Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationTue, 20 Dec 2016 13:26:50 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t14822371886lp8uyen1dat0vz.htm/, Retrieved Fri, 01 Nov 2024 03:28:12 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301634, Retrieved Fri, 01 Nov 2024 03:28:12 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsCorrelation matrices
Estimated Impact95
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [Correlation matrices] [2016-12-20 12:26:50] [16e0888ced5f28ae20ce1ff74f042113] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	3	11
5	4	11
4	5	15
4	4	15
4	4	13
5	3	14
5	3	13
4	4	15
4	4	14
5	4	15
5	4	10
4	4	11
4	4	16
4	3	17
4	4	14
5	4	13
4	4	10
3	4	13
4	4	17
5	4	18
4	4	17
5	4	11
4	4	15
4	4	12
3	3	15
4	4	15
4	4	12
4	4	19
4	4	13
3	4	15
4	3	13
5	4	10
4	4	14
4	2	12
5	4	15
4	4	13
3	3	18
2	4	15
5	4	11
4	4	14
5	4	11
4	3	14
4	4	9
4	4	13
3	4	13
4	4	12
4	4	17
3	4	16
3	3	15
5	4	16
5	5	16
5	5	13
2	3	13
3	4	12
2	4	11
4	4	13
5	5	15
4	4	13
4	4	14
5	4	13
5	4	15
4	5	14
5	4	14
4	4	13
4	2	11
5	4	14
3	4	17
2	4	15
5	4	15
4	4	13
4	4	12
4	4	14
3	3	11
5	5	14
4	4	18
5	3	15
3	4	18
2	4	16
5	4	12
4	4	14
1	3	14
4	4	14
5	4	14
4	4	13
5	5	12
4	4	13
5	4	15
4	4	13
5	4	14
5	4	15
4	4	13
4	5	14
4	4	17
4	5	15
4	4	13
4	4	14
4	5	17
5	4	8
5	4	15
4	4	10
4	4	15
4	4	15
2	4	14
4	4	15
4	4	18
4	4	14
4	4	19
4	4	16
4	4	17
4	4	18
4	4	13
4	4	10
3	3	14
5	4	13
4	4	12
5	4	13
4	4	12
5	4	13
3	4	16
4	4	12
3	4	14
4	4	17
4	4	14
4	4	12
4	4	14
5	4	17
4	4	13
4	4	11
4	4	14
2	3	11
4	4	17
4	5	15
3	3	10
2	3	15
4	4	16
4	4	17
3	3	15
4	4	12
5	5	15
4	5	10
3	3	13
3	4	17
4	4	17
3	4	16
4	5	15
2	4	16
5	5	16
4	3	15
4	4	16
3	3	14
4	4	17
5	4	14
4	4	12
2	4	15
4	4	14
5	4	15
4	4	14
4	4	13
5	4	16
4	4	13
5	5	14
3	4	13
4	4	13
4	4	15
3	3	13
4	4	14
4	4	13
3	4	12




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time0 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301634&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]0 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301634&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301634&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.







Correlations for all pairs of data series (method=pearson)
TVDC1TVDC2SOMIVBH
TVDC110.331-0.073
TVDC20.33110.116
SOMIVBH -0.0730.1161

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=pearson) \tabularnewline
  & TVDC1 & TVDC2 & SOMIVBH
 \tabularnewline
TVDC1 & 1 & 0.331 & -0.073 \tabularnewline
TVDC2 & 0.331 & 1 & 0.116 \tabularnewline
SOMIVBH
 & -0.073 & 0.116 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301634&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=pearson)[/C][/ROW]
[ROW][C] [/C][C]TVDC1[/C][C]TVDC2[/C][C]SOMIVBH
[/C][/ROW]
[ROW][C]TVDC1[/C][C]1[/C][C]0.331[/C][C]-0.073[/C][/ROW]
[ROW][C]TVDC2[/C][C]0.331[/C][C]1[/C][C]0.116[/C][/ROW]
[ROW][C]SOMIVBH
[/C][C]-0.073[/C][C]0.116[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301634&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301634&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=pearson)
TVDC1TVDC2SOMIVBH
TVDC110.331-0.073
TVDC20.33110.116
SOMIVBH -0.0730.1161







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
TVDC1;TVDC20.33110.34720.3201
p-value(0)(0)(0)
TVDC1;SOMIVBH -0.073-0.0676-0.0531
p-value(0.3473)(0.3836)(0.4026)
TVDC2;SOMIVBH 0.1160.11610.0967
p-value(0.1343)(0.134)(0.1388)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
TVDC1;TVDC2 & 0.3311 & 0.3472 & 0.3201 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
TVDC1;SOMIVBH
 & -0.073 & -0.0676 & -0.0531 \tabularnewline
p-value & (0.3473) & (0.3836) & (0.4026) \tabularnewline
TVDC2;SOMIVBH
 & 0.116 & 0.1161 & 0.0967 \tabularnewline
p-value & (0.1343) & (0.134) & (0.1388) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301634&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]TVDC1;TVDC2[/C][C]0.3311[/C][C]0.3472[/C][C]0.3201[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]TVDC1;SOMIVBH
[/C][C]-0.073[/C][C]-0.0676[/C][C]-0.0531[/C][/ROW]
[ROW][C]p-value[/C][C](0.3473)[/C][C](0.3836)[/C][C](0.4026)[/C][/ROW]
[ROW][C]TVDC2;SOMIVBH
[/C][C]0.116[/C][C]0.1161[/C][C]0.0967[/C][/ROW]
[ROW][C]p-value[/C][C](0.1343)[/C][C](0.134)[/C][C](0.1388)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301634&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301634&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
TVDC1;TVDC20.33110.34720.3201
p-value(0)(0)(0)
TVDC1;SOMIVBH -0.073-0.0676-0.0531
p-value(0.3473)(0.3836)(0.4026)
TVDC2;SOMIVBH 0.1160.11610.0967
p-value(0.1343)(0.134)(0.1388)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.330.330.33
0.020.330.330.33
0.030.330.330.33
0.040.330.330.33
0.050.330.330.33
0.060.330.330.33
0.070.330.330.33
0.080.330.330.33
0.090.330.330.33
0.10.330.330.33

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.33 & 0.33 & 0.33 \tabularnewline
0.02 & 0.33 & 0.33 & 0.33 \tabularnewline
0.03 & 0.33 & 0.33 & 0.33 \tabularnewline
0.04 & 0.33 & 0.33 & 0.33 \tabularnewline
0.05 & 0.33 & 0.33 & 0.33 \tabularnewline
0.06 & 0.33 & 0.33 & 0.33 \tabularnewline
0.07 & 0.33 & 0.33 & 0.33 \tabularnewline
0.08 & 0.33 & 0.33 & 0.33 \tabularnewline
0.09 & 0.33 & 0.33 & 0.33 \tabularnewline
0.1 & 0.33 & 0.33 & 0.33 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301634&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.02[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.03[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.04[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.05[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.06[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.07[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.08[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.09[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.1[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301634&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301634&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.330.330.33
0.020.330.330.33
0.030.330.330.33
0.040.330.330.33
0.050.330.330.33
0.060.330.330.33
0.070.330.330.33
0.080.330.330.33
0.090.330.330.33
0.10.330.330.33



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = pearson ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')