Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationSun, 18 Dec 2016 15:54:02 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482073007hs3isk54icx4cse.htm/, Retrieved Fri, 01 Nov 2024 03:26:54 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301117, Retrieved Fri, 01 Nov 2024 03:26:54 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact98
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [ARIMA Forecasting...] [2016-12-18 14:54:02] [3b055ff671ad33431c4331443bac114d] [Current]
Feedback Forum

Post a new message
Dataseries X:
9137.8
9009.4
8926.6
9145
9186.2
9152.2
9093.6
9199.2
9310.6
9282
9248.4
9341.6
9478.8
9438
9374.6
9488.8
9631.8
9588.4
9514.6
9623.2
9744.6
9685.8
9598
9703.4
9817.8
9762.6
9669.6
9789.2
9917.4
9864.4
9779.2
9898.8
10048.8
9983.4
9913.4
10031.6
10184.6
10125
10065.4
10188.6
10350.4
10320.6
10232.6
10357.2
10520.2
10473.8
10407
10536
10700.2
10664.2
10606
10716.6
10882.8
10849.4
10794
10907.8




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301117&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301117&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301117&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[38])
349983.4-------
359913.4-------
3610031.6-------
3710184.6-------
3810125-------
3910065.410057.777210007.674310107.88010.38280.004310.0043
4010188.610173.370310116.707710230.03280.29920.999910.9529
4110350.410326.31310267.983710384.64230.2091111
4210320.610272.749410208.368710337.13010.07260.00911
4310232.610202.776810081.96110323.59260.31430.0280.98710.8965
4410357.210316.830610181.207110452.45410.27980.88830.96810.9972
4510520.210471.359710328.601910614.11750.25130.94150.95161
4610473.810417.839610260.546910575.13220.24280.10110.88720.9999
471040710347.229610136.710910557.74820.28890.11930.85710.9807
481053610461.488510229.894510693.08250.26420.67770.81130.9978
4910700.210616.195610370.887410861.50380.2510.73920.77851
5010664.210562.53310296.499310828.56670.22690.15520.74340.9994
511060610491.90310172.883510810.92250.24170.14490.6990.9879
5210716.610606.224710260.704110951.74530.26560.50050.65480.9968
5310882.810760.917710396.017111125.81830.25630.59410.62780.9997
5410849.410707.235510316.650611097.82040.23780.18920.58550.9983
551079410636.617910192.04211081.19370.24390.17410.55370.988
5610907.810750.94310275.309111226.57680.2590.42960.55630.9951

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[38]) \tabularnewline
34 & 9983.4 & - & - & - & - & - & - & - \tabularnewline
35 & 9913.4 & - & - & - & - & - & - & - \tabularnewline
36 & 10031.6 & - & - & - & - & - & - & - \tabularnewline
37 & 10184.6 & - & - & - & - & - & - & - \tabularnewline
38 & 10125 & - & - & - & - & - & - & - \tabularnewline
39 & 10065.4 & 10057.7772 & 10007.6743 & 10107.8801 & 0.3828 & 0.0043 & 1 & 0.0043 \tabularnewline
40 & 10188.6 & 10173.3703 & 10116.7077 & 10230.0328 & 0.2992 & 0.9999 & 1 & 0.9529 \tabularnewline
41 & 10350.4 & 10326.313 & 10267.9837 & 10384.6423 & 0.2091 & 1 & 1 & 1 \tabularnewline
42 & 10320.6 & 10272.7494 & 10208.3687 & 10337.1301 & 0.0726 & 0.009 & 1 & 1 \tabularnewline
43 & 10232.6 & 10202.7768 & 10081.961 & 10323.5926 & 0.3143 & 0.028 & 0.9871 & 0.8965 \tabularnewline
