Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationSun, 18 Dec 2016 16:58:31 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482077233x5nady4e83fure9.htm/, Retrieved Fri, 01 Nov 2024 04:29:58 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:29:58 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
3647
1885
4791
3178
2849
4716
3085
2799
3573
2721
3355
5667
2856
1944
4188
2949
3567
4137
3494
2489
3244
2669
2529
3377
3366
2073
4133
4213
3710
5123
3141
3084
3804
3203
2757
2243
5229
2857
3395
4882
7140
8945
6866
4205
3217
3079
2263
4187
2665
2073
3540
3686
2384
4500
1679
868
1869
3710
6904
3415
938
3359
3551
2278
3033
2280
2901
4812
4882
7896
5048
3741
4418
3471
5055
7595
8124
2333
3008
2744
2833
2428
4269
3207
5170
7767
4544
3741
2193
3432
5282
6635
4222
7317
4132
5048
4383
3761
4081
6491
5859
7139
7682
8649
6146
7137
9948
15819
8370
13222
16711
19059
8303
20781
9638
13444
6072
13442
14457
17705
16463
19194
20688
14739
12702
15760




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
136473647000
218852356.44982994558-395.803836867124-394.482084091816-0.212298170279756
347913632.02811546237-37.1254030232851-5.003065581007661.11701454582201
431783427.33460522904-63.8572917778289-77.9376418413325-0.145107768190526
528493123.40530952085-55.5751826829058166.790247815742-0.324772333400021
647163904.7558437536651.567330158057550.71033288468630.661377022590795
730853547.795723969389.364373957769811.233443650117-0.385924399255911
827993244.41946214097-17.0917232699317-35.8077013045984-0.322732188677044
935733335.98366240343-18.886888135056551.50405913218810.138045802422011
1027213061.35776584463-40.2109778404079-40.1074738653545-0.243147358142945
1133553164.89396020352-29.94933361344092.117691699703990.148590825685277
1256674153.6499878091830.633754399625283.67702252994311.10907228103278
1328563744.5749778971333.5324118453151-159.398794954358-0.545920772551831
1419443011.10539889255-14.3470430642429-77.3275626389157-0.784105328085549
1541883469.7038577207412.10928951184269.56169229778020.508099560405196
1629493246.304505933111.1282049533754142.9413071902193-0.262773603258119
1735673370.355662980011.10079182598497-3.122090487234820.150412448928746
1841373718.0319651938818.4670445188616-50.8392121372540.368632323170359
1934943613.5764799611712.724075270148353.3566969727367-0.134972850911476
2024893175.6641629669-4.78228081920118-25.7252946156598-0.50992931913638
2132443195.97569045447-4.675988420196837.868082342107510.0303905878515649
2226693008.64653320551-12.3601751875153-84.5444375804581-0.199211100405903
2325292787.85374060916-20.816899974518838.9989750974523-0.23213994478079
2433773006.64369323959-12.737938283497715.86726606156330.273571240325326
2533663118.83310606713-11.796238917110149.67642246381120.150131869183882
2620732738.85204269764-25.2357846330101-141.439587640313-0.408484302859878
2741333239.47487421858-6.21242000458826134.0175485727390.591573519199941
2842133607.733356854255.080342008035248.3068163880550.430142646657817
2937103637.306692115485.3267062759190534.34990091330340.0292597407987498
3051234276.4552515448325.9227416349868-68.55217312390750.711819631834861
3131413834.1156565303210.528092161956-11.5030380333946-0.530727966525379
3230843535.657839442822.000722543910249.4645590871089-0.356429455833688
3338043634.994374648073.1699022500355617.81725683677020.115739795817856
3432033485.50334220699-1.33848757357478-59.9397430312226-0.17299024975407
3527573204.33675447599-9.82182353069269-37.5613863576046-0.318990678463328
3622432835.61223084446-19.0498518196491-55.7849447568916-0.415280257493962
3752293665.97333267616-7.55221632354125251.9280794901311.00634019416384
3828573390.19569087454-14.8738427499909-139.335439680816-0.305997054989603
3933953384.92386583204-14.6022580535521-4.052338768636160.0109959112527536
4048823983.203053064940.286459061758173-19.35448888841230.710762903251794
4171405052.1412522962816.0260419922359446.6157040803461.26246785427581
4289456598.3458702449855.172559486249287.57012164420961.75466036291645
4368666794.5220065485158.9296390294869-136.8075221981720.162067092727368
4442055938.3996680431737.6933848575008-361.018189776973-1.0630086795474
4532174852.3119924837620.093369632065183.7096836989292-1.32461973397082
4630794143.06213082162.4049744843747617.1805249297637-0.839676534636033
4722633439.12132188546-15.4720414225192-129.351000693092-0.814296087904568
4841873770.09626416074-7.72354533208285-103.1342836593650.402994226542908
4926653293.91566046088-15.401743188417385.4011398194698-0.55120958742399
5020732787.63322615371-26.794278875998615.4438885089507-0.566903248446258
5135403095.49118444935-18.69179900337-52.7727917613880.386746776297892
5236863322.93200349238-13.3497253300372-6.637031944823450.286600695285238
5323842928.61259363847-19.810458274972134.8445811891607-0.447654117475372
5445003498.05350887701-6.62214666328781123.333922494530.682184212016077
5516792861.24964248273-21.3087742640585-243.690230186488-0.72976147524002
568682091.80362369468-37.1533128330488-99.4597039718215-0.871852011243908
5718691970.84722008512-38.611511451483325.3658881359558-0.0983670963471821
5837102506.18411877613-26.1444892688378346.2882284762520.665768852987121
5969044181.9062610556512.2398659790594182.5602498566421.97411418600085
6034153987.653374312467.95361257259654-262.187303706077-0.240796374271655
619382912.35593849491-11.2657582065408-332.533448784992-1.27045991007103
6233592985.05220907303-9.48650281213226248.297601605620.0975469466661459
6335513101.72672190225-6.71978560990234260.7101979476170.146548188021529
6422782848.75009068406-11.7475671188987-200.360296442461-0.287318517180989
6530333029.56593381395-8.28026040960246-288.0686834029690.225699027051777
6622802664.51643686292-15.6876944345773150.093936740024-0.415016854412007
6729012629.12482428782-16.1095602245979301.36541811454-0.0229147496864494
6848123497.284875504461.69912189481871-15.71923284922711.032163805336
6948824118.0357880583112.9711024600395-172.2684389846120.725222499783635
7078965485.33499369140.6186859925776379.0698613226671.57704926302106
7150485316.5093329259136.225226347052945.3223714545623-0.243811775285607
7237414805.0095439646825.3189023356029-239.699369278572-0.639561593132486
7344184785.983243713324.504594732959-300.966540585926-0.0519313404617663
7434714162.2603978102111.4558138288056281.978270879835-0.755455339053873
7550554441.2595251291216.971156733501212.4609188177540.311698119217754
7675955693.142903887841.329312609858342.9056766437361.44239972755344
