Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationSun, 18 Dec 2016 17:40:15 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482080924eco28cm89az2b9f.htm/, Retrieved Fri, 01 Nov 2024 04:44:47 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:44:47 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
3647
1885
4791
3178
2849
4716
3085
2799
3573
2721
3355
5667
2856
1944
4188
2949
3567
4137
3494
2489
3244
2669
2529
3377
3366
2073
4133
4213
3710
5123
3141
3084
3804
3203
2757
2243
5229
2857
3395
4882
7140
8945
6866
4205
3217
3079
2263
4187
2665
2073
3540
3686
2384
4500
1679
868
1869
3710
6904
3415
938
3359
3551
2278
3033
2280
2901
4812
4882
7896
5048
3741
4418
3471
5055
7595
8124
2333
3008
2744
2833
2428
4269
3207
5170
7767
4544
3741
2193
3432
5282
6635
4222
7317
4132
5048
4383
3761
4081
6491
5859
7139
7682
8649
6146
7137
9948
15819
8370
13222
16711
19059
8303
20781
9638
13444
6072
13442
14457
17705
16463
19194
20688
14739
12702
15760




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.35170758920966
beta0
gamma0.220663530478294

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.35170758920966 \tabularnewline
beta & 0 \tabularnewline
gamma & 0.220663530478294 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.35170758920966[/C][/ROW]
[ROW][C]beta[/C][C]0[/C][/ROW]
[ROW][C]gamma[/C][C]0.220663530478294[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.35170758920966
beta0
gamma0.220663530478294







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
528492156.3692.7
647164581.85284704553134.147152954469
730854892.45841881049-1807.45841881049
827992443.93657573395355.063424266052
935732252.583923409511320.41607659049
1027214819.00578458931-2098.00578458931
1133554066.79082892432-711.790828924319
1256672312.982056480523354.01794351948
1328563314.48250169342-458.48250169342
1419444766.23162916026-2822.23162916026
1541883957.60522414751230.394775852491
1629493116.80248845771-167.802488457711
1735672334.256644909381232.74335509062
1841374042.6778102814394.3221897185726
1934944696.51743779126-1202.51743779126
2024893294.78469447141-805.784694471407
2132442488.21004166513755.789958334871
2226693866.02681603684-1197.02681603684
2325293880.17046359425-1351.17046359425
2433772482.90972405433894.09027594567
2533662497.58426795855868.415732041448
2620733635.65316976904-1562.65316976904
2741333499.15231268473633.847687315272
2842133121.232156371721091.76784362828
2937103201.75854220709508.241457792908
3051233865.376091202741257.62390879726
3131415035.00740093551-1894.00740093551
3230843833.52896106781-749.528961067807
3338043182.98121592385621.01878407615
3432033993.4659324166-790.465932416601
3527573991.91348516196-1234.91348516196
3622433185.96615946251-942.966159462512
3752292663.448095252852565.55190474715
3828573955.92063846362-1098.92063846362
3933953782.30211122071-387.302111220713
4048823316.230514848521565.76948515148
4171404177.963086035462962.03691396454
4289455085.663157339183859.33684266082
4368666757.70164248064108.298357519362
4442056745.3321575265-2540.3321575265
4532176362.65994684799-3145.65994684799
4630795250.59946521536-2171.59946521536
4722634264.90897531987-2001.90897531987
4841873131.465063384621055.53493661538
4926653926.89174002107-1261.89174002107
5020733616.71056056203-1543.71056056203
5135402876.12835046788663.871649532121
5236863117.64080155184568.359198448163
5323843410.20577748127-1026.20577748127
5445003142.601691467631357.39830853237
5516793738.16603969582-2059.16603969582
568683008.30198459082-2140.30198459082
5718692120.1005830204-251.100583020404
5837102466.092148339341243.90785166066
5969042532.986163858594371.01383614141
6034154053.05830967693-638.058309676927
619383963.46615648152-3025.46615648152
6233593547.55996675138-188.559966751377
6335513557.99073773713-6.99073773712598
6422782821.71517737865-543.715177378647
6530332423.77480272929609.225197270706
6622803692.04932078986-1412.04932078986
6729013298.14389448926-397.143894489258
6848122347.8676658112464.132334189
6948823172.743387936931709.25661206307
7078964538.754903277623357.24509672238
7150485967.43329912829-919.433299128287
