Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationSun, 18 Dec 2016 16:54:59 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482076546fz33dq1bbfwipbd.htm/, Retrieved Fri, 01 Nov 2024 03:33:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301154, Retrieved Fri, 01 Nov 2024 03:33:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact80
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [] [2016-12-18 15:54:59] [9ac947b5174fcc9cd01e144b03ceb277] [Current]
Feedback Forum

Post a new message
Dataseries X:
7984
7937
7821
7749
7785
7632
7533
7536
7470
7367
7246
7150
7050
6907
6803
6626
6512
6509
6419
6365
6395
6360
6386
6360
6259
6198
6103
6064
5968
5908
5805
5728
5678
5274
5166
5106
5008
5034
4901
4853
4790
4703
4640
4544
4465
4335
4345
4246
4131
4112
4111
4096
3970
3970
3908
3861
3819
3781
3684
3664
3648
3564
3490




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301154&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301154&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301154&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal631064
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 631 & 0 & 64 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301154&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]631[/C][C]0[/C][C]64[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301154&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301154&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal631064
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
179847970.33980305539-15.44713327363438013.10733021824-13.6601969446074
279377934.542017614222.257392521712397937.20058986407-2.45798238577936
378217793.24426513489-12.53811464478117861.29384950989-27.7557348651135
477497696.5514208477117.32747874085077784.12110041144-52.4485791522939
577857843.4062369846319.64541170237937706.9483513129958.4062369846279
676327610.2302928042925.5258460223677628.24386117334-21.7697071957082
775337507.854363654548.606265311766167549.53937103369-25.1456363454572
875367586.4076775316.11641154049317469.4759109295150.4076775299982
974707514.1609594230836.42658975159627389.4124508253344.1609594230767
1073677473.23379759016-40.95354091817377301.71974332802106.233797590157
1172467312.30652873492-34.33356456562187214.027035830766.3065287349173
1271507207.47244584735-22.6330795266237115.1606336792857.4724458473456
1370507099.15290174578-15.44713327363437016.2942315278549.1529017457824
1469076893.017519962142.257392521712396918.72508751615-13.9824800378619
1568036797.38217114033-12.53811464478116821.15594350445-5.61782885966841
1666266499.3228057978617.32747874085076735.34971546129-126.677194202136
1765126354.811100879519.64541170237936649.54348741812-157.188899120501
1865096411.2750557127625.5258460223676581.19909826487-97.724944287238
1964196316.539025576618.606265311766166512.85470911162-102.460974423386
2063656255.1288471318716.11641154049316458.75474132764-109.871152868132
2163956348.9186367047436.42658975159626404.65477354366-46.0813632952559
2263606402.94391420625-40.95354091817376358.0096267119242.9439142062492
2363866494.96908468543-34.33356456562186311.36447988019108.969084685433