7781246726.5769649102459.6634255621096-101.0391398562831.16149715014152
7823335099.6161827833126.1047933050211-232.531384788536-1.96695036162954
7930084294.797995130779.22689120814203-39.4928248310986-0.968717447595031
8027443718.15484551659-2.23819617191484-92.042213819652-0.684477991531974
8128333327.9116195878-9.442703948424290.8678922009988-0.454157064633005
8224283023.7702401377-15.2498109631575-152.736114964049-0.343869508889471
8342693448.24342904214-6.42932673710473160.2236141957740.512936564330279
8432073379.73130382832-7.63622640032181-79.239484587303-0.0725472490604225
8551703988.562308794213.85081901476083251.0588679004620.721456739180553
8677675466.7148039842832.669040702176682.81820112037411.72107288854135
8745445131.2804091891825.3631517502772-34.0049420325166-0.429598038053274
8837414703.5051343861816.6029450002048-280.004528535835-0.529612083582
8921933751.51139547855-1.49231514208115-97.0730305035712-1.13342538421712
9034323556.94940508105-5.24097041455508165.560201136852-0.225470404357345
9152824161.883376500026.76117136037774202.5401629753190.712395475181411
9266355145.1832379951525.55166301494318.78214828682991.14151615422591
9342224883.349142824220.1726886063738-227.820787242989-0.336262712936418
9473175759.6840395518436.7029401580845268.6259061470391.0001514155282
9541325171.8156953901324.5104495202528-100.195108946706-0.729449243857841
9650485118.1641621371123.012395861406547.5917685662325-0.0913784981625546
9743834974.3433437401819.8856487296067-339.708651864562-0.195195615742324
9837614411.350411609288.68449920262826227.240560056396-0.681081169103998
9940814312.610716724286.60081503017214-69.9417346540704-0.125498329026842
10064915079.7285938242521.1282685173557265.3802874890590.889211459983181
10158595494.8722812226528.5195689105723-230.1003915790190.460980786597983
10271396047.1934708885638.5459426120689302.9783483689720.612180840222549
10376826747.3848332698751.3106069468346-61.43197147205860.773150841296878
10486497419.6748165196963.1390888252923293.5901213682820.726129355179951
10561467125.1286517980756.4252325965904-439.735396772522-0.418464590393653
10671377082.4295293713254.5340838724427203.877706628742-0.115869682736991
10799488209.2392582511375.1267603466246124.1395730962761.25323335563024
1081581910945.8778656054125.702065185629862.236165666443.11243361554139
109837010320.1681908523111.592531216544-817.098651007657-0.879079589853974
1101322211442.4367890592130.821466590292256.9711073101421.18158549260915
1111671113541.0344502361168.467156676026206.2785959439842.30024423412276
1121905915382.0230008025200.1845498815151156.31138304151.95601995176868
113830313328.8118550311157.86290219744-1628.01427989768-2.63623128953288
1142078116116.3140837924207.777667353709702.5677698484453.07469820295003
115963813908.213063452161.708498367073-630.98171792046-2.8244540231024
1161344413293.347618594147.007151198621321.10547359105-0.90825978082229
117607211402.3950154869108.728374403145-2257.53575162053-2.38418452274544
1181344211794.2038979486114.0911858469191221.225134874850.331024894436036
1191445713019.0685554074135.215268626947-235.5685519085281.29878207326543
1201770514278.9790111391156.4755948676871730.785021855561.31547972831063
1211646316059.6831409295186.983279362243-2045.664207153071.90016493707622
1221919416982.7306085545200.9046485114121101.994623121840.860802457542869
1232068818642.0430326495228.576299891219-151.5716490513741.70542640155954
1241473916841.1920092501190.261691836851956.881071155117-2.3737872170034
1251270216196.4266494167174.578433456123-2235.40499812943-0.97689026397433
1261576015759.917727575163.036846678488921.087715045463-0.714697389899612

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 3647 & 3647 & 0 & 0 & 0 \tabularnewline
2 & 1885 & 2356.44982994558 & -395.803836867124 & -394.482084091816 & -0.212298170279756 \tabularnewline
3 & 4791 & 3632.02811546237 & -37.1254030232851 & -5.00306558100766 & 1.11701454582201 \tabularnewline
4 & 3178 & 3427.33460522904 & -63.8572917778289 & -77.9376418413325 & -0.145107768190526 \tabularnewline
5 & 2849 & 3123.40530952085 & -55.5751826829058 & 166.790247815742 & -0.324772333400021 \tabularnewline
6 & 4716 & 3904.75584375366 & 51.5673301580575 & 50.7103328846863 & 0.661377022590795 \tabularnewline
7 & 3085 & 3547.79572396938 & 9.3643739577698 & 11.233443650117 & -0.385924399255911 \tabularnewline
8 & 2799 & 3244.41946214097 & -17.0917232699317 & -35.8077013045984 & -0.322732188677044 \tabularnewline
9 & 3573 & 3335.98366240343 & -18.8868881350565 & 51.5040591321881 & 0.138045802422011 \tabularnewline
10 & 2721 & 3061.35776584463 & -40.2109778404079 & -40.1074738653545 & -0.243147358142945 \tabularnewline
11 & 3355 & 3164.89396020352 & -29.9493336134409 & 2.11769169970399 & 0.148590825685277 \tabularnewline
12 & 5667 & 4153.64998780918 & 30.6337543996252 & 83.6770225299431 & 1.10907228103278 \tabularnewline
13 & 2856 & 3744.57497789713 & 33.5324118453151 & -159.398794954358 & -0.545920772551831 \tabularnewline
14 & 1944 & 3011.10539889255 & -14.3470430642429 & -77.3275626389157 & -0.784105328085549 \tabularnewline
15 & 4188 & 3469.70385772074 & 12.109289511842 & 69.5616922977802 & 0.508099560405196 \tabularnewline
16 & 2949 & 3246.30450593311 & 1.12820495337541 & 42.9413071902193 & -0.262773603258119 \tabularnewline
17 & 3567 & 3370.35566298001 & 1.10079182598497 & -3.12209048723482 & 0.150412448928746 \tabularnewline
18 & 4137 & 3718.03196519388 & 18.4670445188616 & -50.839212137254 & 0.368632323170359 \tabularnewline
19 & 3494 & 3613.57647996117 & 12.7240752701483 & 53.3566969727367 & -0.134972850911476 \tabularnewline
20 & 2489 & 3175.6641629669 & -4.78228081920118 & -25.7252946156598 & -0.50992931913638 \tabularnewline
21 & 3244 & 3195.97569045447 & -4.67598842019683 & 7.86808234210751 & 0.0303905878515649 \tabularnewline
22 & 2669 & 3008.64653320551 & -12.3601751875153 & -84.5444375804581 & -0.199211100405903 \tabularnewline
23 & 2529 & 2787.85374060916 & -20.8168999745188 & 38.9989750974523 & -0.23213994478079 \tabularnewline
24 & 3377 & 3006.64369323959 & -12.7379382834977 & 15.8672660615633 & 0.273571240325326 \tabularnewline
25 & 3366 & 3118.83310606713 & -11.7962389171101 & 49.6764224638112 & 0.150131869183882 \tabularnewline
26 & 2073 & 2738.85204269764 & -25.2357846330101 & -141.439587640313 & -0.408484302859878 \tabularnewline
27 & 4133 & 3239.47487421858 & -6.21242000458826 & 134.017548572739 & 0.591573519199941 \tabularnewline
28 & 4213 & 3607.73335685425 & 5.0803420080352 & 48.306816388055 & 0.430142646657817 \tabularnewline