44 & 10357.2 & 10316.8306 & 10181.2071 & 10452.4541 & 0.2798 & 0.8883 & 0.9681 & 0.9972 \tabularnewline
45 & 10520.2 & 10471.3597 & 10328.6019 & 10614.1175 & 0.2513 & 0.9415 & 0.9516 & 1 \tabularnewline
46 & 10473.8 & 10417.8396 & 10260.5469 & 10575.1322 & 0.2428 & 0.1011 & 0.8872 & 0.9999 \tabularnewline
47 & 10407 & 10347.2296 & 10136.7109 & 10557.7482 & 0.2889 & 0.1193 & 0.8571 & 0.9807 \tabularnewline
48 & 10536 & 10461.4885 & 10229.8945 & 10693.0825 & 0.2642 & 0.6777 & 0.8113 & 0.9978 \tabularnewline
49 & 10700.2 & 10616.1956 & 10370.8874 & 10861.5038 & 0.251 & 0.7392 & 0.7785 & 1 \tabularnewline
50 & 10664.2 & 10562.533 & 10296.4993 & 10828.5667 & 0.2269 & 0.1552 & 0.7434 & 0.9994 \tabularnewline
51 & 10606 & 10491.903 & 10172.8835 & 10810.9225 & 0.2417 & 0.1449 & 0.699 & 0.9879 \tabularnewline
52 & 10716.6 & 10606.2247 & 10260.7041 & 10951.7453 & 0.2656 & 0.5005 & 0.6548 & 0.9968 \tabularnewline
53 & 10882.8 & 10760.9177 & 10396.0171 & 11125.8183 & 0.2563 & 0.5941 & 0.6278 & 0.9997 \tabularnewline
54 & 10849.4 & 10707.2355 & 10316.6506 & 11097.8204 & 0.2378 & 0.1892 & 0.5855 & 0.9983 \tabularnewline
55 & 10794 & 10636.6179 & 10192.042 & 11081.1937 & 0.2439 & 0.1741 & 0.5537 & 0.988 \tabularnewline
56 & 10907.8 & 10750.943 & 10275.3091 & 11226.5768 & 0.259 & 0.4296 & 0.5563 & 0.9951 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301117&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[38])[/C][/ROW]
[ROW][C]34[/C][C]9983.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]35[/C][C]9913.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]36[/C][C]10031.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]37[/C][C]10184.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]38[/C][C]10125[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]39[/C][C]10065.4[/C][C]10057.7772[/C][C]10007.6743[/C][C]10107.8801[/C][C]0.3828[/C][C]0.0043[/C][C]1[/C][C]0.0043[/C][/ROW]
[ROW][C]40[/C][C]10188.6[/C][C]10173.3703[/C][C]10116.7077[/C][C]10230.0328[/C][C]0.2992[/C][C]0.9999[/C][C]1[/C][C]0.9529[/C][/ROW]
[ROW][C]41[/C][C]10350.4[/C][C]10326.313[/C][C]10267.9837[/C][C]10384.6423[/C][C]0.2091[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]42[/C][C]10320.6[/C][C]10272.7494[/C][C]10208.3687[/C][C]10337.1301[/C][C]0.0726[/C][C]0.009[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]43[/C][C]10232.6[/C][C]10202.7768[/C][C]10081.961[/C][C]10323.5926[/C][C]0.3143[/C][C]0.028[/C][C]0.9871[/C][C]0.8965[/C][/ROW]
[ROW][C]44[/C][C]10357.2[/C][C]10316.8306[/C][C]10181.2071[/C][C]10452.4541[/C][C]0.2798[/C][C]0.8883[/C][C]0.9681[/C][C]0.9972[/C][/ROW]
[ROW][C]45[/C][C]10520.2[/C][C]10471.3597[/C][C]10328.6019[/C][C]10614.1175[/C][C]0.2513[/C][C]0.9415[/C][C]0.9516[/C][C]1[/C][/ROW]
[ROW][C]46[/C][C]10473.8[/C][C]10417.8396[/C][C]10260.5469[/C][C]10575.1322[/C][C]0.2428[/C][C]0.1011[/C][C]0.8872[/C][C]0.9999[/C][/ROW]
[ROW][C]47[/C][C]10407[/C][C]10347.2296[/C][C]10136.7109[/C][C]10557.7482[/C][C]0.2889[/C][C]0.1193[/C][C]0.8571[/C][C]0.9807[/C][/ROW]
[ROW][C]48[/C][C]10536[/C][C]10461.4885[/C][C]10229.8945[/C][C]10693.0825[/C][C]0.2642[/C][C]0.6777[/C][C]0.8113[/C][C]0.9978[/C][/ROW]