2463606479.52038176054-22.6330795266236263.11269776608119.520381760539
2562596318.58621762165-15.44713327363436214.8609156519859.5862176216542
2661986239.369358636032.257392521712396154.3732488422641.3693586360287
2761036124.65253261224-12.53811464478116093.8855820325421.6525326122428
2860646099.4461306055217.32747874085076011.2263906536335.44613060552
2959685987.787389022919.64541170237935928.5671992747219.7873890229002
3059085961.9143785431825.5258460223675828.5597754344653.9143785431761
3158055872.841383094048.606265311766165728.5523515941967.8413830940399
3257285815.3228037490816.11641154049315624.5607847104387.3228037490753
3356785799.0041924217336.42658975159625520.56921782667121.004192421734
3452745171.4660821567-40.95354091817375417.48745876147-102.533917843299
3551665051.92786486935-34.33356456562185314.40569969628-114.072135130654
3651065020.68923963109-22.6330795266235213.94383989553-85.3107603689068
3750084917.96515317885-15.44713327363435113.48198009478-90.0348468211496
3850345045.782060463792.257392521712395019.9605470144911.7820604637936
3949014888.09900071057-12.53811464478114926.43911393421-12.9009992894253
4048534843.5342129964717.32747874085074845.13830826268-9.46578700352802
4147904796.5170857064719.64541170237934763.837502591156.51708570647224
4247034690.2915754409125.5258460223674690.18257853673-12.708424559095
4346404654.866080205938.606265311766164616.5276544823114.8660802059258
4445444526.6069678807616.11641154049314545.27662057874-17.3930321192365
4544654419.5478235732236.42658975159624474.02558667518-45.4521764267756
4643354304.06492588133-40.95354091817374406.88861503685-30.9350741186718
4743454384.58192116711-34.33356456562184339.7516433985139.5819211671096
4842464236.78090271457-22.6330795266234277.85217681206-9.21909728543324
4941314061.49442304803-15.44713327363434215.9527102256-69.5055769519668
5041124062.539411999572.257392521712394159.20319547872-49.4605880004337
5141114132.08443391294-12.53811464478114102.4536807318421.0844339129389
5240964123.5191142545217.32747874085074051.1534070046327.51911425452
5339703920.501455020219.64541170237933999.85313327742-49.4985449797964
5439703961.4289164512325.5258460223673953.0452375264-8.57108354877209
5539083901.156392912848.606265311766163906.23734177539-6.84360708715849
5638613846.3926855374616.11641154049313859.49090292205-14.6073144625393
5738193788.828946179736.42658975159623812.7444640687-30.1710538202956
5837813836.98165900841-40.95354091817373765.9718819097755.9816590084074
5936843683.13426481479-34.33356456562183719.19929975083-0.865735185211634
6036643677.94445253974-22.6330795266233672.6886269868813.9444525397412
6136483685.2691790507-15.44713327363433626.1779542229337.2691790507033
6235643546.015536754752.257392521712393579.72707072354-17.9844632452523
6334903459.26192742063-12.53811464478113533.27618722415-30.7380725793673

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 7984 & 7970.33980305539 & -15.4471332736343 & 8013.10733021824 & -13.6601969446074 \tabularnewline
2 & 7937 & 7934.54201761422 & 2.25739252171239 & 7937.20058986407 & -2.45798238577936 \tabularnewline
