Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationSun, 18 Dec 2016 18:18:40 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482083044xmjfre4aawd9dh2.htm/, Retrieved Fri, 01 Nov 2024 04:44:59 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:44:59 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
3647
1885
4791
3178
2849
4716
3085
2799
3573
2721
3355
5667
2856
1944
4188
2949
3567
4137
3494
2489
3244
2669
2529
3377
3366
2073
4133
4213
3710
5123
3141
3084
3804
3203
2757
2243
5229
2857
3395
4882
7140
8945
6866
4205
3217
3079
2263
4187
2665
2073
3540
3686
2384
4500
1679
868
1869
3710
6904
3415
938
3359
3551
2278
3033
2280
2901
4812
4882
7896
5048
3741
4418
3471
5055
7595
8124
2333
3008
2744
2833
2428
4269
3207
5170
7767
4544
3741
2193
3432
5282
6635
4222
7317
4132
5048
4383
3761
4081
6491
5859
7139
7682
8649
6146
7137
9948
15819
8370
13222
16711
19059
8303
20781
9638
13444
6072
13442
14457
17705
16463
19194
20688
14739
12702
15760




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2sar1sar2
Estimates ( 1 )-0.5373-0.11560.08220.1672
(p-val)(0 )(0.1983 )(0.3995 )(0.0751 )
Estimates ( 2 )-0.5647-0.120700.1767
(p-val)(0 )(0.1779 )(NA )(0.0597 )
Estimates ( 3 )-0.5044000.1622
(p-val)(0 )(NA )(NA )(0.0824 )
Estimates ( 4 )-0.5145000
(p-val)(0 )(NA )(NA )(NA )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & sar1 & sar2 \tabularnewline
Estimates ( 1 ) & -0.5373 & -0.1156 & 0.0822 & 0.1672 \tabularnewline
(p-val) & (0 ) & (0.1983 ) & (0.3995 ) & (0.0751 ) \tabularnewline
Estimates ( 2 ) & -0.5647 & -0.1207 & 0 & 0.1767 \tabularnewline
(p-val) & (0 ) & (0.1779 ) & (NA ) & (0.0597 ) \tabularnewline
Estimates ( 3 ) & -0.5044 & 0 & 0 & 0.1622 \tabularnewline
(p-val) & (0 ) & (NA ) & (NA ) & (0.0824 ) \tabularnewline
Estimates ( 4 ) & -0.5145 & 0 & 0 & 0 \tabularnewline
(p-val) & (0 ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]sar1[/C][C]sar2[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.5373[/C][C]-0.1156[/C][C]0.0822[/C][C]0.1672[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0.1983 )[/C][C](0.3995 )[/C][C](0.0751 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-0.5647[/C][C]-0.1207[/C][C]0[/C][C]0.1767[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0.1779 )[/C][C](NA )[/C][C](0.0597 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-0.5044[/C][C]0[/C][C]0[/C][C]0.1622[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0.0824 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]-0.5145[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2sar1sar2
Estimates ( 1 )-0.5373-0.11560.08220.1672
(p-val)(0 )(0.1983 )(0.3995 )(0.0751 )
Estimates ( 2 )-0.5647-0.120700.1767
(p-val)(0 )(0.1779 )(NA )(0.0597 )
Estimates ( 3 )-0.5044000.1622
(p-val)(0 )(NA )(NA )(0.0824 )
Estimates ( 4 )-0.5145000
(p-val)(0 )(NA )(NA )(NA )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
3.6469974848623
-1500.29661616124
1988.84325530581
-141.894423128469
-1134.27935631159
1692.22805124572
-707.607772480373
-1040.06586101931
517.183589550563
-253.948989541332
-122.921860322843
2655.66232387627
-1459.57748080055
-2605.69199271298
1895.82198264593
72.6233967183016
-109.058431997886
956.573636365793
-388.641396851453
-1756.17338554904
514.902759871541
183.682187968903
-719.373262183769
794.774179565358
417.8281293569
-1441.55654737379
1465.51061292153
1334.61285435785
-502.892364642282
1190.79995046842