[ROW][C]49[/C][C]10700.2[/C][C]10616.1956[/C][C]10370.8874[/C][C]10861.5038[/C][C]0.251[/C][C]0.7392[/C][C]0.7785[/C][C]1[/C][/ROW]
[ROW][C]50[/C][C]10664.2[/C][C]10562.533[/C][C]10296.4993[/C][C]10828.5667[/C][C]0.2269[/C][C]0.1552[/C][C]0.7434[/C][C]0.9994[/C][/ROW]
[ROW][C]51[/C][C]10606[/C][C]10491.903[/C][C]10172.8835[/C][C]10810.9225[/C][C]0.2417[/C][C]0.1449[/C][C]0.699[/C][C]0.9879[/C][/ROW]
[ROW][C]52[/C][C]10716.6[/C][C]10606.2247[/C][C]10260.7041[/C][C]10951.7453[/C][C]0.2656[/C][C]0.5005[/C][C]0.6548[/C][C]0.9968[/C][/ROW]
[ROW][C]53[/C][C]10882.8[/C][C]10760.9177[/C][C]10396.0171[/C][C]11125.8183[/C][C]0.2563[/C][C]0.5941[/C][C]0.6278[/C][C]0.9997[/C][/ROW]
[ROW][C]54[/C][C]10849.4[/C][C]10707.2355[/C][C]10316.6506[/C][C]11097.8204[/C][C]0.2378[/C][C]0.1892[/C][C]0.5855[/C][C]0.9983[/C][/ROW]
[ROW][C]55[/C][C]10794[/C][C]10636.6179[/C][C]10192.042[/C][C]11081.1937[/C][C]0.2439[/C][C]0.1741[/C][C]0.5537[/C][C]0.988[/C][/ROW]
[ROW][C]56[/C][C]10907.8[/C][C]10750.943[/C][C]10275.3091[/C][C]11226.5768[/C][C]0.259[/C][C]0.4296[/C][C]0.5563[/C][C]0.9951[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301117&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301117&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[38])
349983.4-------
359913.4-------
3610031.6-------
3710184.6-------
3810125-------
3910065.410057.777210007.674310107.88010.38280.004310.0043
4010188.610173.370310116.707710230.03280.29920.999910.9529
4110350.410326.31310267.983710384.64230.2091111
4210320.610272.749410208.368710337.13010.07260.00911
4310232.610202.776810081.96110323.59260.31430.0280.98710.8965
4410357.210316.830610181.207110452.45410.27980.88830.96810.9972
4510520.210471.359710328.601910614.11750.25130.94150.95161
4610473.810417.839610260.546910575.13220.24280.10110.88720.9999
471040710347.229610136.710910557.74820.28890.11930.85710.9807
481053610461.488510229.894510693.08250.26420.67770.81130.9978
4910700.210616.195610370.887410861.50380.2510.73920.77851
5010664.210562.53310296.499310828.56670.22690.15520.74340.9994
511060610491.90310172.883510810.92250.24170.14490.6990.9879
5210716.610606.224710260.704110951.74530.26560.50050.65480.9968
5310882.810760.917710396.017111125.81830.25630.59410.62780.9997
5410849.410707.235510316.650611097.82040.23780.18920.58550.9983
551079410636.617910192.04211081.19370.24390.17410.55370.988
5610907.810750.94310275.309111226.57680.2590.42960.55630.9951







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
390.00258e-048e-048e-0458.1071000.07760.0776
400.00280.00150.00110.0011231.9452145.026212.04270.1550.1163
410.00290.00230.00150.0015580.1832290.078517.03170.24510.1592
420.00320.00460.00230.00232289.6832789.979728.10660.4870.2412
430.0060.00290.00240.0024889.4219809.868128.45820.30350.2536
440.00670.00390.00270.00271629.6895946.50530.76530.41080.2798
450.0070.00460.0030.0032385.37441152.057833.9420.49710.3109
460.00770.00530.00330.00333131.56911399.496737.40980.56950.3432
470.01040.00570.00350.00353572.50591640.942240.50850.60830.3727
480.01130.00710.00390.00395551.96042032.04445.07820.75830.4112
490.01180.00790.00420.00437056.74092488.834649.88820.85490.4516
500.01290.00950.00470.004710336.17883142.7856.06051.03470.5002