3 & 7821 & 7793.24426513489 & -12.5381146447811 & 7861.29384950989 & -27.7557348651135 \tabularnewline
4 & 7749 & 7696.55142084771 & 17.3274787408507 & 7784.12110041144 & -52.4485791522939 \tabularnewline
5 & 7785 & 7843.40623698463 & 19.6454117023793 & 7706.94835131299 & 58.4062369846279 \tabularnewline
6 & 7632 & 7610.23029280429 & 25.525846022367 & 7628.24386117334 & -21.7697071957082 \tabularnewline
7 & 7533 & 7507.85436365454 & 8.60626531176616 & 7549.53937103369 & -25.1456363454572 \tabularnewline
8 & 7536 & 7586.40767753 & 16.1164115404931 & 7469.47591092951 & 50.4076775299982 \tabularnewline
9 & 7470 & 7514.16095942308 & 36.4265897515962 & 7389.41245082533 & 44.1609594230767 \tabularnewline
10 & 7367 & 7473.23379759016 & -40.9535409181737 & 7301.71974332802 & 106.233797590157 \tabularnewline
11 & 7246 & 7312.30652873492 & -34.3335645656218 & 7214.0270358307 & 66.3065287349173 \tabularnewline
12 & 7150 & 7207.47244584735 & -22.633079526623 & 7115.16063367928 & 57.4724458473456 \tabularnewline
13 & 7050 & 7099.15290174578 & -15.4471332736343 & 7016.29423152785 & 49.1529017457824 \tabularnewline
14 & 6907 & 6893.01751996214 & 2.25739252171239 & 6918.72508751615 & -13.9824800378619 \tabularnewline
15 & 6803 & 6797.38217114033 & -12.5381146447811 & 6821.15594350445 & -5.61782885966841 \tabularnewline
16 & 6626 & 6499.32280579786 & 17.3274787408507 & 6735.34971546129 & -126.677194202136 \tabularnewline
17 & 6512 & 6354.8111008795 & 19.6454117023793 & 6649.54348741812 & -157.188899120501 \tabularnewline
18 & 6509 & 6411.27505571276 & 25.525846022367 & 6581.19909826487 & -97.724944287238 \tabularnewline
19 & 6419 & 6316.53902557661 & 8.60626531176616 & 6512.85470911162 & -102.460974423386 \tabularnewline
20 & 6365 & 6255.12884713187 & 16.1164115404931 & 6458.75474132764 & -109.871152868132 \tabularnewline
21 & 6395 & 6348.91863670474 & 36.4265897515962 & 6404.65477354366 & -46.0813632952559 \tabularnewline
22 & 6360 & 6402.94391420625 & -40.9535409181737 & 6358.00962671192 & 42.9439142062492 \tabularnewline
23 & 6386 & 6494.96908468543 & -34.3335645656218 & 6311.36447988019 & 108.969084685433 \tabularnewline
24 & 6360 & 6479.52038176054 & -22.633079526623 & 6263.11269776608 & 119.520381760539 \tabularnewline
25 & 6259 & 6318.58621762165 & -15.4471332736343 & 6214.86091565198 & 59.5862176216542 \tabularnewline
26 & 6198 & 6239.36935863603 & 2.25739252171239 & 6154.37324884226 & 41.3693586360287 \tabularnewline
27 & 6103 & 6124.65253261224 & -12.5381146447811 & 6093.88558203254 & 21.6525326122428 \tabularnewline
28 & 6064 & 6099.44613060552 & 17.3274787408507 & 6011.22639065363 & 35.44613060552 \tabularnewline
29 & 5968 & 5987.7873890229 & 19.6454117023793 & 5928.56719927472 & 19.7873890229002 \tabularnewline
30 & 5908 & 5961.91437854318 & 25.525846022367 & 5828.55977543446 & 53.9143785431761 \tabularnewline
31 & 5805 & 5872.84138309404 & 8.60626531176616 & 5728.55235159419 & 67.8413830940399 \tabularnewline
32 & 5728 & 5815.32280374908 & 16.1164115404931 & 5624.56078471043 & 87.3228037490753 \tabularnewline
33 & 5678 & 5799.00419242173 & 36.4265897515962 & 5520.56921782667 & 121.004192421734 \tabularnewline
