Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationMon, 19 Dec 2016 22:32:03 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482183133kdik07ds40zac4q.htm/, Retrieved Fri, 01 Nov 2024 03:38:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301529, Retrieved Fri, 01 Nov 2024 03:38:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact76
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [] [2016-12-19 21:32:03] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
2298.3
2424.67
2584.65
2639.42
2452.02
2537.49
2726.36
2843.85
2615.11
2778.08
2918.75
3023.41
2733.07
2933.31
3089.19
3256.6
2968.74
3101.7
3277.21
3420.1
3097.55
3286.21
3491.96
3608.53
3259.04
3492.27
3665.64
3808.02
3397.47
3644.83
3812.8
3958.78
3602.73
3845.49
4022.27
4195.29
3867.28
4142.62
4217.79
4487.61
4089.69
4431.36
4629.82
4832.81




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301529&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301529&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301529&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.31730.0118-0.0223-0.1178-1.2515-0.41710.9139
(p-val)(0.9255 )(0.9937 )(0.9214 )(0.9723 )(0.0013 )(0.0374 )(0.0675 )
Estimates ( 2 )-0.34390-0.0234-0.0911-1.2508-0.41750.9122
(p-val)(0.4226 )(NA )(0.9013 )(0.8431 )(0.0011 )(0.0266 )(0.065 )
Estimates ( 3 )-0.36700-0.0679-1.2558-0.41720.9277
(p-val)(0.3641 )(NA )(NA )(0.8791 )(8e-04 )(0.0247 )(0.0766 )
Estimates ( 4 )-0.4221000-1.2447-0.42220.9106
(p-val)(0.0074 )(NA )(NA )(NA )(5e-04 )(0.0206 )(0.0458 )
Estimates ( 5 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & -0.3173 & 0.0118 & -0.0223 & -0.1178 & -1.2515 & -0.4171 & 0.9139 \tabularnewline
(p-val) & (0.9255 ) & (0.9937 ) & (0.9214 ) & (0.9723 ) & (0.0013 ) & (0.0374 ) & (0.0675 ) \tabularnewline
Estimates ( 2 ) & -0.3439 & 0 & -0.0234 & -0.0911 & -1.2508 & -0.4175 & 0.9122 \tabularnewline
(p-val) & (0.4226 ) & (NA ) & (0.9013 ) & (0.8431 ) & (0.0011 ) & (0.0266 ) & (0.065 ) \tabularnewline
Estimates ( 3 ) & -0.367 & 0 & 0 & -0.0679 & -1.2558 & -0.4172 & 0.9277 \tabularnewline
(p-val) & (0.3641 ) & (NA ) & (NA ) & (0.8791 ) & (8e-04 ) & (0.0247 ) & (0.0766 ) \tabularnewline
Estimates ( 4 ) & -0.4221 & 0 & 0 & 0 & -1.2447 & -0.4222 & 0.9106 \tabularnewline
(p-val) & (0.0074 ) & (NA ) & (NA ) & (NA ) & (5e-04 ) & (0.0206 ) & (0.0458 ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301529&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.3173[/C][C]0.0118[/C][C]-0.0223[/C][C]-0.1178[/C][C]-1.2515[/C][C]-0.4171[/C][C]0.9139[/C][/ROW]
[ROW][C](p-val)[/C][C](0.9255 )[/C][C](0.9937 )[/C][C](0.9214 )[/C][C](0.9723 )[/C][C](0.0013 )[/C][C](0.0374 )[/C][C](0.0675 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-0.3439[/C][C]0[/C][C]-0.0234[/C][C]-0.0911[/C][C]-1.2508[/C][C]-0.4175[/C][C]0.9122[/C][/ROW]
[ROW][C](p-val)[/C][C](0.4226 )[/C][C](NA )[/C][C](0.9013 )[/C][C](0.8431 )[/C][C](0.0011 )[/C][C](0.0266 )[/C][C](0.065 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-0.367[/C][C]0[/C][C]0[/C][C]-0.0679[/C][C]-1.2558[/C][C]-0.4172[/C][C]0.9277[/C][/ROW]
[ROW][C](p-val)[/C][C](0.3641 )[/C][C](NA )[/C][C](NA )[/C][C](0.8791 )[/C][C](8e-04 )[/C][C](0.0247 )[/C][C](0.0766 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]-0.4221[/C][C]0[/C][C]0[/C][C]0[/C][C]-1.2447[/C][C]-0.4222[/C][C]0.9106[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0074 )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](5e-04 )[/C][C](0.0206 )[/C][C](0.0458 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301529&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301529&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.31730.0118-0.0223-0.1178-1.2515-0.41710.9139
(p-val)(0.9255 )(0.9937 )(0.9214 )(0.9723 )(0.0013 )(0.0374 )(0.0675 )
Estimates ( 2 )-0.34390-0.0234-0.0911-1.2508-0.41750.9122
(p-val)(0.4226 )(NA )(0.9013 )(0.8431 )(0.0011 )(0.0266 )(0.065 )
Estimates ( 3 )-0.36700-0.0679-1.2558-0.41720.9277
(p-val)(0.3641 )(NA )(NA )(0.8791 )(8e-04 )(0.0247 )(0.0766 )
Estimates ( 4 )-0.4221000-1.2447-0.42220.9106
(p-val)(0.0074 )(NA )(NA )(NA )(5e-04 )(0.0206 )(0.0458 )
Estimates ( 5 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-4.94834803575068
-33.7911573098641
11.1012381556859
65.4790685240947
-7.99934569698239
48.7212914059369
-11.0603450811947
-5.64796820997826
-70.1936051746101
29.6767859591572
24.131808945062
64.7579081233952
1.80199511889559
-51.5264878848015
-0.5675119007242
-1.15093098547794
-36.4154761987921
9.92069082775073
53.4083216851056
-3.71547569136187
-47.1845763153214
45.7590759836689
0.651225008857067
-5.64740383131775
-72.2087504834991
3.6192052348205
3.26059073152452
17.9226751260409
42.0893793931829
14.3640468737278
-1.5927183420578
21.5621377601243
50.0493851503954
51.0823464982227
-74.2521864485001
72.5512262522521
-2.98934406770791
56.4823894986682
112.44009356639
2.10586280290261