7237415242.78234086134-1501.78234086134
7344184564.82741055107-146.827410551073
7434715513.79224466508-2042.79224466508
7550554431.43846953856623.561530461442
7675954166.162856532013428.83714346799
7781245416.176607803372707.82339219663
7823337097.91750731391-4764.91750731391
7930085439.60550372017-2431.60550372017
8027444501.11173664058-1757.11173664058
8128333824.0436535051-991.043653505096
8224283135.85578723713-707.855787237129
8342693238.233944181641030.76605581836
8432073613.97189456152-406.971894561515
8551703521.347720962761648.65227903724
8677673802.072243767043964.92775623296
8745445796.62150047846-1252.62150047846
8837415163.59984586938-1422.59984586938
8921935007.83788618203-2814.83788618203
9034324050.07265557945-618.072655579448
9152823686.352026933181595.64797306682
9266354030.772196408242604.22780359176
9342225092.11017567062-870.110175670618
9473175132.577574231882184.42242576812
9541326071.19841470524-1939.19841470524
9650485316.66815835625-268.668158356255
9743834870.56716962034-487.567169620341
9837615482.54245665469-1721.54245665469
9940814457.50331965168-376.503319651677
10064914491.561645292411999.43835470759
10158594811.856443448981047.14355655102
10271395787.075432110281351.92456788972
10376826035.411863487341646.58813651266
10486497120.895937523321528.10406247668
10561467139.18883932273-993.188839322731
10671377440.40773263809-303.407732638094
10799487148.70417841932799.2958215807
108158198622.654614395257196.34538560475
109837010273.8287313891-1903.82873138915
1101322210353.44494953722868.55505046276
1111671111621.20046005795089.79953994205
1121905914529.75612922244529.24387077759
113830313941.0696155006-5638.06961550062
1142078113390.03591301457390.96408698553
115963816566.116005568-6928.11600556798
1161344415167.6895643232-1723.68956432322
117607210925.3190393719-4853.31903937192
1181344212514.1498696258927.850130374154
1191445711368.69500305583088.30499694421
1201770514237.63642658373467.36357341626
1211646311373.29113100385089.70886899622
1221919417286.18255594981907.81744405023
1232068816794.45240452133893.54759547871
1241473920000.82979326-5261.82979326001
1251270214298.4447252881-1596.44472528811
1261576017404.5813266394-1644.58132663943

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
5 & 2849 & 2156.3 & 692.7 \tabularnewline
6 & 4716 & 4581.85284704553 & 134.147152954469 \tabularnewline
7 & 3085 & 4892.45841881049 & -1807.45841881049 \tabularnewline
8 & 2799 & 2443.93657573395 & 355.063424266052 \tabularnewline
9 & 3573 & 2252.58392340951 & 1320.41607659049 \tabularnewline
10 & 2721 & 4819.00578458931 & -2098.00578458931 \tabularnewline
11 & 3355 & 4066.79082892432 & -711.790828924319 \tabularnewline
12 & 5667 & 2312.98205648052 & 3354.01794351948 \tabularnewline
13 & 2856 & 3314.48250169342 & -458.48250169342 \tabularnewline
14 & 1944 & 4766.23162916026 & -2822.23162916026 \tabularnewline
15 & 4188 & 3957.60522414751 & 230.394775852491 \tabularnewline
16 & 2949 & 3116.80248845771 & -167.802488457711 \tabularnewline
17 & 3567 & 2334.25664490938 & 1232.74335509062 \tabularnewline
18 & 4137 & 4042.67781028143 & 94.3221897185726 \tabularnewline
19 & 3494 & 4696.51743779126 & -1202.51743779126 \tabularnewline
20 & 2489 & 3294.78469447141 & -805.784694471407 \tabularnewline
21 & 3244 & 2488.21004166513 & 755.789958334871 \tabularnewline
22 & 2669 & 3866.02681603684 & -1197.02681603684 \tabularnewline
23 & 2529 & 3880.17046359425 & -1351.17046359425 \tabularnewline
24 & 3377 & 2482.90972405433 & 894.09027594567 \tabularnewline
25 & 3366 & 2497.58426795855 & 868.415732041448 \tabularnewline
26 & 2073 & 3635.65316976904 & -1562.65316976904 \tabularnewline
27 & 4133 & 3499.15231268473 & 633.847687315272 \tabularnewline
28 & 4213 & 3121.23215637172 & 1091.76784362828 \tabularnewline
29 & 3710 & 3201.75854220709 & 508.241457792908 \tabularnewline
30 & 5123 & 3865.37609120274 & 1257.62390879726 \tabularnewline
31 & 3141 & 5035.00740093551 & -1894.00740093551 \tabularnewline
32 & 3084 & 3833.52896106781 & -749.528961067807 \tabularnewline
33 & 3804 & 3182.98121592385 & 621.01878407615 \tabularnewline