34 & 5274 & 5171.4660821567 & -40.9535409181737 & 5417.48745876147 & -102.533917843299 \tabularnewline
35 & 5166 & 5051.92786486935 & -34.3335645656218 & 5314.40569969628 & -114.072135130654 \tabularnewline
36 & 5106 & 5020.68923963109 & -22.633079526623 & 5213.94383989553 & -85.3107603689068 \tabularnewline
37 & 5008 & 4917.96515317885 & -15.4471332736343 & 5113.48198009478 & -90.0348468211496 \tabularnewline
38 & 5034 & 5045.78206046379 & 2.25739252171239 & 5019.96054701449 & 11.7820604637936 \tabularnewline
39 & 4901 & 4888.09900071057 & -12.5381146447811 & 4926.43911393421 & -12.9009992894253 \tabularnewline
40 & 4853 & 4843.53421299647 & 17.3274787408507 & 4845.13830826268 & -9.46578700352802 \tabularnewline
41 & 4790 & 4796.51708570647 & 19.6454117023793 & 4763.83750259115 & 6.51708570647224 \tabularnewline
42 & 4703 & 4690.29157544091 & 25.525846022367 & 4690.18257853673 & -12.708424559095 \tabularnewline
43 & 4640 & 4654.86608020593 & 8.60626531176616 & 4616.52765448231 & 14.8660802059258 \tabularnewline
44 & 4544 & 4526.60696788076 & 16.1164115404931 & 4545.27662057874 & -17.3930321192365 \tabularnewline
45 & 4465 & 4419.54782357322 & 36.4265897515962 & 4474.02558667518 & -45.4521764267756 \tabularnewline
46 & 4335 & 4304.06492588133 & -40.9535409181737 & 4406.88861503685 & -30.9350741186718 \tabularnewline
47 & 4345 & 4384.58192116711 & -34.3335645656218 & 4339.75164339851 & 39.5819211671096 \tabularnewline
48 & 4246 & 4236.78090271457 & -22.633079526623 & 4277.85217681206 & -9.21909728543324 \tabularnewline
49 & 4131 & 4061.49442304803 & -15.4471332736343 & 4215.9527102256 & -69.5055769519668 \tabularnewline
50 & 4112 & 4062.53941199957 & 2.25739252171239 & 4159.20319547872 & -49.4605880004337 \tabularnewline
51 & 4111 & 4132.08443391294 & -12.5381146447811 & 4102.45368073184 & 21.0844339129389 \tabularnewline
52 & 4096 & 4123.51911425452 & 17.3274787408507 & 4051.15340700463 & 27.51911425452 \tabularnewline
53 & 3970 & 3920.5014550202 & 19.6454117023793 & 3999.85313327742 & -49.4985449797964 \tabularnewline
54 & 3970 & 3961.42891645123 & 25.525846022367 & 3953.0452375264 & -8.57108354877209 \tabularnewline
55 & 3908 & 3901.15639291284 & 8.60626531176616 & 3906.23734177539 & -6.84360708715849 \tabularnewline
56 & 3861 & 3846.39268553746 & 16.1164115404931 & 3859.49090292205 & -14.6073144625393 \tabularnewline
57 & 3819 & 3788.8289461797 & 36.4265897515962 & 3812.7444640687 & -30.1710538202956 \tabularnewline
58 & 3781 & 3836.98165900841 & -40.9535409181737 & 3765.97188190977 & 55.9816590084074 \tabularnewline
59 & 3684 & 3683.13426481479 & -34.3335645656218 & 3719.19929975083 & -0.865735185211634 \tabularnewline
60 & 3664 & 3677.94445253974 & -22.633079526623 & 3672.68862698688 & 13.9444525397412 \tabularnewline
61 & 3648 & 3685.2691790507 & -15.4471332736343 & 3626.17795422293 & 37.2691790507033 \tabularnewline
62 & 3564 & 3546.01553675475 & 2.25739252171239 & 3579.72707072354 & -17.9844632452523 \tabularnewline
63 & 3490 & 3459.26192742063 & -12.5381146447811 & 3533.27618722415 & -30.7380725793673 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301154&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]7984[/C][C]7970.33980305539[/C][C]-15.4471332736343[/C][C]8013.10733021824[/C][C]-13.6601969446074[/C][/ROW]
