Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 18 Dec 2016 22:04:57 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482095108l7ywvyhwf4x2usr.htm/, Retrieved Fri, 01 Nov 2024 03:32:07 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301243, Retrieved Fri, 01 Nov 2024 03:32:07 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact85
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Spectral Analysis] [] [2016-12-16 13:29:44] [683f400e1b95307fc738e729f07c4fce]
- R P   [Spectral Analysis] [] [2016-12-18 18:43:40] [683f400e1b95307fc738e729f07c4fce]
- RMP       [(Partial) Autocorrelation Function] [] [2016-12-18 21:04:57] [404ac5ee4f7301873f6a96ef36861981] [Current]
Feedback Forum

Post a new message
Dataseries X:
6086
6090.5
6103.5
6144
6190.5
6225
6272
6294
6366
6426
6477
6500
6538
6581
6615.5
6639.5
6651
6665
6684
6684.5
6666.5
6666.5
6651
6652
6647
6618.5
6604.5
6572
6556
6535
6515.5
6515
6489
6491
6483.5
6486.5
6486.5
6478.5
6461
6458.5
6446
6420
6397.5
6408
6408.5
6401.5
6408.5
6417.5
6406.5
6426.5
6431.5
6441.5
6446
6450
6468
6488.5
6512
6525
6551
6567.5
6560.5
6572
6574.5
6583.5
6589.5
6600
6601
6586
6590
6616
6641.5
6647
6662
6663.5
6663
6653.5
6642.5
6624.5
6605.5
6604.5
6575
6566
6562.5
6560.5
6502
6552.5
6542.5
6536
6516.5
6506.5
6491.5
6469.5
6445
6426
6355.5
6340
6307.5
6254.5
6230.5
6213
6212.5
6203
6204
6220.5
6205
6199.5
6184.5
6169
6140.5
6144.5
6145.5
6148.5
6145
6133
6138
6104.5
6090.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301243&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301243&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301243&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.5737246.17920
20.6102496.57260
30.5557425.98550
40.5236445.63980
50.4148624.46829e-06
60.3597793.87498.9e-05
70.3249923.50030.00033
80.2530072.7250.003713
90.1660351.78820.038173
100.236232.54430.006132
110.1159611.24890.107101
120.0491470.52930.298794
130.0875830.94330.173743
140.0459370.49480.310855
15-0.002038-0.0220.491262
16-0.010422-0.11220.45541
17-0.060942-0.65640.256445
18-0.061844-0.66610.25334
19-0.124842-1.34460.09069
20-0.096689-1.04140.149933

