Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 18 Dec 2016 16:09:03 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482073764e7jombvxqsibwth.htm/, Retrieved Fri, 01 Nov 2024 03:44:20 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301126, Retrieved Fri, 01 Nov 2024 03:44:20 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-18 15:09:03] [9ac947b5174fcc9cd01e144b03ceb277] [Current]
Feedback Forum

Post a new message
Dataseries X:
7984
7937
7821
7749
7785
7632
7533
7536
7470
7367
7246
7150
7050
6907
6803
6626
6512
6509
6419
6365
6395
6360
6386
6360
6259
6198
6103
6064
5968
5908
5805
5728
5678
5274
5166
5106
5008
5034
4901
4853
4790
4703
4640
4544
4465
4335
4345
4246
4131
4112
4111
4096
3970
3970
3908
3861
3819
3781
3684
3664
3648
3564
3490




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301126&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301126&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301126&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.955517.58410
20.9105647.22740
30.8667596.87970
40.8216226.52140
50.7736746.14080
60.7276925.77590
70.6821465.41441e-06
80.6348095.03862e-06
90.5873954.66238e-06
100.5406624.29143.1e-05
110.4938773.920.00011
120.4493223.56640.000349
130.4048573.21340.001034
140.361362.86820.002805
150.3179392.52360.007076
160.2778292.20520.015549
170.2399771.90480.03069

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.95551 & 7.5841 & 0 \tabularnewline
2 & 0.910564 & 7.2274 & 0 \tabularnewline
3 & 0.866759 & 6.8797 & 0 \tabularnewline
4 & 0.821622 & 6.5214 & 0 \tabularnewline
5 & 0.773674 & 6.1408 & 0 \tabularnewline
6 & 0.727692 & 5.7759 & 0 \tabularnewline
7 & 0.682146 & 5.4144 & 1e-06 \tabularnewline
8 & 0.634809 & 5.0386 & 2e-06 \tabularnewline
9 & 0.587395 & 4.6623 & 8e-06 \tabularnewline
10 & 0.540662 & 4.2914 & 3.1e-05 \tabularnewline
11 & 0.493877 & 3.92 & 0.00011 \tabularnewline
12 & 0.449322 & 3.5664 & 0.000349 \tabularnewline
13 & 0.404857 & 3.2134 & 0.001034 \tabularnewline
14 & 0.36136 & 2.8682 & 0.002805 \tabularnewline
15 & 0.317939 & 2.5236 & 0.007076 \tabularnewline
16 & 0.277829 & 2.2052 & 0.015549 \tabularnewline
17 & 0.239977 & 1.9048 & 0.03069 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301126&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.95551[/C][C]7.5841[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.910564[/C][C]7.2274[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.866759[/C][C]6.8797[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.821622[/C][C]6.5214[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.773674[/C][C]6.1408[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.727692[/C][C]5.7759[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.682146[/C][C]5.4144[/C][C]1e-06[/C][/ROW]
[ROW][C]8[/C][C]0.634809[/C][C]5.0386[/C][C]2e-06[/C][/ROW]
[ROW][C]9[/C][C]0.587395[/C][C]4.6623[/C][C]8e-06[/C][/ROW]
[ROW][C]10[/C][C]0.540662[/C][C]4.2914[/C][C]3.1e-05[/C][/ROW]
[ROW][C]11[/C][C]0.493877[/C][C]3.92[/C][C]0.00011[/C][/ROW]
[ROW][C]12[/C][C]0.449322[/C][C]3.5664[/C][C]0.000349[/C][/ROW]
[ROW][C]13[/C][C]0.404857[/C][C]3.2134[/C][C]0.001034[/C][/ROW]
[ROW][C]14[/C][C]0.36136[/C][C]2.8682[/C][C]0.002805[/C][/ROW]
[ROW][C]15[/C][C]0.317939[/C][C]2.5236[/C][C]0.007076[/C][/ROW]
[ROW][C]16[/C][C]0.277829[/C][C]2.2052[/C][C]0.015549[/C][/ROW]
[ROW][C]17[/C][C]0.239977[/C][C]1.9048[/C][C]0.03069[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301126&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301126&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.955517.58410
20.9105647.22740
30.8667596.87970
40.8216226.52140
50.7736746.14080
60.7276925.77590
70.6821465.41441e-06
80.6348095.03862e-06
90.5873954.66238e-06
100.5406624.29143.1e-05
110.4938773.920.00011
120.4493223.56640.000349
130.4048573.21340.001034
140.361362.86820.002805
150.3179392.52360.007076
160.2778292.20520.015549
170.2399771.90480.03069