34 & 3203 & 3993.4659324166 & -790.465932416601 \tabularnewline
35 & 2757 & 3991.91348516196 & -1234.91348516196 \tabularnewline
36 & 2243 & 3185.96615946251 & -942.966159462512 \tabularnewline
37 & 5229 & 2663.44809525285 & 2565.55190474715 \tabularnewline
38 & 2857 & 3955.92063846362 & -1098.92063846362 \tabularnewline
39 & 3395 & 3782.30211122071 & -387.302111220713 \tabularnewline
40 & 4882 & 3316.23051484852 & 1565.76948515148 \tabularnewline
41 & 7140 & 4177.96308603546 & 2962.03691396454 \tabularnewline
42 & 8945 & 5085.66315733918 & 3859.33684266082 \tabularnewline
43 & 6866 & 6757.70164248064 & 108.298357519362 \tabularnewline
44 & 4205 & 6745.3321575265 & -2540.3321575265 \tabularnewline
45 & 3217 & 6362.65994684799 & -3145.65994684799 \tabularnewline
46 & 3079 & 5250.59946521536 & -2171.59946521536 \tabularnewline
47 & 2263 & 4264.90897531987 & -2001.90897531987 \tabularnewline
48 & 4187 & 3131.46506338462 & 1055.53493661538 \tabularnewline
49 & 2665 & 3926.89174002107 & -1261.89174002107 \tabularnewline
50 & 2073 & 3616.71056056203 & -1543.71056056203 \tabularnewline
51 & 3540 & 2876.12835046788 & 663.871649532121 \tabularnewline
52 & 3686 & 3117.64080155184 & 568.359198448163 \tabularnewline
53 & 2384 & 3410.20577748127 & -1026.20577748127 \tabularnewline
54 & 4500 & 3142.60169146763 & 1357.39830853237 \tabularnewline
55 & 1679 & 3738.16603969582 & -2059.16603969582 \tabularnewline
56 & 868 & 3008.30198459082 & -2140.30198459082 \tabularnewline
57 & 1869 & 2120.1005830204 & -251.100583020404 \tabularnewline
58 & 3710 & 2466.09214833934 & 1243.90785166066 \tabularnewline
59 & 6904 & 2532.98616385859 & 4371.01383614141 \tabularnewline
60 & 3415 & 4053.05830967693 & -638.058309676927 \tabularnewline
61 & 938 & 3963.46615648152 & -3025.46615648152 \tabularnewline
62 & 3359 & 3547.55996675138 & -188.559966751377 \tabularnewline
63 & 3551 & 3557.99073773713 & -6.99073773712598 \tabularnewline
64 & 2278 & 2821.71517737865 & -543.715177378647 \tabularnewline
65 & 3033 & 2423.77480272929 & 609.225197270706 \tabularnewline
66 & 2280 & 3692.04932078986 & -1412.04932078986 \tabularnewline
67 & 2901 & 3298.14389448926 & -397.143894489258 \tabularnewline
68 & 4812 & 2347.867665811 & 2464.132334189 \tabularnewline
69 & 4882 & 3172.74338793693 & 1709.25661206307 \tabularnewline
70 & 7896 & 4538.75490327762 & 3357.24509672238 \tabularnewline
71 & 5048 & 5967.43329912829 & -919.433299128287 \tabularnewline
72 & 3741 & 5242.78234086134 & -1501.78234086134 \tabularnewline
73 & 4418 & 4564.82741055107 & -146.827410551073 \tabularnewline
74 & 3471 & 5513.79224466508 & -2042.79224466508 \tabularnewline
75 & 5055 & 4431.43846953856 & 623.561530461442 \tabularnewline
76 & 7595 & 4166.16285653201 & 3428.83714346799 \tabularnewline
77 & 8124 & 5416.17660780337 & 2707.82339219663 \tabularnewline
78 & 2333 & 7097.91750731391 & -4764.91750731391 \tabularnewline
79 & 3008 & 5439.60550372017 & -2431.60550372017 \tabularnewline
80 & 2744 & 4501.11173664058 & -1757.11173664058 \tabularnewline
81 & 2833 & 3824.0436535051 & -991.043653505096 \tabularnewline
82 & 2428 & 3135.85578723713 & -707.855787237129 \tabularnewline
83 & 4269 & 3238.23394418164 & 1030.76605581836 \tabularnewline
84 & 3207 & 3613.97189456152 & -406.971894561515 \tabularnewline
85 & 5170 & 3521.34772096276 & 1648.65227903724 \tabularnewline
86 & 7767 & 3802.07224376704 & 3964.92775623296 \tabularnewline
87 & 4544 & 5796.62150047846 & -1252.62150047846 \tabularnewline
88 & 3741 & 5163.59984586938 & -1422.59984586938 \tabularnewline
89 & 2193 & 5007.83788618203 & -2814.83788618203 \tabularnewline
90 & 3432 & 4050.07265557945 & -618.072655579448 \tabularnewline
91 & 5282 & 3686.35202693318 & 1595.64797306682 \tabularnewline
92 & 6635 & 4030.77219640824 & 2604.22780359176 \tabularnewline
93 & 4222 & 5092.11017567062 & -870.110175670618 \tabularnewline
94 & 7317 & 5132.57757423188 & 2184.42242576812 \tabularnewline
95 & 4132 & 6071.19841470524 & -1939.19841470524 \tabularnewline
96 & 5048 & 5316.66815835625 & -268.668158356255 \tabularnewline
97 & 4383 & 4870.56716962034 & -487.567169620341 \tabularnewline
