/C][C]67.1798[/C][/ROW]
[ROW][C]35[/C][C]3245[/C][C]3202.13[/C][C]3275.62[/C][C]-73.4923[/C][C]42.8673[/C][/ROW]
[ROW][C]36[/C][C]3120[/C][C]2898.74[/C][C]3235.62[/C][C]-336.888[/C][C]221.263[/C][/ROW]
[ROW][C]37[/C][C]3265[/C][C]3171.06[/C][C]3189.17[/C][C]-18.1034[/C][C]93.9367[/C][/ROW]
[ROW][C]38[/C][C]3220[/C][C]2992.98[/C][C]3143.54[/C][C]-150.557[/C][C]227.015[/C][/ROW]
[ROW][C]39[/C][C]3140[/C][C]3445.95[/C][C]3101.88[/C][C]344.073[/C][C]-305.948[/C][/ROW]
[ROW][C]40[/C][C]3050[/C][C]3061.69[/C][C]3063.12[/C][C]-1.43673[/C][C]-11.6883[/C][/ROW]
[ROW][C]41[/C][C]3300[/C][C]3203.96[/C][C]3022.71[/C][C]181.248[/C][C]96.0432[/C][/ROW]
[ROW][C]42[/C][C]2950[/C][C]2916.48[/C][C]2982.29[/C][C]-65.8117[/C][C]33.5201[/C][/ROW]
[ROW][C]43[/C][C]2630[/C][C]2830.61[/C][C]3016.04[/C][C]-185.43[/C][C]-200.612[/C][/ROW]
[ROW][C]44[/C][C]2795[/C][C]3339.78[/C][C]3113.33[/C][C]226.445[/C][C]-544.779[/C][/ROW]
[ROW][C]45[/C][C]2840[/C][C]3202.13[/C][C]3201.46[/C][C]0.674383[/C][C]-362.133[/C][/ROW]
[ROW][C]46[/C][C]2945[/C][C]3378.86[/C][C]3299.58[/C][C]79.2785[/C][C]-433.862[/C][/ROW]
[ROW][C]47[/C][C]2790[/C][C]3327.13[/C][C]3400.62[/C][C]-73.4923[/C][C]-537.133[/C][/ROW]
[ROW][C]48[/C][C]2605[/C][C]3152.7[/C][C]3489.58[/C][C]-336.888[/C][C]-547.695[/C][/ROW]
[ROW][C]49[/C][C]4590[/C][C]3572.73[/C][C]3590.83[/C][C]-18.1034[/C][C]1017.27[/C][/ROW]
[ROW][C]50[/C][C]4230[/C][C]3530.9[/C][C]3681.46[/C][C]-150.557[/C][C]699.099[/C][/ROW]
[ROW][C]51[/C][C]4245[/C][C]4119.49[/C][C]3775.42[/C][C]344.073[/C][C]125.511[/C][/ROW]
[ROW][C]52[/C][C]4300[/C][C]3863.77[/C][C]3865.21[/C][C]-1.43673[/C][C]436.228[/C][/ROW]
[ROW][C]53[/C][C]4475[/C][C]4116.46[/C][C]3935.21[/C][C]181.248[/C][C]358.543[/C][/ROW]
[ROW][C]54[/C][C]3910[/C][C]3960.44[/C][C]4026.25[/C][C]-65.8117[/C][C]-50.4383[/C][/ROW]
[ROW][C]55[/C][C]4100[/C][C]3833.74[/C][C]4019.17[/C][C]-185.43[/C][C]266.263[/C][/ROW]
[ROW][C]56[/C][C]3500[/C][C]4180.4[/C][C]3953.96[/C][C]226.445[/C][C]-680.404[/C][/ROW]
[ROW][C]57[/C][C]4390[/C][C]3976.3[/C][C]3975.62[/C][C]0.674383[/C][C]413.701[/C][/ROW]
[ROW][C]58[/C][C]3550[/C][C]4090.53[/C][C]4011.25[/C][C]79.2785[/C][C]-540.529[/C][/ROW]
[ROW][C]59[/C][C]3865[/C][C]3922.55[/C][C]3996.04[/C][C]-73.4923[/C][C]-57.5494[/C][/ROW]
[ROW][C]60[/C][C]3715[/C][C]3659.99[/C][C]3996.88[/C][C]-336.888[/C][C]55.0131[/C][/ROW]
[ROW][C]61[/C][C]3310[/C][C]4007.73[/C][C]4025.83[/C][C]-18.1034[/C][C]-697.73[/C][/ROW]
[ROW][C]62[/C][C]3945[/C][C]3945.07[/C][C]4095.63[/C][C]-150.557[/C][C]-0.0679012[/C][/ROW]