[ROW][C]2[/C][C]7937[/C][C]7934.54201761422[/C][C]2.25739252171239[/C][C]7937.20058986407[/C][C]-2.45798238577936[/C][/ROW]
[ROW][C]3[/C][C]7821[/C][C]7793.24426513489[/C][C]-12.5381146447811[/C][C]7861.29384950989[/C][C]-27.7557348651135[/C][/ROW]
[ROW][C]4[/C][C]7749[/C][C]7696.55142084771[/C][C]17.3274787408507[/C][C]7784.12110041144[/C][C]-52.4485791522939[/C][/ROW]
[ROW][C]5[/C][C]7785[/C][C]7843.40623698463[/C][C]19.6454117023793[/C][C]7706.94835131299[/C][C]58.4062369846279[/C][/ROW]
[ROW][C]6[/C][C]7632[/C][C]7610.23029280429[/C][C]25.525846022367[/C][C]7628.24386117334[/C][C]-21.7697071957082[/C][/ROW]
[ROW][C]7[/C][C]7533[/C][C]7507.85436365454[/C][C]8.60626531176616[/C][C]7549.53937103369[/C][C]-25.1456363454572[/C][/ROW]
[ROW][C]8[/C][C]7536[/C][C]7586.40767753[/C][C]16.1164115404931[/C][C]7469.47591092951[/C][C]50.4076775299982[/C][/ROW]
[ROW][C]9[/C][C]7470[/C][C]7514.16095942308[/C][C]36.4265897515962[/C][C]7389.41245082533[/C][C]44.1609594230767[/C][/ROW]
[ROW][C]10[/C][C]7367[/C][C]7473.23379759016[/C][C]-40.9535409181737[/C][C]7301.71974332802[/C][C]106.233797590157[/C][/ROW]
[ROW][C]11[/C][C]7246[/C][C]7312.30652873492[/C][C]-34.3335645656218[/C][C]7214.0270358307[/C][C]66.3065287349173[/C][/ROW]
[ROW][C]12[/C][C]7150[/C][C]7207.47244584735[/C][C]-22.633079526623[/C][C]7115.16063367928[/C][C]57.4724458473456[/C][/ROW]
[ROW][C]13[/C][C]7050[/C][C]7099.15290174578[/C][C]-15.4471332736343[/C][C]7016.29423152785[/C][C]49.1529017457824[/C][/ROW]
[ROW][C]14[/C][C]6907[/C][C]6893.01751996214[/C][C]2.25739252171239[/C][C]6918.72508751615[/C][C]-13.9824800378619[/C][/ROW]
[ROW][C]15[/C][C]6803[/C][C]6797.38217114033[/C][C]-12.5381146447811[/C][C]6821.15594350445[/C][C]-5.61782885966841[/C][/ROW]
[ROW][C]16[/C][C]6626[/C][C]6499.32280579786[/C][C]17.3274787408507[/C][C]6735.34971546129[/C][C]-126.677194202136[/C][/ROW]
[ROW][C]17[/C][C]6512[/C][C]6354.8111008795[/C][C]19.6454117023793[/C][C]6649.54348741812[/C][C]-157.188899120501[/C][/ROW]
[ROW][C]18[/C][C]6509[/C][C]6411.27505571276[/C][C]25.525846022367[/C][C]6581.19909826487[/C][C]-97.724944287238[/C][/ROW]
[ROW][C]19[/C][C]6419[/C][C]6316.53902557661[/C][C]8.60626531176616[/C][C]6512.85470911162[/C][C]-102.460974423386[/C][/ROW]
[ROW][C]20[/C][C]6365[/C][C]6255.12884713187[/C][C]16.1164115404931[/C][C]6458.75474132764[/C][C]-109.871152868132[/C][/ROW]
[ROW][C]21[/C][C]6395[/C][C]6348.91863670474[/C][C]36.4265897515962[/C][C]6404.65477354366[/C][C]-46.0813632952559[/C][/ROW]
[ROW][C]22[/C][C]6360[/C][C]6402.94391420625[/C][C]-40.9535409181737[/C][C]6358.00962671192[/C][C]42.9439142062492[/C][/ROW]
[ROW][C]23[/C][C]6386[/C][C]6494.96908468543[/C][C]-34.3335645656218[/C][C]6311.36447988019[/C][C]108.969084685433[/C][/ROW]
[ROW][C]24[/C][C]6360[/C][C]6479.52038176054[/C][C]-22.633079526623[/C][C]6263.11269776608[/C][C]119.520381760539[/C][/ROW]
[ROW][C]25[/C][C]6259[/C][C]6318.58621762165[/C][C]-15.4471332736343[/C][C]6214.86091565198[/C][C]59.5862176216542[/C][/ROW]