-1199.57755282633
-1182.75228928399
623.662709735575
-27.2335998914068
-977.47437141265
-920.447433816289
2801.79345791672
-1053.98283213208
-452.488251203822
1929.73809740856
2895.88125652585
2982.4481679196
-1047.10520599667
-3589.73227663844
-2772.39948375988
-495.864908824358
-778.818532653873
1227.23568908048
-1039.47620827801
-1837.13645783327
1357.95652256831
1487.59245286513
-850.423794363879
1562.51751586673
-1610.10995584524
-2479.14088345437
681.421067831645
2566.40548741846
3933.03479398411
-2021.73100249292
-4037.51437416937
934.979224618518
1697.53336744677
-813.842325851218
16.9231096451849
-752.691765312981
-427.452124895419
2528.82492869987
1721.03685211697
2859.26512757893
-1557.0226203078
-2552.67947555729
-0.53044528204191
-545.171563171304
1067.23770537896
2978.16457997757
1642.41507879495
-6018.77327962555
-2030.44329415408
521.426827780972
-47.0389336764792
-261.894632505096
1457.28243176602
-675.013556098371
1133.7667500843
4483.08152069093
-1548.88713467391
-2440.98714210534
-1945.84819131239
516.642536587603
2209.44431687172
2307.73164486754
-1962.09815037447
1296.1428941833
-1313.6670203738
-296.513803073155
113.774201579503
-1031.73035202603
-395.140228425003
2200.604488544
864.228007663689
656.64100225478
1451.99659277237
1352.85695605852
-1982.34819737172
-116.152608696353
3309.81268878847
6871.71565184831
-4582.48570380315
939.032680474822
5743.42190429455
3906.48505713303
-9244.86784763245
7097.01383238046
-5386.46458666399
-2996.41674803342
-4724.4547683226
3474.18296825051
3769.38354417099
3093.67550472097
1948.69466938749
960.604581247029
3658.00023481016
-4901.21317332436
-4153.14997173781
1438.29252536608

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
3.6469974848623 \tabularnewline
-1500.29661616124 \tabularnewline
1988.84325530581 \tabularnewline
-141.894423128469 \tabularnewline
-1134.27935631159 \tabularnewline
1692.22805124572 \tabularnewline
-707.607772480373 \tabularnewline
-1040.06586101931 \tabularnewline
517.183589550563 \tabularnewline
-253.948989541332 \tabularnewline
-122.921860322843 \tabularnewline
2655.66232387627 \tabularnewline
-1459.57748080055 \tabularnewline
-2605.69199271298 \tabularnewline
1895.82198264593 \tabularnewline
72.6233967183016 \tabularnewline
-109.058431997886 \tabularnewline
956.573636365793 \tabularnewline
-388.641396851453 \tabularnewline
-1756.17338554904 \tabularnewline
514.902759871541 \tabularnewline
183.682187968903 \tabularnewline
-719.373262183769 \tabularnewline
794.774179565358 \tabularnewline
417.8281293569 \tabularnewline
-1441.55654737379 \tabularnewline
1465.51061292153 \tabularnewline
1334.61285435785 \tabularnewline
-502.892364642282 \tabularnewline
1190.79995046842 \tabularnewline
-1199.57755282633 \tabularnewline
-1182.75228928399 \tabularnewline
623.662709735575 \tabularnewline
-27.2335998914068 \tabularnewline
-977.47437141265 \tabularnewline
-920.447433816289 \tabularnewline
2801.79345791672 \tabularnewline
-1053.98283213208 \tabularnewline
-452.488251203822 \tabularnewline
1929.73809740856 \tabularnewline
2895.88125652585 \tabularnewline
2982.4481679196 \tabularnewline
-1047.10520599667 \tabularnewline
-3589.73227663844 \tabularnewline
-2772.39948375988 \tabularnewline
-495.864908824358 \tabularnewline
-778.818532653873 \tabularnewline
1227.23568908048 \tabularnewline
-1039.47620827801 \tabularnewline
-1837.13645783327 \tabularnewline