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-4.94834803575068 \tabularnewline
-33.7911573098641 \tabularnewline
11.1012381556859 \tabularnewline
65.4790685240947 \tabularnewline
-7.99934569698239 \tabularnewline
48.7212914059369 \tabularnewline
-11.0603450811947 \tabularnewline
-5.64796820997826 \tabularnewline
-70.1936051746101 \tabularnewline
29.6767859591572 \tabularnewline
24.131808945062 \tabularnewline
64.7579081233952 \tabularnewline
1.80199511889559 \tabularnewline
-51.5264878848015 \tabularnewline
-0.5675119007242 \tabularnewline
-1.15093098547794 \tabularnewline
-36.4154761987921 \tabularnewline
9.92069082775073 \tabularnewline
53.4083216851056 \tabularnewline
-3.71547569136187 \tabularnewline
-47.1845763153214 \tabularnewline
45.7590759836689 \tabularnewline
0.651225008857067 \tabularnewline
-5.64740383131775 \tabularnewline
-72.2087504834991 \tabularnewline
3.6192052348205 \tabularnewline
3.26059073152452 \tabularnewline
17.9226751260409 \tabularnewline
42.0893793931829 \tabularnewline
14.3640468737278 \tabularnewline
-1.5927183420578 \tabularnewline
21.5621377601243 \tabularnewline
50.0493851503954 \tabularnewline
51.0823464982227 \tabularnewline
-74.2521864485001 \tabularnewline
72.5512262522521 \tabularnewline
-2.98934406770791 \tabularnewline
56.4823894986682 \tabularnewline
112.44009356639 \tabularnewline
2.10586280290261 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301529&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-4.94834803575068[/C][/ROW]
[ROW][C]-33.7911573098641[/C][/ROW]
[ROW][C]11.1012381556859[/C][/ROW]
[ROW][C]65.4790685240947[/C][/ROW]
[ROW][C]-7.99934569698239[/C][/ROW]
[ROW][C]48.7212914059369[/C][/ROW]
[ROW][C]-11.0603450811947[/C][/ROW]
[ROW][C]-5.64796820997826[/C][/ROW]
[ROW][C]-70.1936051746101[/C][/ROW]
[ROW][C]29.6767859591572[/C][/ROW]
[ROW][C]24.131808945062[/C][/ROW]
[ROW][C]64.7579081233952[/C][/ROW]
[ROW][C]1.80199511889559[/C][/ROW]
[ROW][C]-51.5264878848015[/C][/ROW]
[ROW][C]-0.5675119007242[/C][/ROW]
[ROW][C]-1.15093098547794[/C][/ROW]
[ROW][C]-36.4154761987921[/C][/ROW]
[ROW][C]9.92069082775073[/C][/ROW]
[ROW][C]53.4083216851056[/C][/ROW]
[ROW][C]-3.71547569136187[/C][/ROW]
[ROW][C]-47.1845763153214[/C][/ROW]
[ROW][C]45.7590759836689[/C][/ROW]
[ROW][C]0.651225008857067[/C][/ROW]
[ROW][C]-5.64740383131775[/C][/ROW]
[ROW][C]-72.2087504834991[/C][/ROW]
[ROW][C]3.6192052348205[/C][/ROW]
[ROW][C]3.26059073152452[/C][/ROW]
[ROW][C]17.9226751260409[/C][/ROW]
[ROW][C]42.0893793931829[/C][/ROW]
[ROW][C]14.3640468737278[/C][/ROW]
[ROW][C]-1.5927183420578[/C][/ROW]
[ROW][C]21.5621377601243[/C][/ROW]
[ROW][C]50.0493851503954[/C][/ROW]
[ROW][C]51.0823464982227[/C][/ROW]
[ROW][C]-74.2521864485001[/C][/ROW]
[ROW][C]72.5512262522521[/C][/ROW]
[ROW][C]-2.98934406770791[/C][/ROW]
[ROW][C]56.4823894986682[/C][/ROW]
[ROW][C]112.44009356639[/C][/ROW]
[ROW][C]2.10586280290261[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301529&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301529&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-4.94834803575068
-33.7911573098641
11.1012381556859
65.4790685240947
-7.99934569698239
48.7212914059369
-11.0603450811947
-5.64796820997826
-70.1936051746101
29.6767859591572
24.131808945062
64.7579081233952
1.80199511889559
-51.5264878848015
-0.5675119007242
-1.15093098547794
-36.4154761987921
9.92069082775073
53.4083216851056
-3.71547569136187
-47.1845763153214
45.7590759836689
0.651225008857067
-5.64740383131775
-72.2087504834991
3.6192052348205
3.26059073152452
17.9226751260409
42.0893793931829
14.3640468737278
-1.5927183420578
21.5621377601243
50.0493851503954
51.0823464982227
-74.2521864485001
72.5512262522521
-2.98934406770791
56.4823894986682
112.44009356639
2.10586280290261



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
par9 <- '1'
par8 <- '2'
par7 <- '0'
par6 <- '1'
par5 <- '4'
par4 <- '1'
par3 <- '1'
par2 <- '1'
par1 <- 'FALSE'
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')