[ROW][C]26[/C][C]6198[/C][C]6239.36935863603[/C][C]2.25739252171239[/C][C]6154.37324884226[/C][C]41.3693586360287[/C][/ROW]
[ROW][C]27[/C][C]6103[/C][C]6124.65253261224[/C][C]-12.5381146447811[/C][C]6093.88558203254[/C][C]21.6525326122428[/C][/ROW]
[ROW][C]28[/C][C]6064[/C][C]6099.44613060552[/C][C]17.3274787408507[/C][C]6011.22639065363[/C][C]35.44613060552[/C][/ROW]
[ROW][C]29[/C][C]5968[/C][C]5987.7873890229[/C][C]19.6454117023793[/C][C]5928.56719927472[/C][C]19.7873890229002[/C][/ROW]
[ROW][C]30[/C][C]5908[/C][C]5961.91437854318[/C][C]25.525846022367[/C][C]5828.55977543446[/C][C]53.9143785431761[/C][/ROW]
[ROW][C]31[/C][C]5805[/C][C]5872.84138309404[/C][C]8.60626531176616[/C][C]5728.55235159419[/C][C]67.8413830940399[/C][/ROW]
[ROW][C]32[/C][C]5728[/C][C]5815.32280374908[/C][C]16.1164115404931[/C][C]5624.56078471043[/C][C]87.3228037490753[/C][/ROW]
[ROW][C]33[/C][C]5678[/C][C]5799.00419242173[/C][C]36.4265897515962[/C][C]5520.56921782667[/C][C]121.004192421734[/C][/ROW]
[ROW][C]34[/C][C]5274[/C][C]5171.4660821567[/C][C]-40.9535409181737[/C][C]5417.48745876147[/C][C]-102.533917843299[/C][/ROW]
[ROW][C]35[/C][C]5166[/C][C]5051.92786486935[/C][C]-34.3335645656218[/C][C]5314.40569969628[/C][C]-114.072135130654[/C][/ROW]
[ROW][C]36[/C][C]5106[/C][C]5020.68923963109[/C][C]-22.633079526623[/C][C]5213.94383989553[/C][C]-85.3107603689068[/C][/ROW]
[ROW][C]37[/C][C]5008[/C][C]4917.96515317885[/C][C]-15.4471332736343[/C][C]5113.48198009478[/C][C]-90.0348468211496[/C][/ROW]
[ROW][C]38[/C][C]5034[/C][C]5045.78206046379[/C][C]2.25739252171239[/C][C]5019.96054701449[/C][C]11.7820604637936[/C][/ROW]
[ROW][C]39[/C][C]4901[/C][C]4888.09900071057[/C][C]-12.5381146447811[/C][C]4926.43911393421[/C][C]-12.9009992894253[/C][/ROW]
[ROW][C]40[/C][C]4853[/C][C]4843.53421299647[/C][C]17.3274787408507[/C][C]4845.13830826268[/C][C]-9.46578700352802[/C][/ROW]
[ROW][C]41[/C][C]4790[/C][C]4796.51708570647[/C][C]19.6454117023793[/C][C]4763.83750259115[/C][C]6.51708570647224[/C][/ROW]
[ROW][C]42[/C][C]4703[/C][C]4690.29157544091[/C][C]25.525846022367[/C][C]4690.18257853673[/C][C]-12.708424559095[/C][/ROW]
[ROW][C]43[/C][C]4640[/C][C]4654.86608020593[/C][C]8.60626531176616[/C][C]4616.52765448231[/C][C]14.8660802059258[/C][/ROW]
[ROW][C]44[/C][C]4544[/C][C]4526.60696788076[/C][C]16.1164115404931[/C][C]4545.27662057874[/C][C]-17.3930321192365[/C][/ROW]
[ROW][C]45[/C][C]4465[/C][C]4419.54782357322[/C][C]36.4265897515962[/C][C]4474.02558667518[/C][C]-45.4521764267756[/C][/ROW]
[ROW][C]46[/C][C]4335[/C][C]4304.06492588133[/C][C]-40.9535409181737[/C][C]4406.88861503685[/C][C]-30.9350741186718[/C][/ROW]
[ROW][C]47[/C][C]4345[/C][C]4384.58192116711[/C][C]-34.3335645656218[/C][C]4339.75164339851[/C][C]39.5819211671096[/C][/ROW]
[ROW][C]48[/C][C]4246[/C][C]4236.78090271457[/C][C]-22.633079526623[/C][C]4277.85217681206[/C][C]-9.21909728543324[/C][/ROW]
[ROW][C]49[/C][C]4131[/C][C]4061.49442304803[/C][C]-15.4471332736343[/C][C]4215.9527102256[/C][C]-69.5055769519668[/C][/ROW]
[ROW][C]50[/C][C]4112[/C][C]4062.53941199957[/C][C]2.25739252171239[/C][C]4159.20319547872[/C][C]-49.4605880004337[/C][/ROW]