510.01550.01080.00520.005213018.12143902.421662.46941.16120.551
520.01660.01030.00550.005512182.74493.870167.03631.12330.5919
530.01730.01120.00590.005914855.29075184.631572.00441.24040.6351
540.01860.01310.00630.006420210.75276123.76478.25451.44680.6859
550.02130.01460.00680.006924769.13697220.550784.97381.60170.7397
560.02260.01440.00730.007324604.13258186.305290.47821.59640.7873

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
39 & 0.0025 & 8e-04 & 8e-04 & 8e-04 & 58.1071 & 0 & 0 & 0.0776 & 0.0776 \tabularnewline
40 & 0.0028 & 0.0015 & 0.0011 & 0.0011 & 231.9452 & 145.0262 & 12.0427 & 0.155 & 0.1163 \tabularnewline
41 & 0.0029 & 0.0023 & 0.0015 & 0.0015 & 580.1832 & 290.0785 & 17.0317 & 0.2451 & 0.1592 \tabularnewline
42 & 0.0032 & 0.0046 & 0.0023 & 0.0023 & 2289.6832 & 789.9797 & 28.1066 & 0.487 & 0.2412 \tabularnewline
43 & 0.006 & 0.0029 & 0.0024 & 0.0024 & 889.4219 & 809.8681 & 28.4582 & 0.3035 & 0.2536 \tabularnewline
44 & 0.0067 & 0.0039 & 0.0027 & 0.0027 & 1629.6895 & 946.505 & 30.7653 & 0.4108 & 0.2798 \tabularnewline
45 & 0.007 & 0.0046 & 0.003 & 0.003 & 2385.3744 & 1152.0578 & 33.942 & 0.4971 & 0.3109 \tabularnewline
46 & 0.0077 & 0.0053 & 0.0033 & 0.0033 & 3131.5691 & 1399.4967 & 37.4098 & 0.5695 & 0.3432 \tabularnewline
47 & 0.0104 & 0.0057 & 0.0035 & 0.0035 & 3572.5059 & 1640.9422 & 40.5085 & 0.6083 & 0.3727 \tabularnewline
48 & 0.0113 & 0.0071 & 0.0039 & 0.0039 & 5551.9604 & 2032.044 & 45.0782 & 0.7583 & 0.4112 \tabularnewline
49 & 0.0118 & 0.0079 & 0.0042 & 0.0043 & 7056.7409 & 2488.8346 & 49.8882 & 0.8549 & 0.4516 \tabularnewline
50 & 0.0129 & 0.0095 & 0.0047 & 0.0047 & 10336.1788 & 3142.78 & 56.0605 & 1.0347 & 0.5002 \tabularnewline
51 & 0.0155 & 0.0108 & 0.0052 & 0.0052 & 13018.1214 & 3902.4216 & 62.4694 & 1.1612 & 0.551 \tabularnewline
52 & 0.0166 & 0.0103 & 0.0055 & 0.0055 & 12182.7 & 4493.8701 & 67.0363 & 1.1233 & 0.5919 \tabularnewline
53 & 0.0173 & 0.0112 & 0.0059 & 0.0059 & 14855.2907 & 5184.6315 & 72.0044 & 1.2404 & 0.6351 \tabularnewline
54 & 0.0186 & 0.0131 & 0.0063 & 0.0064 & 20210.7527 & 6123.764 & 78.2545 & 1.4468 & 0.6859 \tabularnewline
55 & 0.0213 & 0.0146 & 0.0068 & 0.0069 & 24769.1369 & 7220.5507 & 84.9738 & 1.6017 & 0.7397 \tabularnewline
56 & 0.0226 & 0.0144 & 0.0073 & 0.0073 & 24604.1325 & 8186.3052 & 90.4782 & 1.5964 & 0.7873 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301117&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]39[/C][C]0.0025[/C][C]8e-04[/C][C]8e-04[/C][C]8e-04[/C][C]58.1071[/C][C]0[/C][C]0[/C][C]0.0776[/C][C]0.0776[/C][/ROW]
[ROW][C]40[/C][C]0.0028[/C][C]0.0015[/C][C]0.0011[/C][C]0.0011[/C][C]231.9452[/C][C]145.0262[/C][C]12.0427[/C][C]0.155[/C][C]0.1163[/C][/ROW]
[ROW][C]41[/C][C]0.0029[/C][C]0.0023[/C][C]0.0015[/C][C]0.0015[/C][C]580.1832[/C][C]290.0785[/C][C]17.0317[/C][C]0.2451[/C][C]0.1592[/C][/ROW]
[ROW][C]42[/C][C]0.0032[/C][C]0.0046[/C][C]0.0023[/C][C]0.0023[/C][C]2289.6832[/C][C]789.9797[/C][C]28.1066[/C][C]0.487[/C][C]0.2412[/C][/ROW]
[ROW][C]43[/C][C]0.006[/C][C]0.0029[/C][C]0.0024[/C][C]0.0024[/C][C]889.4219[/C][C]809.8681[/C][C]28.4582[/C][C]0.3035[/C][C]0.2536[/C][/ROW]
[ROW][C]44[/C][C]0.0067[/C][C]0.0039[/C][C]0.0027[/C][C]0.0027[/C][C]1629.6895[/C][C]946.505[/C][C]30.7653[/C][C]0.4108[/C][C]0.2798[/C][/ROW]
