Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationSun, 18 Dec 2016 17:47:33 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482079840f4ufb5i8g3eegde.htm/, Retrieved Fri, 01 Nov 2024 03:47:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301177, Retrieved Fri, 01 Nov 2024 03:47:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact99
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [N1030 ARIMA Backward] [2016-12-18 16:47:33] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
3203.4
3248.4
3446.2
3448.6
3535
3586.8
3722.4
3796.6
3755
3654.4
3485.2
3348.6
3177
3207.2
3236.2
3358.8
3436
3563.2
3588.8
3645.4
3801.2
3856.2
4056.4
3894.4
3844.4
3712.2
3765.4
3874.8
3777
3879.2
3879
4043.2
4118.8
4103.2
4188.8
4496.6
4646
4710
4713
4440
4498.2
4266.6
4253.4
4133.2




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301177&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301177&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301177&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.31840.2405-0.35070.0344-0.4662-0.5303-0.9997
(p-val)(0.3404 )(0.3243 )(0.0362 )(0.9166 )(0.0539 )(0.0058 )(0.045 )
Estimates ( 2 )0.34850.2324-0.35110-0.4612-0.5292-0.9998
(p-val)(0.0408 )(0.3208 )(0.0339 )(NA )(0.0532 )(0.0058 )(0.0444 )
Estimates ( 3 )0.420-0.31360-0.6135-0.6001-1
(p-val)(0.0063 )(NA )(0.053 )(NA )(7e-04 )(3e-04 )(0.1095 )
Estimates ( 4 )0.41950-0.27150-0.9436-0.7420
(p-val)(0.0122 )(NA )(0.0986 )(NA )(0 )(0 )(NA )
Estimates ( 5 )0.4214000-0.87-0.72770
(p-val)(0.0112 )(NA )(NA )(NA )(0 )(0 )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 0.3184 & 0.2405 & -0.3507 & 0.0344 & -0.4662 & -0.5303 & -0.9997 \tabularnewline
(p-val) & (0.3404 ) & (0.3243 ) & (0.0362 ) & (0.9166 ) & (0.0539 ) & (0.0058 ) & (0.045 ) \tabularnewline
Estimates ( 2 ) & 0.3485 & 0.2324 & -0.3511 & 0 & -0.4612 & -0.5292 & -0.9998 \tabularnewline
(p-val) & (0.0408 ) & (0.3208 ) & (0.0339 ) & (NA ) & (0.0532 ) & (0.0058 ) & (0.0444 ) \tabularnewline
Estimates ( 3 ) & 0.42 & 0 & -0.3136 & 0 & -0.6135 & -0.6001 & -1 \tabularnewline
(p-val) & (0.0063 ) & (NA ) & (0.053 ) & (NA ) & (7e-04 ) & (3e-04 ) & (0.1095 ) \tabularnewline
Estimates ( 4 ) & 0.4195 & 0 & -0.2715 & 0 & -0.9436 & -0.742 & 0 \tabularnewline
(p-val) & (0.0122 ) & (NA ) & (0.0986 ) & (NA ) & (0 ) & (0 ) & (NA ) \tabularnewline
Estimates ( 5 ) & 0.4214 & 0 & 0 & 0 & -0.87 & -0.7277 & 0 \tabularnewline
(p-val) & (0.0112 ) & (NA ) & (NA ) & (NA ) & (0 ) & (0 ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301177&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.3184[/C][C]0.2405[/C][C]-0.3507[/C][C]0.0344[/C][C]-0.4662[/C][C]-0.5303[/C][C]-0.9997[/C][/ROW]
[ROW][C](p-val)[/C][C](0.3404 )[/C][C](0.3243 )[/C][C](0.0362 )[/C][C](0.9166 )[/C][C](0.0539 )[/C][C](0.0058 )[/C][C](0.045 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.3485[/C][C]0.2324[/C][C]-0.3511[/C][C]0[/C][C]-0.4612[/C][C]-0.5292[/C][C]-0.9998[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0408 )[/C][C](0.3208 )[/C][C](0.0339 )[/C][C](NA )[/C][C](0.0532 )[/C][C](0.0058 )[/C][C](0.0444 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.42[/C][C]0[/C][C]-0.3136[/C][C]0[/C][C]-0.6135[/C][C]-0.6001[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0063 )[/C][C](NA )[/C][C](0.053 )[/C][C](NA )[/C][C](7e-04 )[/C][C](3e-04 )[/C][C](0.1095 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0.4195[/C][C]0[/C][C]-0.2715[/C][C]0[/C][C]-0.9436[/C][C]-0.742[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0122 )[/C][C](NA )[/C][C](0.0986 )[/C][C](NA )[/C][C](0 )[/C][C](0 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0.4214[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.87[/C][C]-0.7277[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0112 )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](0 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301177&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301177&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.31840.2405-0.35070.0344-0.4662-0.5303-0.9997
(p-val)(0.3404 )(0.3243 )(0.0362 )(0.9166 )(0.0539 )(0.0058 )(0.045 )
Estimates ( 2 )0.34850.2324-0.35110-0.4612-0.5292-0.9998
(p-val)(0.0408 )(0.3208 )(0.0339 )(NA )(0.0532 )(0.0058 )(0.0444 )
Estimates ( 3 )0.420-0.31360-0.6135-0.6001-1
(p-val)(0.0063 )(NA )(0.053 )(NA )(7e-04 )(3e-04 )(0.1095 )
Estimates ( 4 )0.41950-0.27150-0.9436-0.7420
(p-val)(0.0122 )(NA )(0.0986 )(NA )(0 )(0 )(NA )
Estimates ( 5 )0.4214000-0.87-0.72770
(p-val)(0.0112 )(NA )(NA )(NA )(0 )(0 )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-7.09945478638055
14.5341975891513
-139.540598503573
4.63974169622426
-108.705058040971
-61.8915752211956
-146.973439635974
2.646876131565
-55.5419750808467
97.0728521237622
30.0148770498247
90.2427562427647
-7.41318056703851
16.0111801759898
38.0242713169358
62.4759953652595
139.69830093253
-245.348321304037
-23.8467900371807
-102.228983733931
102.985035978307
95.2038903583919
-118.001734423885
205.521479280129
88.7491647222863
85.7309180617381
12.6442636490856
-98.1924128521703
82.8317766769379
248.402220497781
6.06658353446392
-21.3068662082179
-78.8639267751483
-243.316995950096
75.7606748461994
-152.344588945343
-12.7963179469006
-85.8202199984044