29 & 3710 & 3637.30669211548 & 5.32670627591905 & 34.3499009133034 & 0.0292597407987498 \tabularnewline
30 & 5123 & 4276.45525154483 & 25.9227416349868 & -68.5521731239075 & 0.711819631834861 \tabularnewline
31 & 3141 & 3834.11565653032 & 10.528092161956 & -11.5030380333946 & -0.530727966525379 \tabularnewline
32 & 3084 & 3535.65783944282 & 2.00072254391024 & 9.4645590871089 & -0.356429455833688 \tabularnewline
33 & 3804 & 3634.99437464807 & 3.16990225003556 & 17.8172568367702 & 0.115739795817856 \tabularnewline
34 & 3203 & 3485.50334220699 & -1.33848757357478 & -59.9397430312226 & -0.17299024975407 \tabularnewline
35 & 2757 & 3204.33675447599 & -9.82182353069269 & -37.5613863576046 & -0.318990678463328 \tabularnewline
36 & 2243 & 2835.61223084446 & -19.0498518196491 & -55.7849447568916 & -0.415280257493962 \tabularnewline
37 & 5229 & 3665.97333267616 & -7.55221632354125 & 251.928079490131 & 1.00634019416384 \tabularnewline
38 & 2857 & 3390.19569087454 & -14.8738427499909 & -139.335439680816 & -0.305997054989603 \tabularnewline
39 & 3395 & 3384.92386583204 & -14.6022580535521 & -4.05233876863616 & 0.0109959112527536 \tabularnewline
40 & 4882 & 3983.20305306494 & 0.286459061758173 & -19.3544888884123 & 0.710762903251794 \tabularnewline
41 & 7140 & 5052.14125229628 & 16.0260419922359 & 446.615704080346 & 1.26246785427581 \tabularnewline
42 & 8945 & 6598.34587024498 & 55.1725594862492 & 87.5701216442096 & 1.75466036291645 \tabularnewline
43 & 6866 & 6794.52200654851 & 58.9296390294869 & -136.807522198172 & 0.162067092727368 \tabularnewline
44 & 4205 & 5938.39966804317 & 37.6933848575008 & -361.018189776973 & -1.0630086795474 \tabularnewline
45 & 3217 & 4852.31199248376 & 20.0933696320651 & 83.7096836989292 & -1.32461973397082 \tabularnewline
46 & 3079 & 4143.0621308216 & 2.40497448437476 & 17.1805249297637 & -0.839676534636033 \tabularnewline
47 & 2263 & 3439.12132188546 & -15.4720414225192 & -129.351000693092 & -0.814296087904568 \tabularnewline
48 & 4187 & 3770.09626416074 & -7.72354533208285 & -103.134283659365 & 0.402994226542908 \tabularnewline
49 & 2665 & 3293.91566046088 & -15.4017431884173 & 85.4011398194698 & -0.55120958742399 \tabularnewline
50 & 2073 & 2787.63322615371 & -26.7942788759986 & 15.4438885089507 & -0.566903248446258 \tabularnewline
51 & 3540 & 3095.49118444935 & -18.69179900337 & -52.772791761388 & 0.386746776297892 \tabularnewline
52 & 3686 & 3322.93200349238 & -13.3497253300372 & -6.63703194482345 & 0.286600695285238 \tabularnewline
53 & 2384 & 2928.61259363847 & -19.8104582749721 & 34.8445811891607 & -0.447654117475372 \tabularnewline
54 & 4500 & 3498.05350887701 & -6.62214666328781 & 123.33392249453 & 0.682184212016077 \tabularnewline
55 & 1679 & 2861.24964248273 & -21.3087742640585 & -243.690230186488 & -0.72976147524002 \tabularnewline
56 & 868 & 2091.80362369468 & -37.1533128330488 & -99.4597039718215 & -0.871852011243908 \tabularnewline
57 & 1869 & 1970.84722008512 & -38.6115114514833 & 25.3658881359558 & -0.0983670963471821 \tabularnewline
58 & 3710 & 2506.18411877613 & -26.1444892688378 & 346.288228476252 & 0.665768852987121 \tabularnewline
59 & 6904 & 4181.90626105565 & 12.2398659790594 & 182.560249856642 & 1.97411418600085 \tabularnewline
60 & 3415 & 3987.65337431246 & 7.95361257259654 & -262.187303706077 & -0.240796374271655 \tabularnewline
61 & 938 & 2912.35593849491 & -11.2657582065408 & -332.533448784992 & -1.27045991007103 \tabularnewline
62 & 3359 & 2985.05220907303 & -9.48650281213226 & 248.29760160562 & 0.0975469466661459 \tabularnewline
63 & 3551 & 3101.72672190225 & -6.71978560990234 & 260.710197947617 & 0.146548188021529 \tabularnewline
64 & 2278 & 2848.75009068406 & -11.7475671188987 & -200.360296442461 & -0.287318517180989 \tabularnewline
65 & 3033 & 3029.56593381395 & -8.28026040960246 & -288.068683402969 & 0.225699027051777 \tabularnewline
66 & 2280 & 2664.51643686292 & -15.6876944345773 & 150.093936740024 & -0.415016854412007 \tabularnewline
67 & 2901 & 2629.12482428782 & -16.1095602245979 & 301.36541811454 & -0.0229147496864494 \tabularnewline
68 & 4812 & 3497.28487550446 & 1.69912189481871 & -15.7192328492271 & 1.032163805336 \tabularnewline
69 & 4882 & 4118.03578805831 & 12.9711024600395 & -172.268438984612 & 0.725222499783635 \tabularnewline
70 & 7896 & 5485.334993691 & 40.6186859925776 & 379.069861322667 & 1.57704926302106 \tabularnewline
71 & 5048 & 5316.50933292591 & 36.2252263470529 & 45.3223714545623 & -0.243811775285607 \tabularnewline
72 & 3741 & 4805.00954396468 & 25.3189023356029 & -239.699369278572 & -0.639561593132486 \tabularnewline
73 & 4418 & 4785.9832437133 & 24.504594732959 & -300.966540585926 & -0.0519313404617663 \tabularnewline
74 & 3471 & 4162.26039781021 & 11.4558138288056 & 281.978270879835 & -0.755455339053873 \tabularnewline
75 & 5055 & 4441.25952512912 & 16.971156733501 & 212.460918817754 & 0.311698119217754 \tabularnewline
76 & 7595 & 5693.1429038878 & 41.3293126098583 & 42.905676643736 & 1.44239972755344 \tabularnewline
77 & 8124 & 6726.57696491024 & 59.6634255621096 & -101.039139856283 & 1.16149715014152 \tabularnewline
78 & 2333 & 5099.61618278331 & 26.1047933050211 & -232.531384788536 & -1.96695036162954 \tabularnewline
79 & 3008 & 4294.79799513077 & 9.22689120814203 & -39.4928248310986 & -0.968717447595031 \tabularnewline
80 & 2744 & 3718.15484551659 & -2.23819617191484 & -92.042213819652 & -0.684477991531974 \tabularnewline
81 & 2833 & 3327.9116195878 & -9.4427039484242 & 90.8678922009988 & -0.454157064633005 \tabularnewline
82 & 2428 & 3023.7702401377 & -15.2498109631575 & -152.736114964049 & -0.343869508889471 \tabularnewline
83 & 4269 & 3448.24342904214 & -6.42932673710473 & 160.223614195774 & 0.512936564330279 \tabularnewline
84 & 3207 & 3379.73130382832 & -7.63622640032181 & -79.239484587303 & -0.0725472490604225 \tabularnewline
85 & 5170 & 3988.56230879421 & 3.85081901476083 & 251.058867900462 & 0.721456739180553 \tabularnewline
86 & 7767 & 5466.71480398428 & 32.6690407021766 & 82.8182011203741 & 1.72107288854135 \tabularnewline
87 & 4544 & 5131.28040918918 & 25.3631517502772 & -34.0049420325166 & -0.429598038053274 \tabularnewline
88 & 3741 & 4703.50513438618 & 16.6029450002048 & -280.004528535835 & -0.529612083582 \tabularnewline
89 & 2193 & 3751.51139547855 & -1.49231514208115 & -97.0730305035712 & -1.13342538421712 \tabularnewline
90 & 3432 & 3556.94940508105 & -5.24097041455508 & 165.560201136852 & -0.225470404357345 \tabularnewline
91 & 5282 & 4161.88337650002 & 6.76117136037774 & 202.540162975319 & 0.712395475181411 \tabularnewline