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.573724 & 6.1792 & 0 \tabularnewline
2 & 0.610249 & 6.5726 & 0 \tabularnewline
3 & 0.555742 & 5.9855 & 0 \tabularnewline
4 & 0.523644 & 5.6398 & 0 \tabularnewline
5 & 0.414862 & 4.4682 & 9e-06 \tabularnewline
6 & 0.359779 & 3.8749 & 8.9e-05 \tabularnewline
7 & 0.324992 & 3.5003 & 0.00033 \tabularnewline
8 & 0.253007 & 2.725 & 0.003713 \tabularnewline
9 & 0.166035 & 1.7882 & 0.038173 \tabularnewline
10 & 0.23623 & 2.5443 & 0.006132 \tabularnewline
11 & 0.115961 & 1.2489 & 0.107101 \tabularnewline
12 & 0.049147 & 0.5293 & 0.298794 \tabularnewline
13 & 0.087583 & 0.9433 & 0.173743 \tabularnewline
14 & 0.045937 & 0.4948 & 0.310855 \tabularnewline
15 & -0.002038 & -0.022 & 0.491262 \tabularnewline
16 & -0.010422 & -0.1122 & 0.45541 \tabularnewline
17 & -0.060942 & -0.6564 & 0.256445 \tabularnewline
18 & -0.061844 & -0.6661 & 0.25334 \tabularnewline
19 & -0.124842 & -1.3446 & 0.09069 \tabularnewline
20 & -0.096689 & -1.0414 & 0.149933 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301243&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.573724[/C][C]6.1792[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.610249[/C][C]6.5726[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.555742[/C][C]5.9855[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.523644[/C][C]5.6398[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.414862[/C][C]4.4682[/C][C]9e-06[/C][/ROW]
[ROW][C]6[/C][C]0.359779[/C][C]3.8749[/C][C]8.9e-05[/C][/ROW]
[ROW][C]7[/C][C]0.324992[/C][C]3.5003[/C][C]0.00033[/C][/ROW]
[ROW][C]8[/C][C]0.253007[/C][C]2.725[/C][C]0.003713[/C][/ROW]
[ROW][C]9[/C][C]0.166035[/C][C]1.7882[/C][C]0.038173[/C][/ROW]
[ROW][C]10[/C][C]0.23623[/C][C]2.5443[/C][C]0.006132[/C][/ROW]
[ROW][C]11[/C][C]0.115961[/C][C]1.2489[/C][C]0.107101[/C][/ROW]
[ROW][C]12[/C][C]0.049147[/C][C]0.5293[/C][C]0.298794[/C][/ROW]
[ROW][C]13[/C][C]0.087583[/C][C]0.9433[/C][C]0.173743[/C][/ROW]
[ROW][C]14[/C][C]0.045937[/C][C]0.4948[/C][C]0.310855[/C][/ROW]
[ROW][C]15[/C][C]-0.002038[/C][C]-0.022[/C][C]0.491262[/C][/ROW]
[ROW][C]16[/C][C]-0.010422[/C][C]-0.1122[/C][C]0.45541[/C][/ROW]
[ROW][C]17[/C][C]-0.060942[/C][C]-0.6564[/C][C]0.256445[/C][/ROW]
[ROW][C]18[/C][C]-0.061844[/C][C]-0.6661[/C][C]0.25334[/C][/ROW]
[ROW][C]19[/C][C]-0.124842[/C][C]-1.3446[/C][C]0.09069[/C][/ROW]
[ROW][C]20[/C][C]-0.096689[/C][C]-1.0414[/C][C]0.149933[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301243&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301243&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.5737246.17920
20.6102496.57260
30.5557425.98550
40.5236445.63980
50.4148624.46829e-06
60.3597793.87498.9e-05
70.3249923.50030.00033
80.2530072.7250.003713
90.1660351.78820.038173
100.236232.54430.006132
110.1159611.24890.107101
120.0491470.52930.298794
130.0875830.94330.173743
140.0459370.49480.310855
15-0.002038-0.0220.491262
16-0.010422-0.11220.45541
17-0.060942-0.65640.256445
18-0.061844-0.66610.25334
19-0.124842-1.34460.09069
20-0.096689-1.04140.149933







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.5737246.17920
20.4190114.51298e-06
30.2023872.17980.015647
40.103471.11440.133705
5-0.088891-0.95740.170182
6-0.095967-1.03360.151738
7-0.015019-0.16180.43589
8-0.042397-0.45660.324396
9-0.101734-1.09570.137739
100.1639271.76550.040051
11-0.052671-0.56730.285809
12-0.148102-1.59510.056705
130.0726030.7820.217917
140.0025270.02720.489165
15-0.044852-0.48310.314978
160.0203340.2190.413517
17-0.112335-1.20990.114391
18-0.024849-0.26760.394728
19-0.027021-0.2910.385778
20-0.017814-0.19190.424093