1357.95652256831 \tabularnewline
1487.59245286513 \tabularnewline
-850.423794363879 \tabularnewline
1562.51751586673 \tabularnewline
-1610.10995584524 \tabularnewline
-2479.14088345437 \tabularnewline
681.421067831645 \tabularnewline
2566.40548741846 \tabularnewline
3933.03479398411 \tabularnewline
-2021.73100249292 \tabularnewline
-4037.51437416937 \tabularnewline
934.979224618518 \tabularnewline
1697.53336744677 \tabularnewline
-813.842325851218 \tabularnewline
16.9231096451849 \tabularnewline
-752.691765312981 \tabularnewline
-427.452124895419 \tabularnewline
2528.82492869987 \tabularnewline
1721.03685211697 \tabularnewline
2859.26512757893 \tabularnewline
-1557.0226203078 \tabularnewline
-2552.67947555729 \tabularnewline
-0.53044528204191 \tabularnewline
-545.171563171304 \tabularnewline
1067.23770537896 \tabularnewline
2978.16457997757 \tabularnewline
1642.41507879495 \tabularnewline
-6018.77327962555 \tabularnewline
-2030.44329415408 \tabularnewline
521.426827780972 \tabularnewline
-47.0389336764792 \tabularnewline
-261.894632505096 \tabularnewline
1457.28243176602 \tabularnewline
-675.013556098371 \tabularnewline
1133.7667500843 \tabularnewline
4483.08152069093 \tabularnewline
-1548.88713467391 \tabularnewline
-2440.98714210534 \tabularnewline
-1945.84819131239 \tabularnewline
516.642536587603 \tabularnewline
2209.44431687172 \tabularnewline
2307.73164486754 \tabularnewline
-1962.09815037447 \tabularnewline
1296.1428941833 \tabularnewline
-1313.6670203738 \tabularnewline
-296.513803073155 \tabularnewline
113.774201579503 \tabularnewline
-1031.73035202603 \tabularnewline
-395.140228425003 \tabularnewline
2200.604488544 \tabularnewline
864.228007663689 \tabularnewline
656.64100225478 \tabularnewline
1451.99659277237 \tabularnewline
1352.85695605852 \tabularnewline
-1982.34819737172 \tabularnewline
-116.152608696353 \tabularnewline
3309.81268878847 \tabularnewline
6871.71565184831 \tabularnewline
-4582.48570380315 \tabularnewline
939.032680474822 \tabularnewline
5743.42190429455 \tabularnewline
3906.48505713303 \tabularnewline
-9244.86784763245 \tabularnewline
7097.01383238046 \tabularnewline
-5386.46458666399 \tabularnewline
-2996.41674803342 \tabularnewline
-4724.4547683226 \tabularnewline
3474.18296825051 \tabularnewline
3769.38354417099 \tabularnewline
3093.67550472097 \tabularnewline
1948.69466938749 \tabularnewline
960.604581247029 \tabularnewline
3658.00023481016 \tabularnewline
-4901.21317332436 \tabularnewline
-4153.14997173781 \tabularnewline
1438.29252536608 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]3.6469974848623[/C][/ROW]
[ROW][C]-1500.29661616124[/C][/ROW]
[ROW][C]1988.84325530581[/C][/ROW]
[ROW][C]-141.894423128469[/C][/ROW]
[ROW][C]-1134.27935631159[/C][/ROW]
[ROW][C]1692.22805124572[/C][/ROW]
[ROW][C]-707.607772480373[/C][/ROW]
[ROW][C]-1040.06586101931[/C][/ROW]
[ROW][C]517.183589550563[/C][/ROW]
[ROW][C]-253.948989541332[/C][/ROW]
[ROW][C]-122.921860322843[/C][/ROW]
[ROW][C]2655.66232387627[/C][/ROW]
[ROW][C]-1459.57748080055[/C][/ROW]
[ROW][C]-2605.69199271298[/C][/ROW]
[ROW][C]1895.82198264593[/C][/ROW]
[ROW][C]72.6233967183016[/C][/ROW]
[ROW][C]-109.058431997886[/C][/ROW]
[ROW][C]956.573636365793[/C][/ROW]
[ROW][C]-388.641396851453[/C][/ROW]
[ROW][C]-1756.17338554904[/C][/ROW]
[ROW][C]514.902759871541[/C][/ROW]
[ROW][C]183.682187968903[/C][/ROW]
[ROW][C]-719.373262183769[/C][/ROW]
[ROW][C]794.774179565358[/C][/ROW]