98 & 3761 & 5482.54245665469 & -1721.54245665469 \tabularnewline
99 & 4081 & 4457.50331965168 & -376.503319651677 \tabularnewline
100 & 6491 & 4491.56164529241 & 1999.43835470759 \tabularnewline
101 & 5859 & 4811.85644344898 & 1047.14355655102 \tabularnewline
102 & 7139 & 5787.07543211028 & 1351.92456788972 \tabularnewline
103 & 7682 & 6035.41186348734 & 1646.58813651266 \tabularnewline
104 & 8649 & 7120.89593752332 & 1528.10406247668 \tabularnewline
105 & 6146 & 7139.18883932273 & -993.188839322731 \tabularnewline
106 & 7137 & 7440.40773263809 & -303.407732638094 \tabularnewline
107 & 9948 & 7148.7041784193 & 2799.2958215807 \tabularnewline
108 & 15819 & 8622.65461439525 & 7196.34538560475 \tabularnewline
109 & 8370 & 10273.8287313891 & -1903.82873138915 \tabularnewline
110 & 13222 & 10353.4449495372 & 2868.55505046276 \tabularnewline
111 & 16711 & 11621.2004600579 & 5089.79953994205 \tabularnewline
112 & 19059 & 14529.7561292224 & 4529.24387077759 \tabularnewline
113 & 8303 & 13941.0696155006 & -5638.06961550062 \tabularnewline
114 & 20781 & 13390.0359130145 & 7390.96408698553 \tabularnewline
115 & 9638 & 16566.116005568 & -6928.11600556798 \tabularnewline
116 & 13444 & 15167.6895643232 & -1723.68956432322 \tabularnewline
117 & 6072 & 10925.3190393719 & -4853.31903937192 \tabularnewline
118 & 13442 & 12514.1498696258 & 927.850130374154 \tabularnewline
119 & 14457 & 11368.6950030558 & 3088.30499694421 \tabularnewline
120 & 17705 & 14237.6364265837 & 3467.36357341626 \tabularnewline
121 & 16463 & 11373.2911310038 & 5089.70886899622 \tabularnewline
122 & 19194 & 17286.1825559498 & 1907.81744405023 \tabularnewline
123 & 20688 & 16794.4524045213 & 3893.54759547871 \tabularnewline
124 & 14739 & 20000.82979326 & -5261.82979326001 \tabularnewline
125 & 12702 & 14298.4447252881 & -1596.44472528811 \tabularnewline
126 & 15760 & 17404.5813266394 & -1644.58132663943 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]5[/C][C]2849[/C][C]2156.3[/C][C]692.7[/C][/ROW]
[ROW][C]6[/C][C]4716[/C][C]4581.85284704553[/C][C]134.147152954469[/C][/ROW]
[ROW][C]7[/C][C]3085[/C][C]4892.45841881049[/C][C]-1807.45841881049[/C][/ROW]
[ROW][C]8[/C][C]2799[/C][C]2443.93657573395[/C][C]355.063424266052[/C][/ROW]
[ROW][C]9[/C][C]3573[/C][C]2252.58392340951[/C][C]1320.41607659049[/C][/ROW]
[ROW][C]10[/C][C]2721[/C][C]4819.00578458931[/C][C]-2098.00578458931[/C][/ROW]
[ROW][C]11[/C][C]3355[/C][C]4066.79082892432[/C][C]-711.790828924319[/C][/ROW]
[ROW][C]12[/C][C]5667[/C][C]2312.98205648052[/C][C]3354.01794351948[/C][/ROW]
[ROW][C]13[/C][C]2856[/C][C]3314.48250169342[/C][C]-458.48250169342[/C][/ROW]
[ROW][C]14[/C][C]1944[/C][C]4766.23162916026[/C][C]-2822.23162916026[/C][/ROW]
[ROW][C]15[/C][C]4188[/C][C]3957.60522414751[/C][C]230.394775852491[/C][/ROW]
[ROW][C]16[/C][C]2949[/C][C]3116.80248845771[/C][C]-167.802488457711[/C][/ROW]
[ROW][C]17[/C][C]3567[/C][C]2334.25664490938[/C][C]1232.74335509062[/C][/ROW]
[ROW][C]18[/C][C]4137[/C][C]4042.67781028143[/C][C]94.3221897185726[/C][/ROW]
[ROW][C]19[/C][C]3494[/C][C]4696.51743779126[/C][C]-1202.51743779126[/C][/ROW]
[ROW][C]20[/C][C]2489[/C][C]3294.78469447141[/C][C]-805.784694471407[/C][/ROW]
[ROW][C]21[/C][C]3244[/C][C]2488.21004166513[/C][C]755.789958334871[/C][/ROW]
[ROW][C]22[/C][C]2669[/C][C]3866.02681603684[/C][C]-1197.02681603684[/C][/ROW]
[ROW][C]23[/C][C]2529[/C][C]3880.17046359425[/C][C]-1351.17046359425[/C][/ROW]
[ROW][C]24[/C][C]3377[/C][C]2482.90972405433[/C][C]894.09027594567[/C][/ROW]
[ROW][C]25[/C][C]3366[/C][C]2497.58426795855[/C][C]868.415732041448[/C][/ROW]
[ROW][C]26[/C][C]2073[/C][C]3635.65316976904[/C][C]-1562.65316976904[/C][/ROW]
[ROW][C]27[/C][C]4133[/C][C]3499.15231268473[/C][C]633.847687315272[/C][/ROW]
[ROW][C]28[/C][C]4213[/C][C]3121.23215637172[/C][C]1091.76784362828[/C][/ROW]
[ROW][C]29[/C][C]3710[/C][C]3201.75854220709[/C][C]508.241457792908[/C][/ROW]
[ROW][C]30[/C][C]5123[/C][C]3865.37609120274[/C][C]1257.62390879726[/C][/ROW]
[ROW][C]31[/C][C]3141[/C][C]5035.00740093551[/C][C]-1894.00740093551[/C][/ROW]
[ROW][C]32[/C][C]3084[/C][C]3833.52896106781[/C][C]-749.528961067807[/C][/ROW]