92 & 6635 & 5145.18323799515 & 25.551663014943 & 18.7821482868299 & 1.14151615422591 \tabularnewline
93 & 4222 & 4883.3491428242 & 20.1726886063738 & -227.820787242989 & -0.336262712936418 \tabularnewline
94 & 7317 & 5759.68403955184 & 36.7029401580845 & 268.625906147039 & 1.0001514155282 \tabularnewline
95 & 4132 & 5171.81569539013 & 24.5104495202528 & -100.195108946706 & -0.729449243857841 \tabularnewline
96 & 5048 & 5118.16416213711 & 23.0123958614065 & 47.5917685662325 & -0.0913784981625546 \tabularnewline
97 & 4383 & 4974.34334374018 & 19.8856487296067 & -339.708651864562 & -0.195195615742324 \tabularnewline
98 & 3761 & 4411.35041160928 & 8.68449920262826 & 227.240560056396 & -0.681081169103998 \tabularnewline
99 & 4081 & 4312.61071672428 & 6.60081503017214 & -69.9417346540704 & -0.125498329026842 \tabularnewline
100 & 6491 & 5079.72859382425 & 21.1282685173557 & 265.380287489059 & 0.889211459983181 \tabularnewline
101 & 5859 & 5494.87228122265 & 28.5195689105723 & -230.100391579019 & 0.460980786597983 \tabularnewline
102 & 7139 & 6047.19347088856 & 38.5459426120689 & 302.978348368972 & 0.612180840222549 \tabularnewline
103 & 7682 & 6747.38483326987 & 51.3106069468346 & -61.4319714720586 & 0.773150841296878 \tabularnewline
104 & 8649 & 7419.67481651969 & 63.1390888252923 & 293.590121368282 & 0.726129355179951 \tabularnewline
105 & 6146 & 7125.12865179807 & 56.4252325965904 & -439.735396772522 & -0.418464590393653 \tabularnewline
106 & 7137 & 7082.42952937132 & 54.5340838724427 & 203.877706628742 & -0.115869682736991 \tabularnewline
107 & 9948 & 8209.23925825113 & 75.1267603466246 & 124.139573096276 & 1.25323335563024 \tabularnewline
108 & 15819 & 10945.8778656054 & 125.702065185629 & 862.23616566644 & 3.11243361554139 \tabularnewline
109 & 8370 & 10320.1681908523 & 111.592531216544 & -817.098651007657 & -0.879079589853974 \tabularnewline
110 & 13222 & 11442.4367890592 & 130.821466590292 & 256.971107310142 & 1.18158549260915 \tabularnewline
111 & 16711 & 13541.0344502361 & 168.467156676026 & 206.278595943984 & 2.30024423412276 \tabularnewline
112 & 19059 & 15382.0230008025 & 200.184549881515 & 1156.3113830415 & 1.95601995176868 \tabularnewline
113 & 8303 & 13328.8118550311 & 157.86290219744 & -1628.01427989768 & -2.63623128953288 \tabularnewline
114 & 20781 & 16116.3140837924 & 207.777667353709 & 702.567769848445 & 3.07469820295003 \tabularnewline
115 & 9638 & 13908.213063452 & 161.708498367073 & -630.98171792046 & -2.8244540231024 \tabularnewline
116 & 13444 & 13293.347618594 & 147.00715119862 & 1321.10547359105 & -0.90825978082229 \tabularnewline
117 & 6072 & 11402.3950154869 & 108.728374403145 & -2257.53575162053 & -2.38418452274544 \tabularnewline
118 & 13442 & 11794.2038979486 & 114.091185846919 & 1221.22513487485 & 0.331024894436036 \tabularnewline
119 & 14457 & 13019.0685554074 & 135.215268626947 & -235.568551908528 & 1.29878207326543 \tabularnewline
120 & 17705 & 14278.9790111391 & 156.475594867687 & 1730.78502185556 & 1.31547972831063 \tabularnewline
121 & 16463 & 16059.6831409295 & 186.983279362243 & -2045.66420715307 & 1.90016493707622 \tabularnewline
122 & 19194 & 16982.7306085545 & 200.904648511412 & 1101.99462312184 & 0.860802457542869 \tabularnewline
123 & 20688 & 18642.0430326495 & 228.576299891219 & -151.571649051374 & 1.70542640155954 \tabularnewline
124 & 14739 & 16841.1920092501 & 190.261691836851 & 956.881071155117 & -2.3737872170034 \tabularnewline
125 & 12702 & 16196.4266494167 & 174.578433456123 & -2235.40499812943 & -0.97689026397433 \tabularnewline
126 & 15760 & 15759.917727575 & 163.036846678488 & 921.087715045463 & -0.714697389899612 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]3647[/C][C]3647[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]1885[/C][C]2356.44982994558[/C][C]-395.803836867124[/C][C]-394.482084091816[/C][C]-0.212298170279756[/C][/ROW]
[ROW][C]3[/C][C]4791[/C][C]3632.02811546237[/C][C]-37.1254030232851[/C][C]-5.00306558100766[/C][C]1.11701454582201[/C][/ROW]
[ROW][C]4[/C][C]3178[/C][C]3427.33460522904[/C][C]-63.8572917778289[/C][C]-77.9376418413325[/C][C]-0.145107768190526[/C][/ROW]
[ROW][C]5[/C][C]2849[/C][C]3123.40530952085[/C][C]-55.5751826829058[/C][C]166.790247815742[/C][C]-0.324772333400021[/C][/ROW]
[ROW][C]6[/C][C]4716[/C][C]3904.75584375366[/C][C]51.5673301580575[/C][C]50.7103328846863[/C][C]0.661377022590795[/C][/ROW]
[ROW][C]7[/C][C]3085[/C][C]3547.79572396938[/C][C]9.3643739577698[/C][C]11.233443650117[/C][C]-0.385924399255911[/C][/ROW]
[ROW][C]8[/C][C]2799[/C][C]3244.41946214097[/C][C]-17.0917232699317[/C][C]-35.8077013045984[/C][C]-0.322732188677044[/C][/ROW]
[ROW][C]9[/C][C]3573[/C][C]3335.98366240343[/C][C]-18.8868881350565[/C][C]51.5040591321881[/C][C]0.138045802422011[/C][/ROW]
[ROW][C]10[/C][C]2721[/C][C]3061.35776584463[/C][C]-40.2109778404079[/C][C]-40.1074738653545[/C][C]-0.243147358142945[/C][/ROW]
[ROW][C]11[/C][C]3355[/C][C]3164.89396020352[/C][C]-29.9493336134409[/C][C]2.11769169970399[/C][C]0.148590825685277[/C][/ROW]
[ROW][C]12[/C][C]5667[/C][C]4153.64998780918[/C][C]30.6337543996252[/C][C]83.6770225299431[/C][C]1.10907228103278[/C][/ROW]
[ROW][C]13[/C][C]2856[/C][C]3744.57497789713[/C][C]33.5324118453151[/C][C]-159.398794954358[/C][C]-0.545920772551831[/C][/ROW]
[ROW][C]14[/C][C]1944[/C][C]3011.10539889255[/C][C]-14.3470430642429[/C][C]-77.3275626389157[/C][C]-0.784105328085549[/C][/ROW]
[ROW][C]15[/C][C]4188[/C][C]3469.70385772074[/C][C]12.109289511842[/C][C]69.5616922977802[/C][C]0.508099560405196[/C][/ROW]
[ROW][C]16[/C][C]2949[/C][C]3246.30450593311[/C][C]1.12820495337541[/C][C]42.9413071902193[/C][C]-0.262773603258119[/C][/ROW]
[ROW][C]17[/C][C]3567[/C][C]3370.35566298001[/C][C]1.10079182598497[/C][C]-3.12209048723482[/C][C]0.150412448928746[/C][/ROW]
[ROW][C]18[/C][C]4137[/C][C]3718.03196519388[/C][C]18.4670445188616[/C][C]-50.839212137254[/C][C]0.368632323170359[/C][/ROW]
[ROW][C]19[/C][C]3494[/C][C]3613.57647996117[/C][C]12.7240752701483[/C][C]53.3566969727367[/C][C]-0.134972850911476[/C][/ROW]
[ROW][C]20[/C][C]2489[/C][C]3175.6641629669[/C][C]-4.78228081920118[/C][C]-25.7252946156598[/C][C]-0.50992931913638[/C][/ROW]
[ROW][C]21[/C][C]3244[/C][C]3195.97569045447[/C][C]-4.67598842019683[/C][C]7.86808234210751[/C][C]0.0303905878515649[/C][/ROW]
[ROW][C]22[/C][C]2669[/C][C]3008.64653320551[/C][C]-12.3601751875153[/C][C]-84.5444375804581[/C][C]-0.199211100405903[/C][/ROW]
[ROW][C]23[/C][C]2529[/C][C]2787.85374060916[/C][C]-20.8168999745188[/C][C]38.9989750974523[/C][C]-0.23213994478079[/C][/ROW]