[ROW][C]63[/C][C]5050[/C][C]4509.49[/C][C]4165.42[/C][C]344.073[/C][C]540.511[/C][/ROW]
[ROW][C]64[/C][C]4350[/C][C]4227.1[/C][C]4228.54[/C][C]-1.43673[/C][C]122.895[/C][/ROW]
[ROW][C]65[/C][C]4060[/C][C]4500[/C][C]4318.75[/C][C]181.248[/C][C]-439.998[/C][/ROW]
[ROW][C]66[/C][C]4345[/C][C]4311.9[/C][C]4377.71[/C][C]-65.8117[/C][C]33.1034[/C][/ROW]
[ROW][C]67[/C][C]4360[/C][C]4241.03[/C][C]4426.46[/C][C]-185.43[/C][C]118.971[/C][/ROW]
[ROW][C]68[/C][C]4915[/C][C]4675.4[/C][C]4448.96[/C][C]226.445[/C][C]239.596[/C][/ROW]
[ROW][C]69[/C][C]4650[/C][C]4463.8[/C][C]4463.13[/C][C]0.674383[/C][C]186.201[/C][/ROW]
[ROW][C]70[/C][C]4805[/C][C]4584.49[/C][C]4505.21[/C][C]79.2785[/C][C]220.513[/C][/ROW]
[ROW][C]71[/C][C]4775[/C][C]4515.88[/C][C]4589.38[/C][C]-73.4923[/C][C]259.117[/C][/ROW]
[ROW][C]72[/C][C]4220[/C][C]4309.15[/C][C]4646.04[/C][C]-336.888[/C][C]-89.1535[/C][/ROW]
[ROW][C]73[/C][C]3975[/C][C]4595.44[/C][C]4613.54[/C][C]-18.1034[/C][C]-620.438[/C][/ROW]
[ROW][C]74[/C][C]3820[/C][C]4463.4[/C][C]4613.96[/C][C]-150.557[/C][C]-643.401[/C][/ROW]
[ROW][C]75[/C][C]5515[/C][C]5000.74[/C][C]4656.67[/C][C]344.073[/C][C]514.261[/C][/ROW]
[ROW][C]76[/C][C]4895[/C][C]4672.73[/C][C]4674.17[/C][C]-1.43673[/C][C]222.27[/C][/ROW]
[ROW][C]77[/C][C]5535[/C][C]4841.04[/C][C]4659.79[/C][C]181.248[/C][C]693.96[/C][/ROW]
[ROW][C]78[/C][C]4230[/C][C]4584.4[/C][C]4650.21[/C][C]-65.8117[/C][C]-354.397[/C][/ROW]
[ROW][C]79[/C][C]3695[/C][C]4494.36[/C][C]4679.79[/C][C]-185.43[/C][C]-799.362[/C][/ROW]
[ROW][C]80[/C][C]5590[/C][C]4938.53[/C][C]4712.08[/C][C]226.445[/C][C]651.471[/C][/ROW]
[ROW][C]81[/C][C]5000[/C][C]4693.38[/C][C]4692.71[/C][C]0.674383[/C][C]306.617[/C][/ROW]
[ROW][C]82[/C][C]4875[/C][C]4708.24[/C][C]4628.96[/C][C]79.2785[/C][C]166.763[/C][/ROW]
[ROW][C]83[/C][C]4360[/C][C]4492.97[/C][C]4566.46[/C][C]-73.4923[/C][C]-132.966[/C][/ROW]
[ROW][C]84[/C][C]4405[/C][C]4195.82[/C][C]4532.71[/C][C]-336.888[/C][C]209.18[/C][/ROW]
[ROW][C]85[/C][C]4500[/C][C]4513.98[/C][C]4532.08[/C][C]-18.1034[/C][C]-13.9799[/C][/ROW]
[ROW][C]86[/C][C]4070[/C][C]4364.03[/C][C]4514.58[/C][C]-150.557[/C][C]-294.026[/C][/ROW]
[ROW][C]87[/C][C]4800[/C][C]4797.41[/C][C]4453.33[/C][C]344.073[/C][C]2.59414[/C][/ROW]
[ROW][C]88[/C][C]4080[/C][C]4401.27[/C][C]4402.71[/C][C]-1.43673[/C][C]-321.272[/C][/ROW]
[ROW][C]89[/C][C]4850[/C][C]4583.96[/C][C]4402.71[/C][C]181.248[/C][C]266.043[/C][/ROW]
[ROW][C]90[/C][C]4105[/C][C]4327.31[/C][C]4393.12[/C][C]-65.8117[/C][C]-222.313[/C][/ROW]
[ROW][C]91[/C][C]3805[/C][C]4170.82[/C][C]4356.25[/C][C]-185.43[/C][C]-365.82[/C][/ROW]