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-7.09945478638055 \tabularnewline
14.5341975891513 \tabularnewline
-139.540598503573 \tabularnewline
4.63974169622426 \tabularnewline
-108.705058040971 \tabularnewline
-61.8915752211956 \tabularnewline
-146.973439635974 \tabularnewline
2.646876131565 \tabularnewline
-55.5419750808467 \tabularnewline
97.0728521237622 \tabularnewline
30.0148770498247 \tabularnewline
90.2427562427647 \tabularnewline
-7.41318056703851 \tabularnewline
16.0111801759898 \tabularnewline
38.0242713169358 \tabularnewline
62.4759953652595 \tabularnewline
139.69830093253 \tabularnewline
-245.348321304037 \tabularnewline
-23.8467900371807 \tabularnewline
-102.228983733931 \tabularnewline
102.985035978307 \tabularnewline
95.2038903583919 \tabularnewline
-118.001734423885 \tabularnewline
205.521479280129 \tabularnewline
88.7491647222863 \tabularnewline
85.7309180617381 \tabularnewline
12.6442636490856 \tabularnewline
-98.1924128521703 \tabularnewline
82.8317766769379 \tabularnewline
248.402220497781 \tabularnewline
6.06658353446392 \tabularnewline
-21.3068662082179 \tabularnewline
-78.8639267751483 \tabularnewline
-243.316995950096 \tabularnewline
75.7606748461994 \tabularnewline
-152.344588945343 \tabularnewline
-12.7963179469006 \tabularnewline
-85.8202199984044 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301177&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-7.09945478638055[/C][/ROW]
[ROW][C]14.5341975891513[/C][/ROW]
[ROW][C]-139.540598503573[/C][/ROW]
[ROW][C]4.63974169622426[/C][/ROW]
[ROW][C]-108.705058040971[/C][/ROW]
[ROW][C]-61.8915752211956[/C][/ROW]
[ROW][C]-146.973439635974[/C][/ROW]
[ROW][C]2.646876131565[/C][/ROW]
[ROW][C]-55.5419750808467[/C][/ROW]
[ROW][C]97.0728521237622[/C][/ROW]
[ROW][C]30.0148770498247[/C][/ROW]
[ROW][C]90.2427562427647[/C][/ROW]
[ROW][C]-7.41318056703851[/C][/ROW]
[ROW][C]16.0111801759898[/C][/ROW]
[ROW][C]38.0242713169358[/C][/ROW]
[ROW][C]62.4759953652595[/C][/ROW]
[ROW][C]139.69830093253[/C][/ROW]
[ROW][C]-245.348321304037[/C][/ROW]
[ROW][C]-23.8467900371807[/C][/ROW]
[ROW][C]-102.228983733931[/C][/ROW]
[ROW][C]102.985035978307[/C][/ROW]
[ROW][C]95.2038903583919[/C][/ROW]
[ROW][C]-118.001734423885[/C][/ROW]
[ROW][C]205.521479280129[/C][/ROW]
[ROW][C]88.7491647222863[/C][/ROW]
[ROW][C]85.7309180617381[/C][/ROW]
[ROW][C]12.6442636490856[/C][/ROW]
[ROW][C]-98.1924128521703[/C][/ROW]
[ROW][C]82.8317766769379[/C][/ROW]
[ROW][C]248.402220497781[/C][/ROW]
[ROW][C]6.06658353446392[/C][/ROW]
[ROW][C]-21.3068662082179[/C][/ROW]
[ROW][C]-78.8639267751483[/C][/ROW]
[ROW][C]-243.316995950096[/C][/ROW]
[ROW][C]75.7606748461994[/C][/ROW]
[ROW][C]-152.344588945343[/C][/ROW]
[ROW][C]-12.7963179469006[/C][/ROW]
[ROW][C]-85.8202199984044[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301177&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301177&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-7.09945478638055
14.5341975891513
-139.540598503573
4.63974169622426
-108.705058040971
-61.8915752211956
-146.973439635974
2.646876131565
-55.5419750808467
97.0728521237622
30.0148770498247
90.2427562427647
-7.41318056703851
16.0111801759898
38.0242713169358
62.4759953652595
139.69830093253
-245.348321304037
-23.8467900371807
-102.228983733931
102.985035978307
95.2038903583919
-118.001734423885
205.521479280129
88.7491647222863
85.7309180617381
12.6442636490856
-98.1924128521703
82.8317766769379
248.402220497781
6.06658353446392
-21.3068662082179
-78.8639267751483
-243.316995950096
75.7606748461994
-152.344588945343
-12.7963179469006
-85.8202199984044



Parameters (Session):
par1 = 6 ; par2 = Double ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 6 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')