[ROW][C]51[/C][C]4111[/C][C]4132.08443391294[/C][C]-12.5381146447811[/C][C]4102.45368073184[/C][C]21.0844339129389[/C][/ROW]
[ROW][C]52[/C][C]4096[/C][C]4123.51911425452[/C][C]17.3274787408507[/C][C]4051.15340700463[/C][C]27.51911425452[/C][/ROW]
[ROW][C]53[/C][C]3970[/C][C]3920.5014550202[/C][C]19.6454117023793[/C][C]3999.85313327742[/C][C]-49.4985449797964[/C][/ROW]
[ROW][C]54[/C][C]3970[/C][C]3961.42891645123[/C][C]25.525846022367[/C][C]3953.0452375264[/C][C]-8.57108354877209[/C][/ROW]
[ROW][C]55[/C][C]3908[/C][C]3901.15639291284[/C][C]8.60626531176616[/C][C]3906.23734177539[/C][C]-6.84360708715849[/C][/ROW]
[ROW][C]56[/C][C]3861[/C][C]3846.39268553746[/C][C]16.1164115404931[/C][C]3859.49090292205[/C][C]-14.6073144625393[/C][/ROW]
[ROW][C]57[/C][C]3819[/C][C]3788.8289461797[/C][C]36.4265897515962[/C][C]3812.7444640687[/C][C]-30.1710538202956[/C][/ROW]
[ROW][C]58[/C][C]3781[/C][C]3836.98165900841[/C][C]-40.9535409181737[/C][C]3765.97188190977[/C][C]55.9816590084074[/C][/ROW]
[ROW][C]59[/C][C]3684[/C][C]3683.13426481479[/C][C]-34.3335645656218[/C][C]3719.19929975083[/C][C]-0.865735185211634[/C][/ROW]
[ROW][C]60[/C][C]3664[/C][C]3677.94445253974[/C][C]-22.633079526623[/C][C]3672.68862698688[/C][C]13.9444525397412[/C][/ROW]
[ROW][C]61[/C][C]3648[/C][C]3685.2691790507[/C][C]-15.4471332736343[/C][C]3626.17795422293[/C][C]37.2691790507033[/C][/ROW]
[ROW][C]62[/C][C]3564[/C][C]3546.01553675475[/C][C]2.25739252171239[/C][C]3579.72707072354[/C][C]-17.9844632452523[/C][/ROW]
[ROW][C]63[/C][C]3490[/C][C]3459.26192742063[/C][C]-12.5381146447811[/C][C]3533.27618722415[/C][C]-30.7380725793673[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301154&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301154&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
179847970.33980305539-15.44713327363438013.10733021824-13.6601969446074
279377934.542017614222.257392521712397937.20058986407-2.45798238577936
378217793.24426513489-12.53811464478117861.29384950989-27.7557348651135
477497696.5514208477117.32747874085077784.12110041144-52.4485791522939
577857843.4062369846319.64541170237937706.9483513129958.4062369846279
676327610.2302928042925.5258460223677628.24386117334-21.7697071957082
775337507.854363654548.606265311766167549.53937103369-25.1456363454572
875367586.4076775316.11641154049317469.4759109295150.4076775299982
974707514.1609594230836.42658975159627389.4124508253344.1609594230767
1073677473.23379759016-40.95354091817377301.71974332802106.233797590157
1172467312.30652873492-34.33356456562187214.027035830766.3065287349173
1271507207.47244584735-22.6330795266237115.1606336792857.4724458473456
1370507099.15290174578-15.44713327363437016.2942315278549.1529017457824
1469076893.017519962142.257392521712396918.72508751615-13.9824800378619
1568036797.38217114033-12.53811464478116821.15594350445-5.61782885966841
1666266499.3228057978617.32747874085076735.34971546129-126.677194202136
1765126354.811100879519.64541170237936649.54348741812-157.188899120501
1865096411.2750557127625.5258460223676581.19909826487-97.724944287238
1964196316.539025576618.606265311766166512.85470911162-102.460974423386
2063656255.1288471318716.11641154049316458.75474132764-109.871152868132