[ROW][C]92[/C][C]5060[/C][C]4562.28[/C][C]4335.83[/C][C]226.445[/C][C]497.721[/C][/ROW]
[ROW][C]93[/C][C]4060[/C][C]4315.26[/C][C]4314.58[/C][C]0.674383[/C][C]-255.258[/C][/ROW]
[ROW][C]94[/C][C]4600[/C][C]4361.36[/C][C]4282.08[/C][C]79.2785[/C][C]238.638[/C][/ROW]
[ROW][C]95[/C][C]4635[/C][C]4156.09[/C][C]4229.58[/C][C]-73.4923[/C][C]478.909[/C][/ROW]
[ROW][C]96[/C][C]3900[/C][C]3874.57[/C][C]4211.46[/C][C]-336.888[/C][C]25.4298[/C][/ROW]
[ROW][C]97[/C][C]4120[/C][C]4267.52[/C][C]4285.63[/C][C]-18.1034[/C][C]-147.522[/C][/ROW]
[ROW][C]98[/C][C]3960[/C][C]4188.19[/C][C]4338.75[/C][C]-150.557[/C][C]-228.193[/C][/ROW]
[ROW][C]99[/C][C]4400[/C][C]4663.24[/C][C]4319.17[/C][C]344.073[/C][C]-263.239[/C][/ROW]
[ROW][C]100[/C][C]3700[/C][C]4288.15[/C][C]4289.58[/C][C]-1.43673[/C][C]-588.147[/C][/ROW]
[ROW][C]101[/C][C]3970[/C][C]4417.29[/C][C]4236.04[/C][C]181.248[/C][C]-447.29[/C][/ROW]
[ROW][C]102[/C][C]4550[/C][C]4106.48[/C][C]4172.29[/C][C]-65.8117[/C][C]443.52[/C][/ROW]
[ROW][C]103[/C][C]5140[/C][C]3959.15[/C][C]4144.58[/C][C]-185.43[/C][C]1180.85[/C][/ROW]
[ROW][C]104[/C][C]5000[/C][C]4344.78[/C][C]4118.33[/C][C]226.445[/C][C]655.221[/C][/ROW]
[ROW][C]105[/C][C]3650[/C][C]4051.72[/C][C]4051.04[/C][C]0.674383[/C][C]-401.716[/C][/ROW]
[ROW][C]106[/C][C]4300[/C][C]4071.36[/C][C]3992.08[/C][C]79.2785[/C][C]228.638[/C][/ROW]
[ROW][C]107[/C][C]3650[/C][C]3882.55[/C][C]3956.04[/C][C]-73.4923[/C][C]-232.549[/C][/ROW]
[ROW][C]108[/C][C]3355[/C][C]3549.78[/C][C]3886.67[/C][C]-336.888[/C][C]-194.779[/C][/ROW]
[ROW][C]109[/C][C]4000[/C][C]3761.48[/C][C]3779.58[/C][C]-18.1034[/C][C]238.52[/C][/ROW]
[ROW][C]110[/C][C]3450[/C][C]3522.36[/C][C]3672.92[/C][C]-150.557[/C][C]-72.3596[/C][/ROW]
[ROW][C]111[/C][C]3295[/C][C]3984.28[/C][C]3640.21[/C][C]344.073[/C][C]-689.281[/C][/ROW]
[ROW][C]112[/C][C]3390[/C][C]3651.69[/C][C]3653.12[/C][C]-1.43673[/C][C]-261.688[/C][/ROW]
[ROW][C]113[/C][C]3415[/C][C]3857.5[/C][C]3676.25[/C][C]181.248[/C][C]-442.498[/C][/ROW]
[ROW][C]114[/C][C]3440[/C][C]3664.81[/C][C]3730.62[/C][C]-65.8117[/C][C]-224.813[/C][/ROW]
[ROW][C]115[/C][C]3680[/C][C]3604.99[/C][C]3790.42[/C][C]-185.43[/C][C]75.0131[/C][/ROW]
[ROW][C]116[/C][C]3900[/C][C]4062.7[/C][C]3836.25[/C][C]226.445[/C][C]-162.695[/C][/ROW]
[ROW][C]117[/C][C]3965[/C][C]3893.8[/C][C]3893.12[/C][C]0.674383[/C][C]71.2006[/C][/ROW]
[ROW][C]118[/C][C]4295[/C][C]4058.24[/C][C]3978.96[/C][C]79.2785[/C][C]236.763[/C][/ROW]
[ROW][C]119[/C][C]4210[/C][C]3967.55[/C][C]4041.04[/C][C]-73.4923[/C][C]242.451[/C][/ROW]
[ROW][C]120[/C][C]4100[/C][C]3737.07[/C][C]4073.96[/C][C]-336.888[/C][C]362.93[/C][/ROW]