[ROW][C]33[/C][C]3804[/C][C]3182.98121592385[/C][C]621.01878407615[/C][/ROW]
[ROW][C]34[/C][C]3203[/C][C]3993.4659324166[/C][C]-790.465932416601[/C][/ROW]
[ROW][C]35[/C][C]2757[/C][C]3991.91348516196[/C][C]-1234.91348516196[/C][/ROW]
[ROW][C]36[/C][C]2243[/C][C]3185.96615946251[/C][C]-942.966159462512[/C][/ROW]
[ROW][C]37[/C][C]5229[/C][C]2663.44809525285[/C][C]2565.55190474715[/C][/ROW]
[ROW][C]38[/C][C]2857[/C][C]3955.92063846362[/C][C]-1098.92063846362[/C][/ROW]
[ROW][C]39[/C][C]3395[/C][C]3782.30211122071[/C][C]-387.302111220713[/C][/ROW]
[ROW][C]40[/C][C]4882[/C][C]3316.23051484852[/C][C]1565.76948515148[/C][/ROW]
[ROW][C]41[/C][C]7140[/C][C]4177.96308603546[/C][C]2962.03691396454[/C][/ROW]
[ROW][C]42[/C][C]8945[/C][C]5085.66315733918[/C][C]3859.33684266082[/C][/ROW]
[ROW][C]43[/C][C]6866[/C][C]6757.70164248064[/C][C]108.298357519362[/C][/ROW]
[ROW][C]44[/C][C]4205[/C][C]6745.3321575265[/C][C]-2540.3321575265[/C][/ROW]
[ROW][C]45[/C][C]3217[/C][C]6362.65994684799[/C][C]-3145.65994684799[/C][/ROW]
[ROW][C]46[/C][C]3079[/C][C]5250.59946521536[/C][C]-2171.59946521536[/C][/ROW]
[ROW][C]47[/C][C]2263[/C][C]4264.90897531987[/C][C]-2001.90897531987[/C][/ROW]
[ROW][C]48[/C][C]4187[/C][C]3131.46506338462[/C][C]1055.53493661538[/C][/ROW]
[ROW][C]49[/C][C]2665[/C][C]3926.89174002107[/C][C]-1261.89174002107[/C][/ROW]
[ROW][C]50[/C][C]2073[/C][C]3616.71056056203[/C][C]-1543.71056056203[/C][/ROW]
[ROW][C]51[/C][C]3540[/C][C]2876.12835046788[/C][C]663.871649532121[/C][/ROW]
[ROW][C]52[/C][C]3686[/C][C]3117.64080155184[/C][C]568.359198448163[/C][/ROW]
[ROW][C]53[/C][C]2384[/C][C]3410.20577748127[/C][C]-1026.20577748127[/C][/ROW]
[ROW][C]54[/C][C]4500[/C][C]3142.60169146763[/C][C]1357.39830853237[/C][/ROW]
[ROW][C]55[/C][C]1679[/C][C]3738.16603969582[/C][C]-2059.16603969582[/C][/ROW]
[ROW][C]56[/C][C]868[/C][C]3008.30198459082[/C][C]-2140.30198459082[/C][/ROW]
[ROW][C]57[/C][C]1869[/C][C]2120.1005830204[/C][C]-251.100583020404[/C][/ROW]
[ROW][C]58[/C][C]3710[/C][C]2466.09214833934[/C][C]1243.90785166066[/C][/ROW]
[ROW][C]59[/C][C]6904[/C][C]2532.98616385859[/C][C]4371.01383614141[/C][/ROW]
[ROW][C]60[/C][C]3415[/C][C]4053.05830967693[/C][C]-638.058309676927[/C][/ROW]
[ROW][C]61[/C][C]938[/C][C]3963.46615648152[/C][C]-3025.46615648152[/C][/ROW]
[ROW][C]62[/C][C]3359[/C][C]3547.55996675138[/C][C]-188.559966751377[/C][/ROW]
[ROW][C]63[/C][C]3551[/C][C]3557.99073773713[/C][C]-6.99073773712598[/C][/ROW]
[ROW][C]64[/C][C]2278[/C][C]2821.71517737865[/C][C]-543.715177378647[/C][/ROW]
[ROW][C]65[/C][C]3033[/C][C]2423.77480272929[/C][C]609.225197270706[/C][/ROW]
[ROW][C]66[/C][C]2280[/C][C]3692.04932078986[/C][C]-1412.04932078986[/C][/ROW]
[ROW][C]67[/C][C]2901[/C][C]3298.14389448926[/C][C]-397.143894489258[/C][/ROW]
[ROW][C]68[/C][C]4812[/C][C]2347.867665811[/C][C]2464.132334189[/C][/ROW]
[ROW][C]69[/C][C]4882[/C][C]3172.74338793693[/C][C]1709.25661206307[/C][/ROW]
[ROW][C]70[/C][C]7896[/C][C]4538.75490327762[/C][C]3357.24509672238[/C][/ROW]
[ROW][C]71[/C][C]5048[/C][C]5967.43329912829[/C][C]-919.433299128287[/C][/ROW]
[ROW][C]72[/C][C]3741[/C][C]5242.78234086134[/C][C]-1501.78234086134[/C][/ROW]
[ROW][C]73[/C][C]4418[/C][C]4564.82741055107[/C][C]-146.827410551073[/C][/ROW]
[ROW][C]74[/C][C]3471[/C][C]5513.79224466508[/C][C]-2042.79224466508[/C][/ROW]
[ROW][C]75[/C][C]5055[/C][C]4431.43846953856[/C][C]623.561530461442[/C][/ROW]
[ROW][C]76[/C][C]7595[/C][C]4166.16285653201[/C][C]3428.83714346799[/C][/ROW]
[ROW][C]77[/C][C]8124[/C][C]5416.17660780337[/C][C]2707.82339219663[/C][/ROW]
[ROW][C]78[/C][C]2333[/C][C]7097.91750731391[/C][C]-4764.91750731391[/C][/ROW]
[ROW][C]79[/C][C]3008[/C][C]5439.60550372017[/C][C]-2431.60550372017[/C][/ROW]
[ROW][C]80[/C][C]2744[/C][C]4501.11173664058[/C][C]-1757.11173664058[/C][/ROW]
[ROW][C]81[/C][C]2833[/C][C]3824.0436535051[/C][C]-991.043653505096[/C][/ROW]
[ROW][C]82[/C][C]2428[/C][C]3135.85578723713[/C][C]-707.855787237129[/C][/ROW]
[ROW][C]83[/C][C]4269[/C][C]3238.23394418164[/C][C]1030.76605581836[/C][/ROW]
[ROW][C]84[/C][C]3207[/C][C]3613.97189456152[/C][C]-406.971894561515[/C][/ROW]
[ROW][C]85[/C][C]5170[/C][C]3521.34772096276[/C][C]1648.65227903724[/C][/ROW]
