Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 20 Dec 2016 11:26:52 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t1482229700itul81peoyd3qjy.htm/, Retrieved Fri, 01 Nov 2024 03:34:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301580, Retrieved Fri, 01 Nov 2024 03:34:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact138
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-20 10:26:52] [b2e25925e4919b0d6985405fcb461c0d] [Current]
Feedback Forum

Post a new message
Dataseries X:
4400
4400
5400
7300
7200
7100
7000
10000
10100
9400
8500
8300
9200
10400
11700
12200
10400
10400
9800
9200




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301580&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301580&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301580&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.7789233.48340.001172
20.5001412.23670.018429
30.2968861.32770.099614
40.2453671.09730.14277
50.1735420.77610.223384
60.0607850.27180.394266
7-0.075513-0.33770.369552
8-0.092225-0.41240.342202
9-0.102682-0.45920.325519
10-0.111425-0.49830.311851
11-0.204348-0.91390.185835
12-0.331436-1.48220.076933
13-0.424616-1.89890.036048

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.778923 & 3.4834 & 0.001172 \tabularnewline
2 & 0.500141 & 2.2367 & 0.018429 \tabularnewline
3 & 0.296886 & 1.3277 & 0.099614 \tabularnewline
4 & 0.245367 & 1.0973 & 0.14277 \tabularnewline
5 & 0.173542 & 0.7761 & 0.223384 \tabularnewline
6 & 0.060785 & 0.2718 & 0.394266 \tabularnewline
7 & -0.075513 & -0.3377 & 0.369552 \tabularnewline
8 & -0.092225 & -0.4124 & 0.342202 \tabularnewline
9 & -0.102682 & -0.4592 & 0.325519 \tabularnewline
10 & -0.111425 & -0.4983 & 0.311851 \tabularnewline
11 & -0.204348 & -0.9139 & 0.185835 \tabularnewline
12 & -0.331436 & -1.4822 & 0.076933 \tabularnewline
13 & -0.424616 & -1.8989 & 0.036048 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301580&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.778923[/C][C]3.4834[/C][C]0.001172[/C][/ROW]
[ROW][C]2[/C][C]0.500141[/C][C]2.2367[/C][C]0.018429[/C][/ROW]
[ROW][C]3[/C][C]0.296886[/C][C]1.3277[/C][C]0.099614[/C][/ROW]
[ROW][C]4[/C][C]0.245367[/C][C]1.0973[/C][C]0.14277[/C][/ROW]
[ROW][C]5[/C][C]0.173542[/C][C]0.7761[/C][C]0.223384[/C][/ROW]
[ROW][C]6[/C][C]0.060785[/C][C]0.2718[/C][C]0.394266[/C][/ROW]
[ROW][C]7[/C][C]-0.075513[/C][C]-0.3377[/C][C]0.369552[/C][/ROW]
[ROW][C]8[/C][C]-0.092225[/C][C]-0.4124[/C][C]0.342202[/C][/ROW]
[ROW][C]9[/C][C]-0.102682[/C][C]-0.4592[/C][C]0.325519[/C][/ROW]
[ROW][C]10[/C][C]-0.111425[/C][C]-0.4983[/C][C]0.311851[/C][/ROW]
[ROW][C]11[/C][C]-0.204348[/C][C]-0.9139[/C][C]0.185835[/C][/ROW]
[ROW][C]12[/C][C]-0.331436[/C][C]-1.4822[/C][C]0.076933[/C][/ROW]
[ROW][C]13[/C][C]-0.424616[/C][C]-1.8989[/C][C]0.036048[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301580&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301580&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.7789233.48340.001172
20.5001412.23670.018429
30.2968861.32770.099614
40.2453671.09730.14277
50.1735420.77610.223384
60.0607850.27180.394266
7-0.075513-0.33770.369552
8-0.092225-0.41240.342202
9-0.102682-0.45920.325519
10-0.111425-0.49830.311851
11-0.204348-0.91390.185835
12-0.331436-1.48220.076933
13-0.424616-1.89890.036048







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.7789233.48340.001172
2-0.271003-1.2120.119826
30.0352070.15750.438234
40.2037740.91130.186494
5-0.206736-0.92460.18311
6-0.086767-0.3880.351045
7-0.07529-0.33670.369923
80.1501730.67160.254763
9-0.174397-0.77990.222283
10-0.001356-0.00610.497611
11-0.165277-0.73910.234204
12-0.237999-1.06440.149924
13-0.057567-0.25740.399732

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.778923 & 3.4834 & 0.001172 \tabularnewline
2 & -0.271003 & -1.212 & 0.119826 \tabularnewline
3 & 0.035207 & 0.1575 & 0.438234 \tabularnewline
4 & 0.203774 & 0.9113 & 0.186494 \tabularnewline
5 & -0.206736 & -0.9246 & 0.18311 \tabularnewline
6 & -0.086767 & -0.388 & 0.351045 \tabularnewline
7 & -0.07529 & -0.3367 & 0.369923 \tabularnewline
8 & 0.150173 & 0.6716 & 0.254763 \tabularnewline
9 & -0.174397 & -0.7799 & 0.222283 \tabularnewline
10 & -0.001356 & -0.0061 & 0.497611 \tabularnewline
11 & -0.165277 & -0.7391 & 0.234204 \tabularnewline
12 & -0.237999 & -1.0644 & 0.149924 \tabularnewline
13 & -0.057567 & -0.2574 & 0.399732 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301580&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.778923[/C][C]3.4834[/C][C]0.001172[/C][/ROW]
[ROW][C]2[/C][C]-0.271003[/C][C]-1.212[/C][C]0.119826[/C][/ROW]
[ROW][C]3[/C][C]0.035207[/C][C]0.1575[/C][C]0.438234[/C][/ROW]
[ROW][C]4[/C][C]0.203774[/C][C]0.9113[/C][C]0.186494[/C][/ROW]
[ROW][C]5[/C][C]-0.206736[/C][C]-0.9246[/C][C]0.18311[/C][/ROW]
[ROW][C]6[/C][C]-0.086767[/C][C]-0.388[/C][C]0.351045[/C][/ROW]
[ROW][C]7[/C][C]-0.07529[/C][C]-0.3367[/C][C]0.369923[/C][/ROW]
[ROW][C]8[/C][C]0.150173[/C][C]0.6716[/C][C]0.254763[/C][/ROW]
[ROW][C]9[/C][C]-0.174397[/C][C]-0.7799[/C][C]0.222283[/C][/ROW]
[ROW][C]10[/C][C]-0.001356[/C][C]-0.0061[/C][C]0.497611[/C][/ROW]
[ROW][C]11[/C][C]-0.165277[/C][C]-0.7391[/C][C]0.234204[/C][/ROW]
[ROW][C]12[/C][C]-0.237999[/C][C]-1.0644[/C][C]0.149924[/C][/ROW]
[ROW][C]13[/C][C]-0.057567[/C][C]-0.2574[/C][C]0.399732[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301580&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301580&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.7789233.48340.001172
2-0.271003-1.2120.119826
30.0352070.15750.438234
40.2037740.91130.186494
5-0.206736-0.92460.18311
6-0.086767-0.3880.351045
7-0.07529-0.33670.369923
80.1501730.67160.254763
9-0.174397-0.77990.222283
10-0.001356-0.00610.497611
11-0.165277-0.73910.234204
12-0.237999-1.06440.149924
13-0.057567-0.25740.399732



Parameters (Session):
par1 = 60 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')