Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationSun, 18 Dec 2016 15:49:46 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482072726dbffp0rv98fik79.htm/, Retrieved Fri, 01 Nov 2024 03:47:36 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301114, Retrieved Fri, 01 Nov 2024 03:47:36 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [ARIMA Backward Se...] [2016-12-18 14:49:46] [3b055ff671ad33431c4331443bac114d] [Current]
Feedback Forum

Post a new message
Dataseries X:
9137.8
9009.4
8926.6
9145
9186.2
9152.2
9093.6
9199.2
9310.6
9282
9248.4
9341.6
9478.8
9438
9374.6
9488.8
9631.8
9588.4
9514.6
9623.2
9744.6
9685.8
9598
9703.4
9817.8
9762.6
9669.6
9789.2
9917.4
9864.4
9779.2
9898.8
10048.8
9983.4
9913.4
10031.6
10184.6
10125
10065.4
10188.6
10350.4
10320.6
10232.6
10357.2
10520.2
10473.8
10407
10536
10700.2
10664.2
10606
10716.6
10882.8
10849.4
10794
10907.8




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301114&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301114&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301114&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sma1
Estimates ( 1 )0.05490.02470.6648-0.5822-0.6649
(p-val)(0.7689 )(0.8573 )(0 )(3e-04 )(6e-04 )
Estimates ( 2 )0.053900.6668-0.5743-0.6567
(p-val)(0.7818 )(NA )(0 )(3e-04 )(7e-04 )
Estimates ( 3 )000.668-0.5435-0.638
(p-val)(NA )(NA )(0 )(0 )(6e-04 )
Estimates ( 4 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sma1 \tabularnewline
Estimates ( 1 ) & 0.0549 & 0.0247 & 0.6648 & -0.5822 & -0.6649 \tabularnewline
(p-val) & (0.7689 ) & (0.8573 ) & (0 ) & (3e-04 ) & (6e-04 ) \tabularnewline
Estimates ( 2 ) & 0.0539 & 0 & 0.6668 & -0.5743 & -0.6567 \tabularnewline
(p-val) & (0.7818 ) & (NA ) & (0 ) & (3e-04 ) & (7e-04 ) \tabularnewline
Estimates ( 3 ) & 0 & 0 & 0.668 & -0.5435 & -0.638 \tabularnewline
(p-val) & (NA ) & (NA ) & (0 ) & (0 ) & (6e-04 ) \tabularnewline
Estimates ( 4 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301114&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.0549[/C][C]0.0247[/C][C]0.6648[/C][C]-0.5822[/C][C]-0.6649[/C][/ROW]
[ROW][C](p-val)[/C][C](0.7689 )[/C][C](0.8573 )[/C][C](0 )[/C][C](3e-04 )[/C][C](6e-04 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.0539[/C][C]0[/C][C]0.6668[/C][C]-0.5743[/C][C]-0.6567[/C][/ROW]
[ROW][C](p-val)[/C][C](0.7818 )[/C][C](NA )[/C][C](0 )[/C][C](3e-04 )[/C][C](7e-04 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0[/C][C]0[/C][C]0.668[/C][C]-0.5435[/C][C]-0.638[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](0 )[/C][C](6e-04 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301114&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301114&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sma1
Estimates ( 1 )0.05490.02470.6648-0.5822-0.6649
(p-val)(0.7689 )(0.8573 )(0 )(3e-04 )(6e-04 )
Estimates ( 2 )0.053900.6668-0.5743-0.6567
(p-val)(0.7818 )(NA )(0 )(3e-04 )(7e-04 )
Estimates ( 3 )000.668-0.5435-0.638
(p-val)(NA )(NA )(0 )(0 )(6e-04 )
Estimates ( 4 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-19.1346885819524
48.1688033154901
41.8641182797938
-20.9638415209127
-19.4669363680819
-5.17444014342293
91.6532579737131
-12.6228661750889
8.09380200590487
-19.4207212914414
20.6685887440476
-20.0773017661175
10.0202019122537
7.69765887501697
0.0977846772605456
-28.7068759428983
-22.3410219420574
-19.0293560822199
-23.3250583954928
-20.1521443116536
-12.0152744577254
2.29506196898658
-10.0167722446138
8.94617295945371
15.4793300494505
19.8329194231983
2.21907898205027
1.28640217225672
27.8442318589101
4.40376423812671
12.3801725031338
-9.62348835135455
23.5970554047487
1.45511533110297
18.317715366014
1.98143576498809
24.9192141810793
28.7613540363535
-5.34026593767685
-11.6098117074106
-9.79659281624841
6.13255066013343
10.3294701219735
2.78094222949898
11.5731071737318
10.5681268451329
15.6456007899239
-12.7470355244452
-4.7125509812306
-3.37272689550856
19.2798744052534
-1.48328581988173