[ROW][C]86[/C][C]7767[/C][C]3802.07224376704[/C][C]3964.92775623296[/C][/ROW]
[ROW][C]87[/C][C]4544[/C][C]5796.62150047846[/C][C]-1252.62150047846[/C][/ROW]
[ROW][C]88[/C][C]3741[/C][C]5163.59984586938[/C][C]-1422.59984586938[/C][/ROW]
[ROW][C]89[/C][C]2193[/C][C]5007.83788618203[/C][C]-2814.83788618203[/C][/ROW]
[ROW][C]90[/C][C]3432[/C][C]4050.07265557945[/C][C]-618.072655579448[/C][/ROW]
[ROW][C]91[/C][C]5282[/C][C]3686.35202693318[/C][C]1595.64797306682[/C][/ROW]
[ROW][C]92[/C][C]6635[/C][C]4030.77219640824[/C][C]2604.22780359176[/C][/ROW]
[ROW][C]93[/C][C]4222[/C][C]5092.11017567062[/C][C]-870.110175670618[/C][/ROW]
[ROW][C]94[/C][C]7317[/C][C]5132.57757423188[/C][C]2184.42242576812[/C][/ROW]
[ROW][C]95[/C][C]4132[/C][C]6071.19841470524[/C][C]-1939.19841470524[/C][/ROW]
[ROW][C]96[/C][C]5048[/C][C]5316.66815835625[/C][C]-268.668158356255[/C][/ROW]
[ROW][C]97[/C][C]4383[/C][C]4870.56716962034[/C][C]-487.567169620341[/C][/ROW]
[ROW][C]98[/C][C]3761[/C][C]5482.54245665469[/C][C]-1721.54245665469[/C][/ROW]
[ROW][C]99[/C][C]4081[/C][C]4457.50331965168[/C][C]-376.503319651677[/C][/ROW]
[ROW][C]100[/C][C]6491[/C][C]4491.56164529241[/C][C]1999.43835470759[/C][/ROW]
[ROW][C]101[/C][C]5859[/C][C]4811.85644344898[/C][C]1047.14355655102[/C][/ROW]
[ROW][C]102[/C][C]7139[/C][C]5787.07543211028[/C][C]1351.92456788972[/C][/ROW]
[ROW][C]103[/C][C]7682[/C][C]6035.41186348734[/C][C]1646.58813651266[/C][/ROW]
[ROW][C]104[/C][C]8649[/C][C]7120.89593752332[/C][C]1528.10406247668[/C][/ROW]
[ROW][C]105[/C][C]6146[/C][C]7139.18883932273[/C][C]-993.188839322731[/C][/ROW]
[ROW][C]106[/C][C]7137[/C][C]7440.40773263809[/C][C]-303.407732638094[/C][/ROW]
[ROW][C]107[/C][C]9948[/C][C]7148.7041784193[/C][C]2799.2958215807[/C][/ROW]
[ROW][C]108[/C][C]15819[/C][C]8622.65461439525[/C][C]7196.34538560475[/C][/ROW]
[ROW][C]109[/C][C]8370[/C][C]10273.8287313891[/C][C]-1903.82873138915[/C][/ROW]
[ROW][C]110[/C][C]13222[/C][C]10353.4449495372[/C][C]2868.55505046276[/C][/ROW]
[ROW][C]111[/C][C]16711[/C][C]11621.2004600579[/C][C]5089.79953994205[/C][/ROW]
[ROW][C]112[/C][C]19059[/C][C]14529.7561292224[/C][C]4529.24387077759[/C][/ROW]
[ROW][C]113[/C][C]8303[/C][C]13941.0696155006[/C][C]-5638.06961550062[/C][/ROW]
[ROW][C]114[/C][C]20781[/C][C]13390.0359130145[/C][C]7390.96408698553[/C][/ROW]
[ROW][C]115[/C][C]9638[/C][C]16566.116005568[/C][C]-6928.11600556798[/C][/ROW]
[ROW][C]116[/C][C]13444[/C][C]15167.6895643232[/C][C]-1723.68956432322[/C][/ROW]
[ROW][C]117[/C][C]6072[/C][C]10925.3190393719[/C][C]-4853.31903937192[/C][/ROW]
[ROW][C]118[/C][C]13442[/C][C]12514.1498696258[/C][C]927.850130374154[/C][/ROW]
[ROW][C]119[/C][C]14457[/C][C]11368.6950030558[/C][C]3088.30499694421[/C][/ROW]
[ROW][C]120[/C][C]17705[/C][C]14237.6364265837[/C][C]3467.36357341626[/C][/ROW]
[ROW][C]121[/C][C]16463[/C][C]11373.2911310038[/C][C]5089.70886899622[/C][/ROW]
[ROW][C]122[/C][C]19194[/C][C]17286.1825559498[/C][C]1907.81744405023[/C][/ROW]
[ROW][C]123[/C][C]20688[/C][C]16794.4524045213[/C][C]3893.54759547871[/C][/ROW]
[ROW][C]124[/C][C]14739[/C][C]20000.82979326[/C][C]-5261.82979326001[/C][/ROW]
[ROW][C]125[/C][C]12702[/C][C]14298.4447252881[/C][C]-1596.44472528811[/C][/ROW]
[ROW][C]126[/C][C]15760[/C][C]17404.5813266394[/C][C]-1644.58132663943[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
528492156.3692.7
647164581.85284704553134.147152954469
730854892.45841881049-1807.45841881049
827992443.93657573395355.063424266052
935732252.583923409511320.41607659049
1027214819.00578458931-2098.00578458931
1133554066.79082892432-711.790828924319
1256672312.982056480523354.01794351948
1328563314.48250169342-458.48250169342
1419444766.23162916026-2822.23162916026
1541883957.60522414751230.394775852491
1629493116.80248845771-167.802488457711
1735672334.256644909381232.74335509062
1841374042.6778102814394.3221897185726
1934944696.51743779126-1202.51743779126
2024893294.78469447141-805.784694471407
2132442488.21004166513755.789958334871
2226693866.02681603684-1197.02681603684
2325293880.17046359425-1351.17046359425
2433772482.90972405433894.09027594567
2533662497.58426795855868.415732041448