2163956348.9186367047436.42658975159626404.65477354366-46.0813632952559
2263606402.94391420625-40.95354091817376358.0096267119242.9439142062492
2363866494.96908468543-34.33356456562186311.36447988019108.969084685433
2463606479.52038176054-22.6330795266236263.11269776608119.520381760539
2562596318.58621762165-15.44713327363436214.8609156519859.5862176216542
2661986239.369358636032.257392521712396154.3732488422641.3693586360287
2761036124.65253261224-12.53811464478116093.8855820325421.6525326122428
2860646099.4461306055217.32747874085076011.2263906536335.44613060552
2959685987.787389022919.64541170237935928.5671992747219.7873890229002
3059085961.9143785431825.5258460223675828.5597754344653.9143785431761
3158055872.841383094048.606265311766165728.5523515941967.8413830940399
3257285815.3228037490816.11641154049315624.5607847104387.3228037490753
3356785799.0041924217336.42658975159625520.56921782667121.004192421734
3452745171.4660821567-40.95354091817375417.48745876147-102.533917843299
3551665051.92786486935-34.33356456562185314.40569969628-114.072135130654
3651065020.68923963109-22.6330795266235213.94383989553-85.3107603689068
3750084917.96515317885-15.44713327363435113.48198009478-90.0348468211496
3850345045.782060463792.257392521712395019.9605470144911.7820604637936
3949014888.09900071057-12.53811464478114926.43911393421-12.9009992894253
4048534843.5342129964717.32747874085074845.13830826268-9.46578700352802
4147904796.5170857064719.64541170237934763.837502591156.51708570647224
4247034690.2915754409125.5258460223674690.18257853673-12.708424559095
4346404654.866080205938.606265311766164616.5276544823114.8660802059258
4445444526.6069678807616.11641154049314545.27662057874-17.3930321192365
4544654419.5478235732236.42658975159624474.02558667518-45.4521764267756
4643354304.06492588133-40.95354091817374406.88861503685-30.9350741186718
4743454384.58192116711-34.33356456562184339.7516433985139.5819211671096
4842464236.78090271457-22.6330795266234277.85217681206-9.21909728543324
4941314061.49442304803-15.44713327363434215.9527102256-69.5055769519668
5041124062.539411999572.257392521712394159.20319547872-49.4605880004337
5141114132.08443391294-12.53811464478114102.4536807318421.0844339129389
5240964123.5191142545217.32747874085074051.1534070046327.51911425452
5339703920.501455020219.64541170237933999.85313327742-49.4985449797964
5439703961.4289164512325.5258460223673953.0452375264-8.57108354877209
5539083901.156392912848.606265311766163906.23734177539-6.84360708715849
5638613846.3926855374616.11641154049313859.49090292205-14.6073144625393
5738193788.828946179736.42658975159623812.7444640687-30.1710538202956
5837813836.98165900841-40.95354091817373765.9718819097755.9816590084074
5936843683.13426481479-34.33356456562183719.19929975083-0.865735185211634
6036643677.94445253974-22.6330795266233672.6886269868813.9444525397412
6136483685.2691790507-15.44713327363433626.1779542229337.2691790507033
6235643546.015536754752.257392521712393579.72707072354-17.9844632452523
6334903459.26192742063-12.53811464478113533.27618722415-30.7380725793673



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')