[ROW][C]24[/C][C]3377[/C][C]3006.64369323959[/C][C]-12.7379382834977[/C][C]15.8672660615633[/C][C]0.273571240325326[/C][/ROW]
[ROW][C]25[/C][C]3366[/C][C]3118.83310606713[/C][C]-11.7962389171101[/C][C]49.6764224638112[/C][C]0.150131869183882[/C][/ROW]
[ROW][C]26[/C][C]2073[/C][C]2738.85204269764[/C][C]-25.2357846330101[/C][C]-141.439587640313[/C][C]-0.408484302859878[/C][/ROW]
[ROW][C]27[/C][C]4133[/C][C]3239.47487421858[/C][C]-6.21242000458826[/C][C]134.017548572739[/C][C]0.591573519199941[/C][/ROW]
[ROW][C]28[/C][C]4213[/C][C]3607.73335685425[/C][C]5.0803420080352[/C][C]48.306816388055[/C][C]0.430142646657817[/C][/ROW]
[ROW][C]29[/C][C]3710[/C][C]3637.30669211548[/C][C]5.32670627591905[/C][C]34.3499009133034[/C][C]0.0292597407987498[/C][/ROW]
[ROW][C]30[/C][C]5123[/C][C]4276.45525154483[/C][C]25.9227416349868[/C][C]-68.5521731239075[/C][C]0.711819631834861[/C][/ROW]
[ROW][C]31[/C][C]3141[/C][C]3834.11565653032[/C][C]10.528092161956[/C][C]-11.5030380333946[/C][C]-0.530727966525379[/C][/ROW]
[ROW][C]32[/C][C]3084[/C][C]3535.65783944282[/C][C]2.00072254391024[/C][C]9.4645590871089[/C][C]-0.356429455833688[/C][/ROW]
[ROW][C]33[/C][C]3804[/C][C]3634.99437464807[/C][C]3.16990225003556[/C][C]17.8172568367702[/C][C]0.115739795817856[/C][/ROW]
[ROW][C]34[/C][C]3203[/C][C]3485.50334220699[/C][C]-1.33848757357478[/C][C]-59.9397430312226[/C][C]-0.17299024975407[/C][/ROW]
[ROW][C]35[/C][C]2757[/C][C]3204.33675447599[/C][C]-9.82182353069269[/C][C]-37.5613863576046[/C][C]-0.318990678463328[/C][/ROW]
[ROW][C]36[/C][C]2243[/C][C]2835.61223084446[/C][C]-19.0498518196491[/C][C]-55.7849447568916[/C][C]-0.415280257493962[/C][/ROW]
[ROW][C]37[/C][C]5229[/C][C]3665.97333267616[/C][C]-7.55221632354125[/C][C]251.928079490131[/C][C]1.00634019416384[/C][/ROW]
[ROW][C]38[/C][C]2857[/C][C]3390.19569087454[/C][C]-14.8738427499909[/C][C]-139.335439680816[/C][C]-0.305997054989603[/C][/ROW]
[ROW][C]39[/C][C]3395[/C][C]3384.92386583204[/C][C]-14.6022580535521[/C][C]-4.05233876863616[/C][C]0.0109959112527536[/C][/ROW]
[ROW][C]40[/C][C]4882[/C][C]3983.20305306494[/C][C]0.286459061758173[/C][C]-19.3544888884123[/C][C]0.710762903251794[/C][/ROW]
[ROW][C]41[/C][C]7140[/C][C]5052.14125229628[/C][C]16.0260419922359[/C][C]446.615704080346[/C][C]1.26246785427581[/C][/ROW]
[ROW][C]42[/C][C]8945[/C][C]6598.34587024498[/C][C]55.1725594862492[/C][C]87.5701216442096[/C][C]1.75466036291645[/C][/ROW]
[ROW][C]43[/C][C]6866[/C][C]6794.52200654851[/C][C]58.9296390294869[/C][C]-136.807522198172[/C][C]0.162067092727368[/C][/ROW]
[ROW][C]44[/C][C]4205[/C][C]5938.39966804317[/C][C]37.6933848575008[/C][C]-361.018189776973[/C][C]-1.0630086795474[/C][/ROW]
[ROW][C]45[/C][C]3217[/C][C]4852.31199248376[/C][C]20.0933696320651[/C][C]83.7096836989292[/C][C]-1.32461973397082[/C][/ROW]
[ROW][C]46[/C][C]3079[/C][C]4143.0621308216[/C][C]2.40497448437476[/C][C]17.1805249297637[/C][C]-0.839676534636033[/C][/ROW]
[ROW][C]47[/C][C]2263[/C][C]3439.12132188546[/C][C]-15.4720414225192[/C][C]-129.351000693092[/C][C]-0.814296087904568[/C][/ROW]
[ROW][C]48[/C][C]4187[/C][C]3770.09626416074[/C][C]-7.72354533208285[/C][C]-103.134283659365[/C][C]0.402994226542908[/C][/ROW]
[ROW][C]49[/C][C]2665[/C][C]3293.91566046088[/C][C]-15.4017431884173[/C][C]85.4011398194698[/C][C]-0.55120958742399[/C][/ROW]
[ROW][C]50[/C][C]2073[/C][C]2787.63322615371[/C][C]-26.7942788759986[/C][C]15.4438885089507[/C][C]-0.566903248446258[/C][/ROW]
[ROW][C]51[/C][C]3540[/C][C]3095.49118444935[/C][C]-18.69179900337[/C][C]-52.772791761388[/C][C]0.386746776297892[/C][/ROW]
[ROW][C]52[/C][C]3686[/C][C]3322.93200349238[/C][C]-13.3497253300372[/C][C]-6.63703194482345[/C][C]0.286600695285238[/C][/ROW]
[ROW][C]53[/C][C]2384[/C][C]2928.61259363847[/C][C]-19.8104582749721[/C][C]34.8445811891607[/C][C]-0.447654117475372[/C][/ROW]
[ROW][C]54[/C][C]4500[/C][C]3498.05350887701[/C][C]-6.62214666328781[/C][C]123.33392249453[/C][C]0.682184212016077[/C][/ROW]
[ROW][C]55[/C][C]1679[/C][C]2861.24964248273[/C][C]-21.3087742640585[/C][C]-243.690230186488[/C][C]-0.72976147524002[/C][/ROW]
[ROW][C]56[/C][C]868[/C][C]2091.80362369468[/C][C]-37.1533128330488[/C][C]-99.4597039718215[/C][C]-0.871852011243908[/C][/ROW]
[ROW][C]57[/C][C]1869[/C][C]1970.84722008512[/C][C]-38.6115114514833[/C][C]25.3658881359558[/C][C]-0.0983670963471821[/C][/ROW]
[ROW][C]58[/C][C]3710[/C][C]2506.18411877613[/C][C]-26.1444892688378[/C][C]346.288228476252[/C][C]0.665768852987121[/C][/ROW]
[ROW][C]59[/C][C]6904[/C][C]4181.90626105565[/C][C]12.2398659790594[/C][C]182.560249856642[/C][C]1.97411418600085[/C][/ROW]
[ROW][C]60[/C][C]3415[/C][C]3987.65337431246[/C][C]7.95361257259654[/C][C]-262.187303706077[/C][C]-0.240796374271655[/C][/ROW]
[ROW][C]61[/C][C]938[/C][C]2912.35593849491[/C][C]-11.2657582065408[/C][C]-332.533448784992[/C][C]-1.27045991007103[/C][/ROW]
[ROW][C]62[/C][C]3359[/C][C]2985.05220907303[/C][C]-9.48650281213226[/C][C]248.29760160562[/C][C]0.0975469466661459[/C][/ROW]
[ROW][C]63[/C][C]3551[/C][C]3101.72672190225[/C][C]-6.71978560990234[/C][C]260.710197947617[/C][C]0.146548188021529[/C][/ROW]
[ROW][C]64[/C][C]2278[/C][C]2848.75009068406[/C][C]-11.7475671188987[/C][C]-200.360296442461[/C][C]-0.287318517180989[/C][/ROW]
[ROW][C]65[/C][C]3033[/C][C]3029.56593381395[/C][C]-8.28026040960246[/C][C]-288.068683402969[/C][C]0.225699027051777[/C][/ROW]
[ROW][C]66[/C][C]2280[/C][C]2664.51643686292[/C][C]-15.6876944345773[/C][C]150.093936740024[/C][C]-0.415016854412007[/C][/ROW]
[ROW][C]67[/C][C]2901[/C][C]2629.12482428782[/C][C]-16.1095602245979[/C][C]301.36541811454[/C][C]-0.0229147496864494[/C][/ROW]
[ROW][C]68[/C][C]4812[/C][C]3497.28487550446[/C][C]1.69912189481871[/C][C]-15.7192328492271[/C][C]1.032163805336[/C][/ROW]
[ROW][C]69[/C][C]4882[/C][C]4118.03578805831[/C][C]12.9711024600395[/C][C]-172.268438984612[/C][C]0.725222499783635[/C][/ROW]
[ROW][C]70[/C][C]7896[/C][C]5485.334993691[/C][C]40.6186859925776[/C][C]379.069861322667[/C][C]1.57704926302106[/C][/ROW]
[ROW][C]71[/C][C]5048[/C][C]5316.50933292591[/C][C]36.2252263470529[/C][C]45.3223714545623[/C][C]-0.243811775285607[/C][/ROW]
[ROW][C]72[/C][C]3741[/C][C]4805.00954396468[/C][C]25.3189023356029[/C][C]-239.699369278572[/C][C]-0.639561593132486[/C][/ROW]
[ROW][C]73[/C][C]4418[/C][C]4785.9832437133[/C][C]24.504594732959[/C][C]-300.966540585926[/C][C]-0.0519313404617663[/C][/ROW]
[ROW][C]74[/C][C]3471[/C][C]4162.26039781021[/C][C]11.4558138288056[/C][C]281.978270879835[/C][C]-0.755455339053873[/C][/ROW]
[ROW][C]75[/C][C]5055[/C][C]4441.25952512912[/C][C]16.971156733501[/C][C]212.460918817754[/C][C]0.311698119217754[/C][/ROW]