[ROW][C]121[/C][C]4690[/C][C]NA[/C][C]NA[/C][C]-18.1034[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]3860[/C][C]NA[/C][C]NA[/C][C]-150.557[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]4250[/C][C]NA[/C][C]NA[/C][C]344.073[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]4495[/C][C]NA[/C][C]NA[/C][C]-1.43673[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]3800[/C][C]NA[/C][C]NA[/C][C]181.248[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]3845[/C][C]NA[/C][C]NA[/C][C]-65.8117[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301639&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301639&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
12755NANA-18.1034NA
22765NANA-150.557NA
33000NANA344.073NA
42890NANA-1.43673NA
52940NANA181.248NA
63290NANA-65.8117NA
728152730.612916.04-185.4384.3881
830353166.032939.58226.445-131.029
930702968.172967.50.674383101.826
1030403083.653004.3779.2785-43.6535
1126852960.473033.96-73.4923-275.466
1225402707.93044.79-336.888-167.904
1330903025.443043.54-18.103464.5617
1429952899.863050.42-150.55795.1404
1534403414.493070.42344.07325.5108
1633353090.853092.29-1.43673244.145
1732053317.53136.25181.248-112.498
1832853131.483197.29-65.8117153.52
1927903054.573240-185.43-264.57
2032253503.743277.29226.445-278.737
2133603316.093315.420.67438343.909
2232753422.613343.3379.2785-147.612
2335053299.843373.33-73.4923205.159
2431853066.453403.33-336.888118.555
2534703411.063429.17-18.103458.9367
2635103299.653450.21-150.557210.349
2738403796.363452.29344.07343.6358
2836053454.193455.62-1.43673150.812
2936553633.753452.5181.24821.2515
3035553373.153438.96-65.8117181.853
3131403242.283427.71-185.43-102.279
3233803633.533407.08226.445-253.529
3332553366.513365.830.674383-111.508
3434603392.823313.5479.278567.1798
3532453202.133275.62-73.492342.8673
3631202898.743235.62-336.888221.263
3732653171.063189.17-18.103493.9367
3832202992.983143.54-150.557227.015
3931403445.953101.88344.073-305.948
4030503061.693063.12-1.43673-11.6883
4133003203.963022.71181.24896.0432
4229502916.482982.29-65.811733.5201
4326302830.613016.04-185.43-200.612
4427953339.783113.33226.445-544.779
4528403202.133201.460.674383-362.133
4629453378.863299.5879.2785-433.862
4727903327.133400.62-73.4923-537.133
4826053152.73489.58-336.888-547.695
4945903572.733590.83-18.10341017.27
5042303530.93681.46-150.557699.099
5142454119.493775.42344.073125.511
5243003863.773865.21-1.43673436.228
5344754116.463935.21181.248358.543
5439103960.444026.25-65.8117-50.4383