2620733635.65316976904-1562.65316976904
2741333499.15231268473633.847687315272
2842133121.232156371721091.76784362828
2937103201.75854220709508.241457792908
3051233865.376091202741257.62390879726
3131415035.00740093551-1894.00740093551
3230843833.52896106781-749.528961067807
3338043182.98121592385621.01878407615
3432033993.4659324166-790.465932416601
3527573991.91348516196-1234.91348516196
3622433185.96615946251-942.966159462512
3752292663.448095252852565.55190474715
3828573955.92063846362-1098.92063846362
3933953782.30211122071-387.302111220713
4048823316.230514848521565.76948515148
4171404177.963086035462962.03691396454
4289455085.663157339183859.33684266082
4368666757.70164248064108.298357519362
4442056745.3321575265-2540.3321575265
4532176362.65994684799-3145.65994684799
4630795250.59946521536-2171.59946521536
4722634264.90897531987-2001.90897531987
4841873131.465063384621055.53493661538
4926653926.89174002107-1261.89174002107
5020733616.71056056203-1543.71056056203
5135402876.12835046788663.871649532121
5236863117.64080155184568.359198448163
5323843410.20577748127-1026.20577748127
5445003142.601691467631357.39830853237
5516793738.16603969582-2059.16603969582
568683008.30198459082-2140.30198459082
5718692120.1005830204-251.100583020404
5837102466.092148339341243.90785166066
5969042532.986163858594371.01383614141
6034154053.05830967693-638.058309676927
619383963.46615648152-3025.46615648152
6233593547.55996675138-188.559966751377
6335513557.99073773713-6.99073773712598
6422782821.71517737865-543.715177378647
6530332423.77480272929609.225197270706
6622803692.04932078986-1412.04932078986
6729013298.14389448926-397.143894489258
6848122347.8676658112464.132334189
6948823172.743387936931709.25661206307
7078964538.754903277623357.24509672238
7150485967.43329912829-919.433299128287
7237415242.78234086134-1501.78234086134
7344184564.82741055107-146.827410551073
7434715513.79224466508-2042.79224466508
7550554431.43846953856623.561530461442
7675954166.162856532013428.83714346799
7781245416.176607803372707.82339219663
7823337097.91750731391-4764.91750731391
7930085439.60550372017-2431.60550372017
8027444501.11173664058-1757.11173664058
8128333824.0436535051-991.043653505096
8224283135.85578723713-707.855787237129
8342693238.233944181641030.76605581836
8432073613.97189456152-406.971894561515
8551703521.347720962761648.65227903724
8677673802.072243767043964.92775623296
8745445796.62150047846-1252.62150047846
8837415163.59984586938-1422.59984586938
8921935007.83788618203-2814.83788618203
9034324050.07265557945-618.072655579448
9152823686.352026933181595.64797306682
9266354030.772196408242604.22780359176
9342225092.11017567062-870.110175670618
9473175132.577574231882184.42242576812
9541326071.19841470524-1939.19841470524
9650485316.66815835625-268.668158356255
9743834870.56716962034-487.567169620341
9837615482.54245665469-1721.54245665469
9940814457.50331965168-376.503319651677
10064914491.561645292411999.43835470759
10158594811.856443448981047.14355655102
10271395787.075432110281351.92456788972
10376826035.411863487341646.58813651266
10486497120.895937523321528.10406247668
10561467139.18883932273-993.188839322731
10671377440.40773263809-303.407732638094
10799487148.70417841932799.2958215807
108158198622.654614395257196.34538560475
109837010273.8287313891-1903.82873138915
1101322210353.44494953722868.55505046276
1111671111621.20046005795089.79953994205
1121905914529.75612922244529.24387077759
113830313941.0696155006-5638.06961550062
1142078113390.03591301457390.96408698553
115963816566.116005568-6928.11600556798
1161344415167.6895643232-1723.68956432322
117607210925.3190393719-4853.31903937192
1181344212514.1498696258927.850130374154
1191445711368.69500305583088.30499694421
1201770514237.63642658373467.36357341626
1211646311373.29113100385089.70886899622
1221919417286.18255594981907.81744405023
1232068816794.45240452133893.54759547871
1241473920000.82979326-5261.82979326001
1251270214298.4447252881-1596.44472528811
1261576017404.5813266394-1644.58132663943







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
12715947.513186014511279.134197223620615.8921748054
