Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationSun, 18 Dec 2016 12:50:58 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t14820619089rlpsc367miz6v3.htm/, Retrieved Fri, 01 Nov 2024 03:28:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301016, Retrieved Fri, 01 Nov 2024 03:28:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact148
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [] [2015-11-15 16:35:00] [32b17a345b130fdf5cc88718ed94a974]
- RMPD    [Decomposition by Loess] [Decomposition by ...] [2016-12-18 11:50:58] [2ea868439aa9f960cb5a0f1a9b97f873] [Current]
Feedback Forum

Post a new message
Dataseries X:
7085
7390
6920
6955
6965
6990
7080
7030
7090
7035
6960
7035
6845
6970
6885
6935
6480
6340
6200
5990
5920
5750
5675
5890
5655
5515
5585
5630
5720
5650
5645
5735
5680
5620
5525
5500
5545
5430
5290
5235
5085
4885
5120
5030
4860
4915
5030
5115
4880
4780
4765
4815
4980
5050
5280
5040
4980
5025
5175
5205
5155
4995
5035
5005
4975
4940
5015
4920
4950
4930
4905
5015
5010
5045
5000
5060
4950
4995
4975
4930
5000
4955
4900
4910
4940
4945
4975
4900
4950
4865
4870
4785
4715
4630
4515
4510
4485
4470
4385
4310
4370
4425
4460
4430
4360
4320
4370
4370
4305
4255
4310
4375
4365
4400
4385
4305




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301016&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301016&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301016&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11610117
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1161 & 0 & 117 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301016&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1161[/C][C]0[/C][C]117[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301016&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301016&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11610117
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
170857053.651419928925.504702679797397110.84387739129-31.3485800710832
273907664.6471346650417.77989191407537097.57297342089274.647134665038
369206779.14262003741-23.44468948789527084.30206945049-140.857379962593
469556833.741219554795.544584448877577070.71419599633-121.258780445212
569656883.33977128802-10.4660938301997057.12632254218-81.6602287119822
669906956.96313854863-19.15986191646037042.19672336783-33.0368614513709
770807081.5864124776851.14646332884237027.267124193481.58641247767628
870307058.65168060885-10.19782065651927011.5461400476728.6516806088493
970907203.49584208408-19.32099798594346995.82515590186113.495842084085
1070357126.96970649974-34.51316383647546977.5434573367491.969706499739
1169606982.66579139711-21.92755016872486959.2617587716222.6657913971085
1270357100.7667602549759.05455439227736910.1786853527665.7667602549654
1368456823.39968538635.504702679797396861.0956119339-21.6003146136973
1469707144.3319448153417.77989191407536777.88816327059174.33194481534
1568857098.76397488063-23.44468948789526694.68071460727213.763974880625
1669357274.140853977815.544584448877576590.31456157331339.14085397781
1764806484.51768529084-10.4660938301996485.948408539354.51768529084438
1863406325.5433103771-19.15986191646036373.61655153936-14.4566896228962
1962006087.568842131851.14646332884236261.28469453936-112.431157868201
2059905841.54492771561-10.19782065651926148.65289294091-148.455072284386
2159205823.29990664349-19.32099798594346036.02109134245-96.7000933565096
2257505590.7744730251-34.51316383647545943.73869081137-159.225526974898
2356755520.47125988843-21.92755016872485851.45629028029-154.52874011157
2458905926.1472659680359.05455439227735794.7981796396936.1472659680321
2556555566.355228321125.504702679797395738.14006899909-88.6447716788834
2655155301.747915572317.77989191407535710.47219251363-213.252084427704
2755855510.64037345972-23.44468948789525682.80431602817-74.3596265402775
2856305585.902906120935.544584448877575668.55250943019-44.097093879067
2957205796.16539099799-10.4660938301995654.3007028322176.1653909979932
3056505676.8904761538-19.15986191646035642.2693857626626.890476153796
3156455608.6154679780351.14646332884235630.23806869312-36.3845320219662
3257355867.87856781245-10.19782065651925612.31925284407132.878567812449
3356805784.92056099092-19.32099798594345594.40043699502104.920560990925
3456205715.48250519849-34.51316383647545559.0306586379895.4825051984944
3555255548.26666988778-21.92755016872485523.6608802809523.2666698877792
3655005470.9594643002559.05455439227735469.98598130747-29.0405356997453