[ROW][C]76[/C][C]7595[/C][C]5693.1429038878[/C][C]41.3293126098583[/C][C]42.905676643736[/C][C]1.44239972755344[/C][/ROW]
[ROW][C]77[/C][C]8124[/C][C]6726.57696491024[/C][C]59.6634255621096[/C][C]-101.039139856283[/C][C]1.16149715014152[/C][/ROW]
[ROW][C]78[/C][C]2333[/C][C]5099.61618278331[/C][C]26.1047933050211[/C][C]-232.531384788536[/C][C]-1.96695036162954[/C][/ROW]
[ROW][C]79[/C][C]3008[/C][C]4294.79799513077[/C][C]9.22689120814203[/C][C]-39.4928248310986[/C][C]-0.968717447595031[/C][/ROW]
[ROW][C]80[/C][C]2744[/C][C]3718.15484551659[/C][C]-2.23819617191484[/C][C]-92.042213819652[/C][C]-0.684477991531974[/C][/ROW]
[ROW][C]81[/C][C]2833[/C][C]3327.9116195878[/C][C]-9.4427039484242[/C][C]90.8678922009988[/C][C]-0.454157064633005[/C][/ROW]
[ROW][C]82[/C][C]2428[/C][C]3023.7702401377[/C][C]-15.2498109631575[/C][C]-152.736114964049[/C][C]-0.343869508889471[/C][/ROW]
[ROW][C]83[/C][C]4269[/C][C]3448.24342904214[/C][C]-6.42932673710473[/C][C]160.223614195774[/C][C]0.512936564330279[/C][/ROW]
[ROW][C]84[/C][C]3207[/C][C]3379.73130382832[/C][C]-7.63622640032181[/C][C]-79.239484587303[/C][C]-0.0725472490604225[/C][/ROW]
[ROW][C]85[/C][C]5170[/C][C]3988.56230879421[/C][C]3.85081901476083[/C][C]251.058867900462[/C][C]0.721456739180553[/C][/ROW]
[ROW][C]86[/C][C]7767[/C][C]5466.71480398428[/C][C]32.6690407021766[/C][C]82.8182011203741[/C][C]1.72107288854135[/C][/ROW]
[ROW][C]87[/C][C]4544[/C][C]5131.28040918918[/C][C]25.3631517502772[/C][C]-34.0049420325166[/C][C]-0.429598038053274[/C][/ROW]
[ROW][C]88[/C][C]3741[/C][C]4703.50513438618[/C][C]16.6029450002048[/C][C]-280.004528535835[/C][C]-0.529612083582[/C][/ROW]
[ROW][C]89[/C][C]2193[/C][C]3751.51139547855[/C][C]-1.49231514208115[/C][C]-97.0730305035712[/C][C]-1.13342538421712[/C][/ROW]
[ROW][C]90[/C][C]3432[/C][C]3556.94940508105[/C][C]-5.24097041455508[/C][C]165.560201136852[/C][C]-0.225470404357345[/C][/ROW]
[ROW][C]91[/C][C]5282[/C][C]4161.88337650002[/C][C]6.76117136037774[/C][C]202.540162975319[/C][C]0.712395475181411[/C][/ROW]
[ROW][C]92[/C][C]6635[/C][C]5145.18323799515[/C][C]25.551663014943[/C][C]18.7821482868299[/C][C]1.14151615422591[/C][/ROW]
[ROW][C]93[/C][C]4222[/C][C]4883.3491428242[/C][C]20.1726886063738[/C][C]-227.820787242989[/C][C]-0.336262712936418[/C][/ROW]
[ROW][C]94[/C][C]7317[/C][C]5759.68403955184[/C][C]36.7029401580845[/C][C]268.625906147039[/C][C]1.0001514155282[/C][/ROW]
[ROW][C]95[/C][C]4132[/C][C]5171.81569539013[/C][C]24.5104495202528[/C][C]-100.195108946706[/C][C]-0.729449243857841[/C][/ROW]
[ROW][C]96[/C][C]5048[/C][C]5118.16416213711[/C][C]23.0123958614065[/C][C]47.5917685662325[/C][C]-0.0913784981625546[/C][/ROW]
[ROW][C]97[/C][C]4383[/C][C]4974.34334374018[/C][C]19.8856487296067[/C][C]-339.708651864562[/C][C]-0.195195615742324[/C][/ROW]
[ROW][C]98[/C][C]3761[/C][C]4411.35041160928[/C][C]8.68449920262826[/C][C]227.240560056396[/C][C]-0.681081169103998[/C][/ROW]
[ROW][C]99[/C][C]4081[/C][C]4312.61071672428[/C][C]6.60081503017214[/C][C]-69.9417346540704[/C][C]-0.125498329026842[/C][/ROW]
[ROW][C]100[/C][C]6491[/C][C]5079.72859382425[/C][C]21.1282685173557[/C][C]265.380287489059[/C][C]0.889211459983181[/C][/ROW]
[ROW][C]101[/C][C]5859[/C][C]5494.87228122265[/C][C]28.5195689105723[/C][C]-230.100391579019[/C][C]0.460980786597983[/C][/ROW]
[ROW][C]102[/C][C]7139[/C][C]6047.19347088856[/C][C]38.5459426120689[/C][C]302.978348368972[/C][C]0.612180840222549[/C][/ROW]
[ROW][C]103[/C][C]7682[/C][C]6747.38483326987[/C][C]51.3106069468346[/C][C]-61.4319714720586[/C][C]0.773150841296878[/C][/ROW]
[ROW][C]104[/C][C]8649[/C][C]7419.67481651969[/C][C]63.1390888252923[/C][C]293.590121368282[/C][C]0.726129355179951[/C][/ROW]
[ROW][C]105[/C][C]6146[/C][C]7125.12865179807[/C][C]56.4252325965904[/C][C]-439.735396772522[/C][C]-0.418464590393653[/C][/ROW]
[ROW][C]106[/C][C]7137[/C][C]7082.42952937132[/C][C]54.5340838724427[/C][C]203.877706628742[/C][C]-0.115869682736991[/C][/ROW]
[ROW][C]107[/C][C]9948[/C][C]8209.23925825113[/C][C]75.1267603466246[/C][C]124.139573096276[/C][C]1.25323335563024[/C][/ROW]
[ROW][C]108[/C][C]15819[/C][C]10945.8778656054[/C][C]125.702065185629[/C][C]862.23616566644[/C][C]3.11243361554139[/C][/ROW]
[ROW][C]109[/C][C]8370[/C][C]10320.1681908523[/C][C]111.592531216544[/C][C]-817.098651007657[/C][C]-0.879079589853974[/C][/ROW]
[ROW][C]110[/C][C]13222[/C][C]11442.4367890592[/C][C]130.821466590292[/C][C]256.971107310142[/C][C]1.18158549260915[/C][/ROW]
[ROW][C]111[/C][C]16711[/C][C]13541.0344502361[/C][C]168.467156676026[/C][C]206.278595943984[/C][C]2.30024423412276[/C][/ROW]
[ROW][C]112[/C][C]19059[/C][C]15382.0230008025[/C][C]200.184549881515[/C][C]1156.3113830415[/C][C]1.95601995176868[/C][/ROW]
[ROW][C]113[/C][C]8303[/C][C]13328.8118550311[/C][C]157.86290219744[/C][C]-1628.01427989768[/C][C]-2.63623128953288[/C][/ROW]
[ROW][C]114[/C][C]20781[/C][C]16116.3140837924[/C][C]207.777667353709[/C][C]702.567769848445[/C][C]3.07469820295003[/C][/ROW]
[ROW][C]115[/C][C]9638[/C][C]13908.213063452[/C][C]161.708498367073[/C][C]-630.98171792046[/C][C]-2.8244540231024[/C][/ROW]
[ROW][C]116[/C][C]13444[/C][C]13293.347618594[/C][C]147.00715119862[/C][C]1321.10547359105[/C][C]-0.90825978082229[/C][/ROW]
[ROW][C]117[/C][C]6072[/C][C]11402.3950154869[/C][C]108.728374403145[/C][C]-2257.53575162053[/C][C]-2.38418452274544[/C][/ROW]
[ROW][C]118[/C][C]13442[/C][C]11794.2038979486[/C][C]114.091185846919[/C][C]1221.22513487485[/C][C]0.331024894436036[/C][/ROW]
[ROW][C]119[/C][C]14457[/C][C]13019.0685554074[/C][C]135.215268626947[/C][C]-235.568551908528[/C][C]1.29878207326543[/C][/ROW]
[ROW][C]120[/C][C]17705[/C][C]14278.9790111391[/C][C]156.475594867687[/C][C]1730.78502185556[/C][C]1.31547972831063[/C][/ROW]
[ROW][C]121[/C][C]16463[/C][C]16059.6831409295[/C][C]186.983279362243[/C][C]-2045.66420715307[/C][C]1.90016493707622[/C][/ROW]
[ROW][C]122[/C][C]19194[/C][C]16982.7306085545[/C][C]200.904648511412[/C][C]1101.99462312184[/C][C]0.860802457542869[/C][/ROW]
[ROW][C]123[/C][C]20688[/C][C]18642.0430326495[/C][C]228.576299891219[/C][C]-151.571649051374[/C][C]1.70542640155954[/C][/ROW]
[ROW][C]124[/C][C]14739[/C][C]16841.1920092501[/C][C]190.261691836851[/C][C]956.881071155117[/C][C]-2.3737872170034[/C][/ROW]
[ROW][C]125[/C][C]12702[/C][C]16196.4266494167[/C][C]174.578433456123[/C][C]-2235.40499812943[/C][C]-0.97689026397433[/C][/ROW]
[ROW][C]126[/C][C]15760[/C][C]15759.917727575[/C][C]163.036846678488[/C][C]921.087715045463[/C][C]-0.714697389899612[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
136473647000