5541003833.744019.17-185.43266.263
5635004180.43953.96226.445-680.404
5743903976.33975.620.674383413.701
5835504090.534011.2579.2785-540.529
5938653922.553996.04-73.4923-57.5494
6037153659.993996.88-336.88855.0131
6133104007.734025.83-18.1034-697.73
6239453945.074095.63-150.557-0.0679012
6350504509.494165.42344.073540.511
6443504227.14228.54-1.43673122.895
65406045004318.75181.248-439.998
6643454311.94377.71-65.811733.1034
6743604241.034426.46-185.43118.971
6849154675.44448.96226.445239.596
6946504463.84463.130.674383186.201
7048054584.494505.2179.2785220.513
7147754515.884589.38-73.4923259.117
7242204309.154646.04-336.888-89.1535
7339754595.444613.54-18.1034-620.438
7438204463.44613.96-150.557-643.401
7555155000.744656.67344.073514.261
7648954672.734674.17-1.43673222.27
7755354841.044659.79181.248693.96
7842304584.44650.21-65.8117-354.397
7936954494.364679.79-185.43-799.362
8055904938.534712.08226.445651.471
8150004693.384692.710.674383306.617
8248754708.244628.9679.2785166.763
8343604492.974566.46-73.4923-132.966
8444054195.824532.71-336.888209.18
8545004513.984532.08-18.1034-13.9799
8640704364.034514.58-150.557-294.026
8748004797.414453.33344.0732.59414
8840804401.274402.71-1.43673-321.272
8948504583.964402.71181.248266.043
9041054327.314393.12-65.8117-222.313
9138054170.824356.25-185.43-365.82
9250604562.284335.83226.445497.721
9340604315.264314.580.674383-255.258
9446004361.364282.0879.2785238.638
9546354156.094229.58-73.4923478.909
9639003874.574211.46-336.88825.4298
9741204267.524285.63-18.1034-147.522
9839604188.194338.75-150.557-228.193
9944004663.244319.17344.073-263.239
10037004288.154289.58-1.43673-588.147
10139704417.294236.04181.248-447.29
10245504106.484172.29-65.8117443.52
10351403959.154144.58-185.431180.85
10450004344.784118.33226.445655.221
10536504051.724051.040.674383-401.716
10643004071.363992.0879.2785228.638
10736503882.553956.04-73.4923-232.549
10833553549.783886.67-336.888-194.779
10940003761.483779.58-18.1034238.52
11034503522.363672.92-150.557-72.3596
11132953984.283640.21344.073-689.281
11233903651.693653.12-1.43673-261.688
11334153857.53676.25181.248-442.498
11434403664.813730.62-65.8117-224.813
11536803604.993790.42-185.4375.0131
11639004062.73836.25226.445-162.695
11739653893.83893.120.67438371.2006
11842954058.243978.9679.2785236.763
11942103967.554041.04-73.4923242.451
12041003737.074073.96-336.888362.93
1214690NANA-18.1034NA
1223860NANA-150.557NA
1234250NANA344.073NA
1244495NANA-1.43673NA
1253800NANA181.248NA
1263845NANA-65.8117NA



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')