12816474.782473711611526.084445147121423.480502276
12913147.37267658177933.4047084358218361.3406447275
13016808.104846510511341.724712657422274.4849803637
13116164.713186014510230.389607175222099.0367648538
13216691.982473711610534.706604197422849.2583432257
13313364.57267658176992.1401796277319737.0051735356
13417025.304846510510444.746684533123605.863008488
13516381.91318601459407.7730745920323356.0532974369
13616909.18247371169744.3740262592224073.990921164
13713581.77267658176231.2400507362320932.3053024271
13817242.50484651059710.8264360530324774.1832569681

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 15947.5131860145 & 11279.1341972236 & 20615.8921748054 \tabularnewline
128 & 16474.7824737116 & 11526.0844451471 & 21423.480502276 \tabularnewline
129 & 13147.3726765817 & 7933.40470843582 & 18361.3406447275 \tabularnewline
130 & 16808.1048465105 & 11341.7247126574 & 22274.4849803637 \tabularnewline
131 & 16164.7131860145 & 10230.3896071752 & 22099.0367648538 \tabularnewline
132 & 16691.9824737116 & 10534.7066041974 & 22849.2583432257 \tabularnewline
133 & 13364.5726765817 & 6992.14017962773 & 19737.0051735356 \tabularnewline
134 & 17025.3048465105 & 10444.7466845331 & 23605.863008488 \tabularnewline
135 & 16381.9131860145 & 9407.77307459203 & 23356.0532974369 \tabularnewline
136 & 16909.1824737116 & 9744.37402625922 & 24073.990921164 \tabularnewline
137 & 13581.7726765817 & 6231.24005073623 & 20932.3053024271 \tabularnewline
138 & 17242.5048465105 & 9710.82643605303 & 24774.1832569681 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]15947.5131860145[/C][C]11279.1341972236[/C][C]20615.8921748054[/C][/ROW]
[ROW][C]128[/C][C]16474.7824737116[/C][C]11526.0844451471[/C][C]21423.480502276[/C][/ROW]
[ROW][C]129[/C][C]13147.3726765817[/C][C]7933.40470843582[/C][C]18361.3406447275[/C][/ROW]
[ROW][C]130[/C][C]16808.1048465105[/C][C]11341.7247126574[/C][C]22274.4849803637[/C][/ROW]
[ROW][C]131[/C][C]16164.7131860145[/C][C]10230.3896071752[/C][C]22099.0367648538[/C][/ROW]
[ROW][C]132[/C][C]16691.9824737116[/C][C]10534.7066041974[/C][C]22849.2583432257[/C][/ROW]
[ROW][C]133[/C][C]13364.5726765817[/C][C]6992.14017962773[/C][C]19737.0051735356[/C][/ROW]
[ROW][C]134[/C][C]17025.3048465105[/C][C]10444.7466845331[/C][C]23605.863008488[/C][/ROW]
[ROW][C]135[/C][C]16381.9131860145[/C][C]9407.77307459203[/C][C]23356.0532974369[/C][/ROW]
[ROW][C]136[/C][C]16909.1824737116[/C][C]9744.37402625922[/C][C]24073.990921164[/C][/ROW]
[ROW][C]137[/C][C]13581.7726765817[/C][C]6231.24005073623[/C][C]20932.3053024271[/C][/ROW]
[ROW][C]138[/C][C]17242.5048465105[/C][C]9710.82643605303[/C][C]24774.1832569681[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
12715947.513186014511279.134197223620615.8921748054
12816474.782473711611526.084445147121423.480502276
12913147.37267658177933.4047084358218361.3406447275
13016808.104846510511341.724712657422274.4849803637
13116164.713186014510230.389607175222099.0367648538
13216691.982473711610534.706604197422849.2583432257
13313364.57267658176992.1401796277319737.0051735356
13417025.304846510510444.746684533123605.863008488
13516381.91318601459407.7730745920323356.0532974369
13616909.18247371169744.3740262592224073.990921164
13713581.77267658176231.2400507362320932.3053024271
13817242.50484651059710.8264360530324774.1832569681



Parameters (Session):
par1 = 1111110.9520012DefaultDefaultDefaultDefaultDefaultDefaultDefaultDefault1DefaultDefault36361111111111111111144436444 ; par2 = 2222220518111111111.01.01110111101111001001112121TripleDoubleTriple ; par3 = TRUETRUETRUEFALSETRUETRUE0BFGS010100111111100001001110000000BFGSBFGS1additiveadditiveadditive ; par4 = P1 P5 Q1 Q3 P95 P9900000110111011141241144444441140121212 ; par5 = 121212121212121212121212121 ; par6 = White NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite Noise ; par7 = 0.950.950.950.950.950.950.950.950.950.950.95 ;
Parameters (R input):
par1 = 4 ; par2 = Triple ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par4 <- '12'
par3 <- 'additive'
par2 <- 'Double'
par1 <- '4'
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')