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.955517.58410
2-0.028002-0.22230.412415
3-0.010363-0.08230.467354
4-0.038939-0.30910.379144
5-0.056834-0.45110.326731
6-0.004446-0.03530.485981
7-0.022412-0.17790.42969
8-0.04636-0.3680.357063
9-0.029172-0.23150.40882
10-0.023995-0.19050.424782
11-0.030321-0.24070.405299
12-0.003804-0.03020.488006
13-0.030921-0.24540.403462
14-0.020372-0.16170.436032
15-0.031208-0.24770.402583
160.0042590.03380.48657
17-0.005177-0.04110.483677

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.95551 & 7.5841 & 0 \tabularnewline
2 & -0.028002 & -0.2223 & 0.412415 \tabularnewline
3 & -0.010363 & -0.0823 & 0.467354 \tabularnewline
4 & -0.038939 & -0.3091 & 0.379144 \tabularnewline
5 & -0.056834 & -0.4511 & 0.326731 \tabularnewline
6 & -0.004446 & -0.0353 & 0.485981 \tabularnewline
7 & -0.022412 & -0.1779 & 0.42969 \tabularnewline
8 & -0.04636 & -0.368 & 0.357063 \tabularnewline
9 & -0.029172 & -0.2315 & 0.40882 \tabularnewline
10 & -0.023995 & -0.1905 & 0.424782 \tabularnewline
11 & -0.030321 & -0.2407 & 0.405299 \tabularnewline
12 & -0.003804 & -0.0302 & 0.488006 \tabularnewline
13 & -0.030921 & -0.2454 & 0.403462 \tabularnewline
14 & -0.020372 & -0.1617 & 0.436032 \tabularnewline
15 & -0.031208 & -0.2477 & 0.402583 \tabularnewline
16 & 0.004259 & 0.0338 & 0.48657 \tabularnewline
17 & -0.005177 & -0.0411 & 0.483677 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301126&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.95551[/C][C]7.5841[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.028002[/C][C]-0.2223[/C][C]0.412415[/C][/ROW]
[ROW][C]3[/C][C]-0.010363[/C][C]-0.0823[/C][C]0.467354[/C][/ROW]
[ROW][C]4[/C][C]-0.038939[/C][C]-0.3091[/C][C]0.379144[/C][/ROW]
[ROW][C]5[/C][C]-0.056834[/C][C]-0.4511[/C][C]0.326731[/C][/ROW]
[ROW][C]6[/C][C]-0.004446[/C][C]-0.0353[/C][C]0.485981[/C][/ROW]
[ROW][C]7[/C][C]-0.022412[/C][C]-0.1779[/C][C]0.42969[/C][/ROW]
[ROW][C]8[/C][C]-0.04636[/C][C]-0.368[/C][C]0.357063[/C][/ROW]
[ROW][C]9[/C][C]-0.029172[/C][C]-0.2315[/C][C]0.40882[/C][/ROW]
[ROW][C]10[/C][C]-0.023995[/C][C]-0.1905[/C][C]0.424782[/C][/ROW]
[ROW][C]11[/C][C]-0.030321[/C][C]-0.2407[/C][C]0.405299[/C][/ROW]
[ROW][C]12[/C][C]-0.003804[/C][C]-0.0302[/C][C]0.488006[/C][/ROW]
[ROW][C]13[/C][C]-0.030921[/C][C]-0.2454[/C][C]0.403462[/C][/ROW]
[ROW][C]14[/C][C]-0.020372[/C][C]-0.1617[/C][C]0.436032[/C][/ROW]
[ROW][C]15[/C][C]-0.031208[/C][C]-0.2477[/C][C]0.402583[/C][/ROW]
[ROW][C]16[/C][C]0.004259[/C][C]0.0338[/C][C]0.48657[/C][/ROW]
[ROW][C]17[/C][C]-0.005177[/C][C]-0.0411[/C][C]0.483677[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301126&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301126&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.955517.58410
2-0.028002-0.22230.412415
3-0.010363-0.08230.467354
4-0.038939-0.30910.379144
5-0.056834-0.45110.326731
6-0.004446-0.03530.485981
7-0.022412-0.17790.42969
8-0.04636-0.3680.357063
9-0.029172-0.23150.40882
10-0.023995-0.19050.424782
11-0.030321-0.24070.405299
12-0.003804-0.03020.488006
13-0.030921-0.24540.403462
14-0.020372-0.16170.436032
15-0.031208-0.24770.402583
160.0042590.03380.48657
17-0.005177-0.04110.483677



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')