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.573724 & 6.1792 & 0 \tabularnewline
2 & 0.419011 & 4.5129 & 8e-06 \tabularnewline
3 & 0.202387 & 2.1798 & 0.015647 \tabularnewline
4 & 0.10347 & 1.1144 & 0.133705 \tabularnewline
5 & -0.088891 & -0.9574 & 0.170182 \tabularnewline
6 & -0.095967 & -1.0336 & 0.151738 \tabularnewline
7 & -0.015019 & -0.1618 & 0.43589 \tabularnewline
8 & -0.042397 & -0.4566 & 0.324396 \tabularnewline
9 & -0.101734 & -1.0957 & 0.137739 \tabularnewline
10 & 0.163927 & 1.7655 & 0.040051 \tabularnewline
11 & -0.052671 & -0.5673 & 0.285809 \tabularnewline
12 & -0.148102 & -1.5951 & 0.056705 \tabularnewline
13 & 0.072603 & 0.782 & 0.217917 \tabularnewline
14 & 0.002527 & 0.0272 & 0.489165 \tabularnewline
15 & -0.044852 & -0.4831 & 0.314978 \tabularnewline
16 & 0.020334 & 0.219 & 0.413517 \tabularnewline
17 & -0.112335 & -1.2099 & 0.114391 \tabularnewline
18 & -0.024849 & -0.2676 & 0.394728 \tabularnewline
19 & -0.027021 & -0.291 & 0.385778 \tabularnewline
20 & -0.017814 & -0.1919 & 0.424093 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301243&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.573724[/C][C]6.1792[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.419011[/C][C]4.5129[/C][C]8e-06[/C][/ROW]
[ROW][C]3[/C][C]0.202387[/C][C]2.1798[/C][C]0.015647[/C][/ROW]
[ROW][C]4[/C][C]0.10347[/C][C]1.1144[/C][C]0.133705[/C][/ROW]
[ROW][C]5[/C][C]-0.088891[/C][C]-0.9574[/C][C]0.170182[/C][/ROW]
[ROW][C]6[/C][C]-0.095967[/C][C]-1.0336[/C][C]0.151738[/C][/ROW]
[ROW][C]7[/C][C]-0.015019[/C][C]-0.1618[/C][C]0.43589[/C][/ROW]
[ROW][C]8[/C][C]-0.042397[/C][C]-0.4566[/C][C]0.324396[/C][/ROW]
[ROW][C]9[/C][C]-0.101734[/C][C]-1.0957[/C][C]0.137739[/C][/ROW]
[ROW][C]10[/C][C]0.163927[/C][C]1.7655[/C][C]0.040051[/C][/ROW]
[ROW][C]11[/C][C]-0.052671[/C][C]-0.5673[/C][C]0.285809[/C][/ROW]
[ROW][C]12[/C][C]-0.148102[/C][C]-1.5951[/C][C]0.056705[/C][/ROW]
[ROW][C]13[/C][C]0.072603[/C][C]0.782[/C][C]0.217917[/C][/ROW]
[ROW][C]14[/C][C]0.002527[/C][C]0.0272[/C][C]0.489165[/C][/ROW]
[ROW][C]15[/C][C]-0.044852[/C][C]-0.4831[/C][C]0.314978[/C][/ROW]
[ROW][C]16[/C][C]0.020334[/C][C]0.219[/C][C]0.413517[/C][/ROW]
[ROW][C]17[/C][C]-0.112335[/C][C]-1.2099[/C][C]0.114391[/C][/ROW]
[ROW][C]18[/C][C]-0.024849[/C][C]-0.2676[/C][C]0.394728[/C][/ROW]
[ROW][C]19[/C][C]-0.027021[/C][C]-0.291[/C][C]0.385778[/C][/ROW]
[ROW][C]20[/C][C]-0.017814[/C][C]-0.1919[/C][C]0.424093[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301243&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301243&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.5737246.17920
20.4190114.51298e-06
30.2023872.17980.015647
40.103471.11440.133705
5-0.088891-0.95740.170182
6-0.095967-1.03360.151738
7-0.015019-0.16180.43589
8-0.042397-0.45660.324396
9-0.101734-1.09570.137739
100.1639271.76550.040051
11-0.052671-0.56730.285809
12-0.148102-1.59510.056705
130.0726030.7820.217917
140.0025270.02720.489165
15-0.044852-0.48310.314978
160.0203340.2190.413517
17-0.112335-1.20990.114391
18-0.024849-0.26760.394728
19-0.027021-0.2910.385778
20-0.017814-0.19190.424093



Parameters (Session):
par1 = 60 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')