[ROW][C]417.8281293569[/C][/ROW]
[ROW][C]-1441.55654737379[/C][/ROW]
[ROW][C]1465.51061292153[/C][/ROW]
[ROW][C]1334.61285435785[/C][/ROW]
[ROW][C]-502.892364642282[/C][/ROW]
[ROW][C]1190.79995046842[/C][/ROW]
[ROW][C]-1199.57755282633[/C][/ROW]
[ROW][C]-1182.75228928399[/C][/ROW]
[ROW][C]623.662709735575[/C][/ROW]
[ROW][C]-27.2335998914068[/C][/ROW]
[ROW][C]-977.47437141265[/C][/ROW]
[ROW][C]-920.447433816289[/C][/ROW]
[ROW][C]2801.79345791672[/C][/ROW]
[ROW][C]-1053.98283213208[/C][/ROW]
[ROW][C]-452.488251203822[/C][/ROW]
[ROW][C]1929.73809740856[/C][/ROW]
[ROW][C]2895.88125652585[/C][/ROW]
[ROW][C]2982.4481679196[/C][/ROW]
[ROW][C]-1047.10520599667[/C][/ROW]
[ROW][C]-3589.73227663844[/C][/ROW]
[ROW][C]-2772.39948375988[/C][/ROW]
[ROW][C]-495.864908824358[/C][/ROW]
[ROW][C]-778.818532653873[/C][/ROW]
[ROW][C]1227.23568908048[/C][/ROW]
[ROW][C]-1039.47620827801[/C][/ROW]
[ROW][C]-1837.13645783327[/C][/ROW]
[ROW][C]1357.95652256831[/C][/ROW]
[ROW][C]1487.59245286513[/C][/ROW]
[ROW][C]-850.423794363879[/C][/ROW]
[ROW][C]1562.51751586673[/C][/ROW]
[ROW][C]-1610.10995584524[/C][/ROW]
[ROW][C]-2479.14088345437[/C][/ROW]
[ROW][C]681.421067831645[/C][/ROW]
[ROW][C]2566.40548741846[/C][/ROW]
[ROW][C]3933.03479398411[/C][/ROW]
[ROW][C]-2021.73100249292[/C][/ROW]
[ROW][C]-4037.51437416937[/C][/ROW]
[ROW][C]934.979224618518[/C][/ROW]
[ROW][C]1697.53336744677[/C][/ROW]
[ROW][C]-813.842325851218[/C][/ROW]
[ROW][C]16.9231096451849[/C][/ROW]
[ROW][C]-752.691765312981[/C][/ROW]
[ROW][C]-427.452124895419[/C][/ROW]
[ROW][C]2528.82492869987[/C][/ROW]
[ROW][C]1721.03685211697[/C][/ROW]
[ROW][C]2859.26512757893[/C][/ROW]
[ROW][C]-1557.0226203078[/C][/ROW]
[ROW][C]-2552.67947555729[/C][/ROW]
[ROW][C]-0.53044528204191[/C][/ROW]
[ROW][C]-545.171563171304[/C][/ROW]
[ROW][C]1067.23770537896[/C][/ROW]
[ROW][C]2978.16457997757[/C][/ROW]
[ROW][C]1642.41507879495[/C][/ROW]
[ROW][C]-6018.77327962555[/C][/ROW]
[ROW][C]-2030.44329415408[/C][/ROW]
[ROW][C]521.426827780972[/C][/ROW]
[ROW][C]-47.0389336764792[/C][/ROW]
[ROW][C]-261.894632505096[/C][/ROW]
[ROW][C]1457.28243176602[/C][/ROW]
[ROW][C]-675.013556098371[/C][/ROW]
[ROW][C]1133.7667500843[/C][/ROW]
[ROW][C]4483.08152069093[/C][/ROW]
[ROW][C]-1548.88713467391[/C][/ROW]
[ROW][C]-2440.98714210534[/C][/ROW]
[ROW][C]-1945.84819131239[/C][/ROW]
[ROW][C]516.642536587603[/C][/ROW]
[ROW][C]2209.44431687172[/C][/ROW]
[ROW][C]2307.73164486754[/C][/ROW]
[ROW][C]-1962.09815037447[/C][/ROW]
[ROW][C]1296.1428941833[/C][/ROW]
[ROW][C]-1313.6670203738[/C][/ROW]
[ROW][C]-296.513803073155[/C][/ROW]
[ROW][C]113.774201579503[/C][/ROW]
[ROW][C]-1031.73035202603[/C][/ROW]
[ROW][C]-395.140228425003[/C][/ROW]
[ROW][C]2200.604488544[/C][/ROW]
[ROW][C]864.228007663689[/C][/ROW]
[ROW][C]656.64100225478[/C][/ROW]
[ROW][C]1451.99659277237[/C][/ROW]
[ROW][C]1352.85695605852[/C][/ROW]
[ROW][C]-1982.34819737172[/C][/ROW]
[ROW][C]-116.152608696353[/C][/ROW]
[ROW][C]3309.81268878847[/C][/ROW]
[ROW][C]6871.71565184831[/C][/ROW]
[ROW][C]-4582.48570380315[/C][/ROW]
[ROW][C]939.032680474822[/C][/ROW]
[ROW][C]5743.42190429455[/C][/ROW]
[ROW][C]3906.48505713303[/C][/ROW]
[ROW][C]-9244.86784763245[/C][/ROW]
[ROW][C]7097.01383238046[/C][/ROW]
[ROW][C]-5386.46458666399[/C][/ROW]
[ROW][C]-2996.41674803342[/C][/ROW]
[ROW][C]-4724.4547683226[/C][/ROW]
[ROW][C]3474.18296825051[/C][/ROW]
[ROW][C]3769.38354417099[/C][/ROW]
[ROW][C]3093.67550472097[/C][/ROW]