218852356.44982994558-395.803836867124-394.482084091816-0.212298170279756
347913632.02811546237-37.1254030232851-5.003065581007661.11701454582201
431783427.33460522904-63.8572917778289-77.9376418413325-0.145107768190526
528493123.40530952085-55.5751826829058166.790247815742-0.324772333400021
647163904.7558437536651.567330158057550.71033288468630.661377022590795
730853547.795723969389.364373957769811.233443650117-0.385924399255911
827993244.41946214097-17.0917232699317-35.8077013045984-0.322732188677044
935733335.98366240343-18.886888135056551.50405913218810.138045802422011
1027213061.35776584463-40.2109778404079-40.1074738653545-0.243147358142945
1133553164.89396020352-29.94933361344092.117691699703990.148590825685277
1256674153.6499878091830.633754399625283.67702252994311.10907228103278
1328563744.5749778971333.5324118453151-159.398794954358-0.545920772551831
1419443011.10539889255-14.3470430642429-77.3275626389157-0.784105328085549
1541883469.7038577207412.10928951184269.56169229778020.508099560405196
1629493246.304505933111.1282049533754142.9413071902193-0.262773603258119
1735673370.355662980011.10079182598497-3.122090487234820.150412448928746
1841373718.0319651938818.4670445188616-50.8392121372540.368632323170359
1934943613.5764799611712.724075270148353.3566969727367-0.134972850911476
2024893175.6641629669-4.78228081920118-25.7252946156598-0.50992931913638
2132443195.97569045447-4.675988420196837.868082342107510.0303905878515649
2226693008.64653320551-12.3601751875153-84.5444375804581-0.199211100405903
2325292787.85374060916-20.816899974518838.9989750974523-0.23213994478079
2433773006.64369323959-12.737938283497715.86726606156330.273571240325326
2533663118.83310606713-11.796238917110149.67642246381120.150131869183882
2620732738.85204269764-25.2357846330101-141.439587640313-0.408484302859878
2741333239.47487421858-6.21242000458826134.0175485727390.591573519199941
2842133607.733356854255.080342008035248.3068163880550.430142646657817
2937103637.306692115485.3267062759190534.34990091330340.0292597407987498
3051234276.4552515448325.9227416349868-68.55217312390750.711819631834861
3131413834.1156565303210.528092161956-11.5030380333946-0.530727966525379
3230843535.657839442822.000722543910249.4645590871089-0.356429455833688
3338043634.994374648073.1699022500355617.81725683677020.115739795817856
3432033485.50334220699-1.33848757357478-59.9397430312226-0.17299024975407
3527573204.33675447599-9.82182353069269-37.5613863576046-0.318990678463328
3622432835.61223084446-19.0498518196491-55.7849447568916-0.415280257493962
3752293665.97333267616-7.55221632354125251.9280794901311.00634019416384
3828573390.19569087454-14.8738427499909-139.335439680816-0.305997054989603
3933953384.92386583204-14.6022580535521-4.052338768636160.0109959112527536
4048823983.203053064940.286459061758173-19.35448888841230.710762903251794
4171405052.1412522962816.0260419922359446.6157040803461.26246785427581
4289456598.3458702449855.172559486249287.57012164420961.75466036291645
4368666794.5220065485158.9296390294869-136.8075221981720.162067092727368
4442055938.3996680431737.6933848575008-361.018189776973-1.0630086795474
4532174852.3119924837620.093369632065183.7096836989292-1.32461973397082
4630794143.06213082162.4049744843747617.1805249297637-0.839676534636033
4722633439.12132188546-15.4720414225192-129.351000693092-0.814296087904568
4841873770.09626416074-7.72354533208285-103.1342836593650.402994226542908
4926653293.91566046088-15.401743188417385.4011398194698-0.55120958742399
5020732787.63322615371-26.794278875998615.4438885089507-0.566903248446258
5135403095.49118444935-18.69179900337-52.7727917613880.386746776297892
5236863322.93200349238-13.3497253300372-6.637031944823450.286600695285238
5323842928.61259363847-19.810458274972134.8445811891607-0.447654117475372
5445003498.05350887701-6.62214666328781123.333922494530.682184212016077
5516792861.24964248273-21.3087742640585-243.690230186488-0.72976147524002
568682091.80362369468-37.1533128330488-99.4597039718215-0.871852011243908
5718691970.84722008512-38.611511451483325.3658881359558-0.0983670963471821
5837102506.18411877613-26.1444892688378346.2882284762520.665768852987121
5969044181.9062610556512.2398659790594182.5602498566421.97411418600085
6034153987.653374312467.95361257259654-262.187303706077-0.240796374271655
619382912.35593849491-11.2657582065408-332.533448784992-1.27045991007103
6233592985.05220907303-9.48650281213226248.297601605620.0975469466661459
6335513101.72672190225-6.71978560990234260.7101979476170.146548188021529
6422782848.75009068406-11.7475671188987-200.360296442461-0.287318517180989
6530333029.56593381395-8.28026040960246-288.0686834029690.225699027051777
6622802664.51643686292-15.6876944345773150.093936740024-0.415016854412007
6729012629.12482428782-16.1095602245979301.36541811454-0.0229147496864494
6848123497.284875504461.69912189481871-15.71923284922711.032163805336
6948824118.0357880583112.9711024600395-172.2684389846120.725222499783635
7078965485.33499369140.6186859925776379.0698613226671.57704926302106
7150485316.5093329259136.225226347052945.3223714545623-0.243811775285607
7237414805.0095439646825.3189023356029-239.699369278572-0.639561593132486
7344184785.983243713324.504594732959-300.966540585926-0.0519313404617663
7434714162.2603978102111.4558138288056281.978270879835-0.755455339053873
7550554441.2595251291216.971156733501212.4609188177540.311698119217754
7675955693.142903887841.329312609858342.9056766437361.44239972755344
7781246726.5769649102459.6634255621096-101.0391398562831.16149715014152
7823335099.6161827833126.1047933050211-232.531384788536-1.96695036162954
7930084294.797995130779.22689120814203-39.4928248310986-0.968717447595031
8027443718.15484551659-2.23819617191484-92.042213819652-0.684477991531974
8128333327.9116195878-9.442703948424290.8678922009988-0.454157064633005
8224283023.7702401377-15.2498109631575-152.736114964049-0.343869508889471
8342693448.24342904214-6.42932673710473160.2236141957740.512936564330279
8432073379.73130382832-7.63622640032181-79.239484587303-0.0725472490604225
8551703988.562308794213.85081901476083251.0588679004620.721456739180553
8677675466.7148039842832.669040702176682.81820112037411.72107288854135
8745445131.2804091891825.3631517502772-34.0049420325166-0.429598038053274
8837414703.5051343861816.6029450002048-280.004528535835-0.529612083582
8921933751.51139547855-1.49231514208115-97.0730305035712-1.13342538421712
9034323556.94940508105-5.24097041455508165.560201136852-0.225470404357345
9152824161.883376500026.76117136037774202.5401629753190.712395475181411