[ROW][C]45[/C][C]0.007[/C][C]0.0046[/C][C]0.003[/C][C]0.003[/C][C]2385.3744[/C][C]1152.0578[/C][C]33.942[/C][C]0.4971[/C][C]0.3109[/C][/ROW]
[ROW][C]46[/C][C]0.0077[/C][C]0.0053[/C][C]0.0033[/C][C]0.0033[/C][C]3131.5691[/C][C]1399.4967[/C][C]37.4098[/C][C]0.5695[/C][C]0.3432[/C][/ROW]
[ROW][C]47[/C][C]0.0104[/C][C]0.0057[/C][C]0.0035[/C][C]0.0035[/C][C]3572.5059[/C][C]1640.9422[/C][C]40.5085[/C][C]0.6083[/C][C]0.3727[/C][/ROW]
[ROW][C]48[/C][C]0.0113[/C][C]0.0071[/C][C]0.0039[/C][C]0.0039[/C][C]5551.9604[/C][C]2032.044[/C][C]45.0782[/C][C]0.7583[/C][C]0.4112[/C][/ROW]
[ROW][C]49[/C][C]0.0118[/C][C]0.0079[/C][C]0.0042[/C][C]0.0043[/C][C]7056.7409[/C][C]2488.8346[/C][C]49.8882[/C][C]0.8549[/C][C]0.4516[/C][/ROW]
[ROW][C]50[/C][C]0.0129[/C][C]0.0095[/C][C]0.0047[/C][C]0.0047[/C][C]10336.1788[/C][C]3142.78[/C][C]56.0605[/C][C]1.0347[/C][C]0.5002[/C][/ROW]
[ROW][C]51[/C][C]0.0155[/C][C]0.0108[/C][C]0.0052[/C][C]0.0052[/C][C]13018.1214[/C][C]3902.4216[/C][C]62.4694[/C][C]1.1612[/C][C]0.551[/C][/ROW]
[ROW][C]52[/C][C]0.0166[/C][C]0.0103[/C][C]0.0055[/C][C]0.0055[/C][C]12182.7[/C][C]4493.8701[/C][C]67.0363[/C][C]1.1233[/C][C]0.5919[/C][/ROW]
[ROW][C]53[/C][C]0.0173[/C][C]0.0112[/C][C]0.0059[/C][C]0.0059[/C][C]14855.2907[/C][C]5184.6315[/C][C]72.0044[/C][C]1.2404[/C][C]0.6351[/C][/ROW]
[ROW][C]54[/C][C]0.0186[/C][C]0.0131[/C][C]0.0063[/C][C]0.0064[/C][C]20210.7527[/C][C]6123.764[/C][C]78.2545[/C][C]1.4468[/C][C]0.6859[/C][/ROW]
[ROW][C]55[/C][C]0.0213[/C][C]0.0146[/C][C]0.0068[/C][C]0.0069[/C][C]24769.1369[/C][C]7220.5507[/C][C]84.9738[/C][C]1.6017[/C][C]0.7397[/C][/ROW]
[ROW][C]56[/C][C]0.0226[/C][C]0.0144[/C][C]0.0073[/C][C]0.0073[/C][C]24604.1325[/C][C]8186.3052[/C][C]90.4782[/C][C]1.5964[/C][C]0.7873[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301117&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301117&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
390.00258e-048e-048e-0458.1071000.07760.0776
400.00280.00150.00110.0011231.9452145.026212.04270.1550.1163
410.00290.00230.00150.0015580.1832290.078517.03170.24510.1592
420.00320.00460.00230.00232289.6832789.979728.10660.4870.2412
430.0060.00290.00240.0024889.4219809.868128.45820.30350.2536
440.00670.00390.00270.00271629.6895946.50530.76530.41080.2798
450.0070.00460.0030.0032385.37441152.057833.9420.49710.3109
460.00770.00530.00330.00333131.56911399.496737.40980.56950.3432
470.01040.00570.00350.00353572.50591640.942240.50850.60830.3727
480.01130.00710.00390.00395551.96042032.04445.07820.75830.4112
490.01180.00790.00420.00437056.74092488.834649.88820.85490.4516
500.01290.00950.00470.004710336.17883142.7856.06051.03470.5002
510.01550.01080.00520.005213018.12143902.421662.46941.16120.551
520.01660.01030.00550.005512182.74493.870167.03631.12330.5919
530.01730.01120.00590.005914855.29075184.631572.00441.24040.6351
540.01860.01310.00630.006420210.75276123.76478.25451.44680.6859
550.02130.01460.00680.006924769.13697220.550784.97381.60170.7397
560.02260.01440.00730.007324604.13258186.305290.47821.59640.7873



Parameters (Session):
par1 = 18 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 18 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')