[ROW][C]1948.69466938749[/C][/ROW]
[ROW][C]960.604581247029[/C][/ROW]
[ROW][C]3658.00023481016[/C][/ROW]
[ROW][C]-4901.21317332436[/C][/ROW]
[ROW][C]-4153.14997173781[/C][/ROW]
[ROW][C]1438.29252536608[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
3.6469974848623
-1500.29661616124
1988.84325530581
-141.894423128469
-1134.27935631159
1692.22805124572
-707.607772480373
-1040.06586101931
517.183589550563
-253.948989541332
-122.921860322843
2655.66232387627
-1459.57748080055
-2605.69199271298
1895.82198264593
72.6233967183016
-109.058431997886
956.573636365793
-388.641396851453
-1756.17338554904
514.902759871541
183.682187968903
-719.373262183769
794.774179565358
417.8281293569
-1441.55654737379
1465.51061292153
1334.61285435785
-502.892364642282
1190.79995046842
-1199.57755282633
-1182.75228928399
623.662709735575
-27.2335998914068
-977.47437141265
-920.447433816289
2801.79345791672
-1053.98283213208
-452.488251203822
1929.73809740856
2895.88125652585
2982.4481679196
-1047.10520599667
-3589.73227663844
-2772.39948375988
-495.864908824358
-778.818532653873
1227.23568908048
-1039.47620827801
-1837.13645783327
1357.95652256831
1487.59245286513
-850.423794363879
1562.51751586673
-1610.10995584524
-2479.14088345437
681.421067831645
2566.40548741846
3933.03479398411
-2021.73100249292
-4037.51437416937
934.979224618518
1697.53336744677
-813.842325851218
16.9231096451849
-752.691765312981
-427.452124895419
2528.82492869987
1721.03685211697
2859.26512757893
-1557.0226203078
-2552.67947555729
-0.53044528204191
-545.171563171304
1067.23770537896
2978.16457997757
1642.41507879495
-6018.77327962555
-2030.44329415408
521.426827780972
-47.0389336764792
-261.894632505096
1457.28243176602
-675.013556098371
1133.7667500843
4483.08152069093
-1548.88713467391
-2440.98714210534
-1945.84819131239
516.642536587603
2209.44431687172
2307.73164486754
-1962.09815037447
1296.1428941833
-1313.6670203738
-296.513803073155
113.774201579503
-1031.73035202603
-395.140228425003
2200.604488544
864.228007663689
656.64100225478
1451.99659277237
1352.85695605852
-1982.34819737172
-116.152608696353
3309.81268878847
6871.71565184831
-4582.48570380315
939.032680474822
5743.42190429455
3906.48505713303
-9244.86784763245
7097.01383238046
-5386.46458666399
-2996.41674803342
-4724.4547683226
3474.18296825051
3769.38354417099
3093.67550472097
1948.69466938749
960.604581247029
3658.00023481016
-4901.21317332436
-4153.14997173781
1438.29252536608



Parameters (Session):
par1 = 1111110.9520012DefaultDefaultDefaultDefaultDefaultDefaultDefaultDefault1DefaultDefault36361111111111111111144436444FALSEFALSE ; par2 = 2222220518111111111.01.01110111101111001001112121TripleDoubleTriple11 ; par3 = TRUETRUETRUEFALSETRUETRUE0BFGS010100111111100001001110000000BFGSBFGS1additiveadditiveadditive11 ; par4 = P1 P5 Q1 Q3 P95 P990000011011101114124114444444114012121210 ; par5 = 12121212121212121212121212144 ; par6 = White NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite Noise22 ; par7 = 0.950.950.950.950.950.950.950.950.950.950.9500 ; par8 = 22 ; par9 = 00 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 4 ; par6 = 2 ; par7 = 0 ; par8 = 2 ; par9 = 0 ;
R code (references can be found in the software module):
par9 <- '0'
par8 <- '2'
par7 <- '0'
par6 <- '2'
par5 <- '4'
par4 <- '1'
par3 <- '1'
par2 <- '1'
par1 <- 'FALSE'
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')