9266355145.1832379951525.55166301494318.78214828682991.14151615422591
9342224883.349142824220.1726886063738-227.820787242989-0.336262712936418
9473175759.6840395518436.7029401580845268.6259061470391.0001514155282
9541325171.8156953901324.5104495202528-100.195108946706-0.729449243857841
9650485118.1641621371123.012395861406547.5917685662325-0.0913784981625546
9743834974.3433437401819.8856487296067-339.708651864562-0.195195615742324
9837614411.350411609288.68449920262826227.240560056396-0.681081169103998
9940814312.610716724286.60081503017214-69.9417346540704-0.125498329026842
10064915079.7285938242521.1282685173557265.3802874890590.889211459983181
10158595494.8722812226528.5195689105723-230.1003915790190.460980786597983
10271396047.1934708885638.5459426120689302.9783483689720.612180840222549
10376826747.3848332698751.3106069468346-61.43197147205860.773150841296878
10486497419.6748165196963.1390888252923293.5901213682820.726129355179951
10561467125.1286517980756.4252325965904-439.735396772522-0.418464590393653
10671377082.4295293713254.5340838724427203.877706628742-0.115869682736991
10799488209.2392582511375.1267603466246124.1395730962761.25323335563024
1081581910945.8778656054125.702065185629862.236165666443.11243361554139
109837010320.1681908523111.592531216544-817.098651007657-0.879079589853974
1101322211442.4367890592130.821466590292256.9711073101421.18158549260915
1111671113541.0344502361168.467156676026206.2785959439842.30024423412276
1121905915382.0230008025200.1845498815151156.31138304151.95601995176868
113830313328.8118550311157.86290219744-1628.01427989768-2.63623128953288
1142078116116.3140837924207.777667353709702.5677698484453.07469820295003
115963813908.213063452161.708498367073-630.98171792046-2.8244540231024
1161344413293.347618594147.007151198621321.10547359105-0.90825978082229
117607211402.3950154869108.728374403145-2257.53575162053-2.38418452274544
1181344211794.2038979486114.0911858469191221.225134874850.331024894436036
1191445713019.0685554074135.215268626947-235.5685519085281.29878207326543
1201770514278.9790111391156.4755948676871730.785021855561.31547972831063
1211646316059.6831409295186.983279362243-2045.664207153071.90016493707622
1221919416982.7306085545200.9046485114121101.994623121840.860802457542869
1232068818642.0430326495228.576299891219-151.5716490513741.70542640155954
1241473916841.1920092501190.261691836851956.881071155117-2.3737872170034
1251270216196.4266494167174.578433456123-2235.40499812943-0.97689026397433
1261576015759.917727575163.036846678488921.087715045463-0.714697389899612







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
116078.81397338115915.1527837233163.66118965767
217155.490310780116076.98972483241078.50058594771
314079.936043176516238.8266659415-2158.89062276506
417317.392454210316400.6636070506916.728847159685
516726.161737817316562.5005481597163.66118965767
617802.838075216516724.33748926871078.50058594771
714727.283807612816886.1744303778-2158.89062276506
817964.740218646617048.0113714869916.728847159685
917373.509502253717209.848312596163.66118965767
1018450.185839652817371.68525370511078.50058594771
1115374.631572049117533.5221948141-2158.89062276506
1218612.087983082917695.3591359232916.728847159685

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 16078.813973381 & 15915.1527837233 & 163.66118965767 \tabularnewline
2 & 17155.4903107801 & 16076.9897248324 & 1078.50058594771 \tabularnewline
3 & 14079.9360431765 & 16238.8266659415 & -2158.89062276506 \tabularnewline
4 & 17317.3924542103 & 16400.6636070506 & 916.728847159685 \tabularnewline
5 & 16726.1617378173 & 16562.5005481597 & 163.66118965767 \tabularnewline
6 & 17802.8380752165 & 16724.3374892687 & 1078.50058594771 \tabularnewline
7 & 14727.2838076128 & 16886.1744303778 & -2158.89062276506 \tabularnewline
8 & 17964.7402186466 & 17048.0113714869 & 916.728847159685 \tabularnewline
9 & 17373.5095022537 & 17209.848312596 & 163.66118965767 \tabularnewline
10 & 18450.1858396528 & 17371.6852537051 & 1078.50058594771 \tabularnewline
11 & 15374.6315720491 & 17533.5221948141 & -2158.89062276506 \tabularnewline
12 & 18612.0879830829 & 17695.3591359232 & 916.728847159685 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]16078.813973381[/C][C]15915.1527837233[/C][C]163.66118965767[/C][/ROW]
[ROW][C]2[/C][C]17155.4903107801[/C][C]16076.9897248324[/C][C]1078.50058594771[/C][/ROW]
[ROW][C]3[/C][C]14079.9360431765[/C][C]16238.8266659415[/C][C]-2158.89062276506[/C][/ROW]
[ROW][C]4[/C][C]17317.3924542103[/C][C]16400.6636070506[/C][C]916.728847159685[/C][/ROW]
[ROW][C]5[/C][C]16726.1617378173[/C][C]16562.5005481597[/C][C]163.66118965767[/C][/ROW]
[ROW][C]6[/C][C]17802.8380752165[/C][C]16724.3374892687[/C][C]1078.50058594771[/C][/ROW]
[ROW][C]7[/C][C]14727.2838076128[/C][C]16886.1744303778[/C][C]-2158.89062276506[/C][/ROW]
[ROW][C]8[/C][C]17964.7402186466[/C][C]17048.0113714869[/C][C]916.728847159685[/C][/ROW]
[ROW][C]9[/C][C]17373.5095022537[/C][C]17209.848312596[/C][C]163.66118965767[/C][/ROW]
[ROW][C]10[/C][C]18450.1858396528[/C][C]17371.6852537051[/C][C]1078.50058594771[/C][/ROW]
[ROW][C]11[/C][C]15374.6315720491[/C][C]17533.5221948141[/C][C]-2158.89062276506[/C][/ROW]
[ROW][C]12[/C][C]18612.0879830829[/C][C]17695.3591359232[/C][C]916.728847159685[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
116078.81397338115915.1527837233163.66118965767
217155.490310780116076.98972483241078.50058594771
314079.936043176516238.8266659415-2158.89062276506
417317.392454210316400.6636070506916.728847159685
516726.161737817316562.5005481597163.66118965767
617802.838075216516724.33748926871078.50058594771
714727.283807612816886.1744303778-2158.89062276506
817964.740218646617048.0113714869916.728847159685
917373.509502253717209.848312596163.66118965767
1018450.185839652817371.68525370511078.50058594771
1115374.631572049117533.5221948141-2158.89062276506
1218612.087983082917695.3591359232916.728847159685



Parameters (Session):
par1 = 1111110.9520012DefaultDefaultDefaultDefaultDefaultDefaultDefaultDefault1DefaultDefault36361111111111111111144 ; par2 = 2222220518111111111.01.01110111101111001001112 ; par3 = TRUETRUETRUEFALSETRUETRUE0BFGS010100111111100001001110000000BFGS ; par4 = P1 P5 Q1 Q3 P95 P990000011011101114124114444444114 ; par5 = 12121212121212121212121212 ; par6 = White NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite NoiseWhite Noise ; par7 = 0.950.950.950.950.950.950.950.950.950.95 ;
Parameters (R input):
par1 = 4 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')