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-19.1346885819524 \tabularnewline
48.1688033154901 \tabularnewline
41.8641182797938 \tabularnewline
-20.9638415209127 \tabularnewline
-19.4669363680819 \tabularnewline
-5.17444014342293 \tabularnewline
91.6532579737131 \tabularnewline
-12.6228661750889 \tabularnewline
8.09380200590487 \tabularnewline
-19.4207212914414 \tabularnewline
20.6685887440476 \tabularnewline
-20.0773017661175 \tabularnewline
10.0202019122537 \tabularnewline
7.69765887501697 \tabularnewline
0.0977846772605456 \tabularnewline
-28.7068759428983 \tabularnewline
-22.3410219420574 \tabularnewline
-19.0293560822199 \tabularnewline
-23.3250583954928 \tabularnewline
-20.1521443116536 \tabularnewline
-12.0152744577254 \tabularnewline
2.29506196898658 \tabularnewline
-10.0167722446138 \tabularnewline
8.94617295945371 \tabularnewline
15.4793300494505 \tabularnewline
19.8329194231983 \tabularnewline
2.21907898205027 \tabularnewline
1.28640217225672 \tabularnewline
27.8442318589101 \tabularnewline
4.40376423812671 \tabularnewline
12.3801725031338 \tabularnewline
-9.62348835135455 \tabularnewline
23.5970554047487 \tabularnewline
1.45511533110297 \tabularnewline
18.317715366014 \tabularnewline
1.98143576498809 \tabularnewline
24.9192141810793 \tabularnewline
28.7613540363535 \tabularnewline
-5.34026593767685 \tabularnewline
-11.6098117074106 \tabularnewline
-9.79659281624841 \tabularnewline
6.13255066013343 \tabularnewline
10.3294701219735 \tabularnewline
2.78094222949898 \tabularnewline
11.5731071737318 \tabularnewline
10.5681268451329 \tabularnewline
15.6456007899239 \tabularnewline
-12.7470355244452 \tabularnewline
-4.7125509812306 \tabularnewline
-3.37272689550856 \tabularnewline
19.2798744052534 \tabularnewline
-1.48328581988173 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301114&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-19.1346885819524[/C][/ROW]
[ROW][C]48.1688033154901[/C][/ROW]
[ROW][C]41.8641182797938[/C][/ROW]
[ROW][C]-20.9638415209127[/C][/ROW]
[ROW][C]-19.4669363680819[/C][/ROW]
[ROW][C]-5.17444014342293[/C][/ROW]
[ROW][C]91.6532579737131[/C][/ROW]
[ROW][C]-12.6228661750889[/C][/ROW]
[ROW][C]8.09380200590487[/C][/ROW]
[ROW][C]-19.4207212914414[/C][/ROW]
[ROW][C]20.6685887440476[/C][/ROW]
[ROW][C]-20.0773017661175[/C][/ROW]
[ROW][C]10.0202019122537[/C][/ROW]
[ROW][C]7.69765887501697[/C][/ROW]
[ROW][C]0.0977846772605456[/C][/ROW]
[ROW][C]-28.7068759428983[/C][/ROW]
[ROW][C]-22.3410219420574[/C][/ROW]
[ROW][C]-19.0293560822199[/C][/ROW]
[ROW][C]-23.3250583954928[/C][/ROW]
[ROW][C]-20.1521443116536[/C][/ROW]
[ROW][C]-12.0152744577254[/C][/ROW]
[ROW][C]2.29506196898658[/C][/ROW]
[ROW][C]-10.0167722446138[/C][/ROW]
[ROW][C]8.94617295945371[/C][/ROW]
[ROW][C]15.4793300494505[/C][/ROW]
[ROW][C]19.8329194231983[/C][/ROW]
[ROW][C]2.21907898205027[/C][/ROW]
[ROW][C]1.28640217225672[/C][/ROW]
[ROW][C]27.8442318589101[/C][/ROW]
[ROW][C]4.40376423812671[/C][/ROW]
[ROW][C]12.3801725031338[/C][/ROW]
[ROW][C]-9.62348835135455[/C][/ROW]
[ROW][C]23.5970554047487[/C][/ROW]
[ROW][C]1.45511533110297[/C][/ROW]
[ROW][C]18.317715366014[/C][/ROW]
[ROW][C]1.98143576498809[/C][/ROW]
[ROW][C]24.9192141810793[/C][/ROW]
[ROW][C]28.7613540363535[/C][/ROW]
[ROW][C]-5.34026593767685[/C][/ROW]
[ROW][C]-11.6098117074106[/C][/ROW]
[ROW][C]-9.79659281624841[/C][/ROW]
[ROW][C]6.13255066013343[/C][/ROW]
[ROW][C]10.3294701219735[/C][/ROW]
[ROW][C]2.78094222949898[/C][/ROW]
[ROW][C]11.5731071737318[/C][/ROW]
[ROW][C]10.5681268451329[/C][/ROW]
[ROW][C]15.6456007899239[/C][/ROW]
[ROW][C]-12.7470355244452[/C][/ROW]
[ROW][C]-4.7125509812306[/C][/ROW]
[ROW][C]-3.37272689550856[/C][/ROW]
[ROW][C]19.2798744052534[/C][/ROW]
[ROW][C]-1.48328581988173[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301114&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301114&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-19.1346885819524
48.1688033154901
41.8641182797938
-20.9638415209127
-19.4669363680819
-5.17444014342293
91.6532579737131
-12.6228661750889
8.09380200590487
-19.4207212914414
20.6685887440476
-20.0773017661175
10.0202019122537
7.69765887501697
0.0977846772605456
-28.7068759428983
-22.3410219420574
-19.0293560822199
-23.3250583954928
-20.1521443116536
-12.0152744577254
2.29506196898658
-10.0167722446138
8.94617295945371
15.4793300494505
19.8329194231983
2.21907898205027
1.28640217225672
27.8442318589101
4.40376423812671
12.3801725031338
-9.62348835135455
23.5970554047487
1.45511533110297
18.317715366014
1.98143576498809
24.9192141810793
28.7613540363535
-5.34026593767685
-11.6098117074106
-9.79659281624841
6.13255066013343
10.3294701219735
2.78094222949898
11.5731071737318
10.5681268451329
15.6456007899239
-12.7470355244452
-4.7125509812306
-3.37272689550856
19.2798744052534
-1.48328581988173



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')