3755455668.184214986215.504702679797395416.31108233399123.184214986211
3854305487.1930827372617.77989191407535355.0270253486757.1930827372562
3952905309.70172112455-23.44468948789525293.7429683633519.7017211245493
4052355227.729028567545.544584448877575236.72638698358-7.27097143245646
4150855000.75628822639-10.4660938301995179.70980560381-84.2437117736126
4248854657.26172527082-19.15986191646035131.89813664564-227.738274729184
4351205104.7670689836851.14646332884235084.08646768748-15.2329310163213
4450305027.9071674618-10.19782065651925042.29065319472-2.09283253820377
4548604738.82615928398-19.32099798594345000.49483870197-121.173840716023
4649154890.18372850221-34.51316383647544974.32943533427-24.8162714977943
4750305133.76351820215-21.92755016872484948.16403196657103.763518202151
4851155226.3131434223859.05455439227734944.63230218534111.313143422381
4948804813.394724916095.504702679797394941.10057240411-66.6052750839071
5047804593.9725311575817.77989191407534948.24757692834-186.027468842419
5147654598.05010803532-23.44468948789524955.39458145258-166.949891964682
5248154656.823153603855.544584448877574967.63226194727-158.17684639615
5349804990.59615138823-10.4660938301994979.8699424419710.5961513882321
5450505120.88605941078-19.15986191646034998.2738025056870.8860594107791
5552805492.1758741017651.14646332884235016.6776625694212.175874101761
5650405052.81097286336-10.19782065651925037.3868477931612.8109728633599
5749804921.22496496902-19.32099798594345058.09603301692-58.7750350309789
5850255018.12261786142-34.51316383647545066.39054597506-6.87738213858302
5951755297.24249123553-21.92755016872485074.6850589332122.242491235529
6052055283.2788379583959.05455439227735067.6666076493378.2788379583926
6151555243.847140954745.504702679797395060.6481563654788.8471409547374
6249954924.0755367533717.77989191407535048.14457133255-70.9244632466252
6350355057.80370318826-23.44468948789525035.6409862996322.8037031882614
6450054982.711565283535.544584448877575021.74385026759-22.2884347164672
6549754952.61937959465-10.4660938301995007.84671423554-22.3806204053462
6649404904.17496915818-19.15986191646034994.98489275828-35.8250308418183
6750154996.7304653901451.14646332884234982.12307128101-18.2695346098553
6849204872.25769117162-10.19782065651924977.9401294849-47.742308828384
6949504945.56381029715-19.32099798594344973.75718768879-4.43618970284933
7049304918.9082384701-34.51316383647544975.60492536637-11.0917615298958
7149054854.47488712477-21.92755016872484977.45266304395-50.525112875227
7250154990.9678227005659.05455439227734979.97762290716-24.0321772994421
7350105031.992714549825.504702679797394982.5025827703821.9927145498232
7450455087.7937685448617.77989191407534984.4263395410742.793768544856
7550005037.09459317614-23.44468948789524986.3500963117637.0945931761362
7650605128.329226250455.544584448877574986.1261893006768.3292262504492
7749504924.56381154061-10.4660938301994985.90228228959-25.4361884593882
7849955028.36578969151-19.15986191646034980.7940722249533.3657896915074
7949754923.1676745108451.14646332884234975.68586216032-51.832325489162
8049304902.29803610351-10.19782065651924967.89978455301-27.7019638964912
8150005059.20729104024-19.32099798594344960.113706945759.2072910402412
8249554990.94786926926-34.51316383647544953.5652945672135.9478692692637
8349004874.91066798-21.92755016872484947.01688218872-25.0893320199975
8449104821.4426218589259.05455439227734939.50282374881-88.5573781410831
8549404942.506532011315.504702679797394931.988765308892.50653201131172
8649454954.00709496817.77989191407534918.213013117929.00709496800482
8749755069.00742856095-23.44468948789524904.4372609269594.0074285609471
8849004914.079873315655.544584448877574880.3755422354814.0798733156453
8949505054.15227028619-10.4660938301994856.313823544104.152270286194
9048654927.64140454589-19.15986191646034821.5184573705762.6414045458896
9148704902.1304454740251.14646332884234786.7230911971432.1304454740202
9247854838.36128971371-10.19782065651924741.836530942853.3612897137145
9347154752.37102729747-19.32099798594344696.9499706884737.3710272974713
9446304646.14167347798-34.51316383647544648.371490358516.1416734779787
9545154452.1345401402-21.92755016872484599.79301002852-62.8654598597968
9645104403.2604594718259.05455439227734557.68498613591-106.739540528183
9744854448.918335076915.504702679797394515.57696224329-36.0816649230874
9844704437.3432128274117.77989191407534484.87689525851-32.6567871725856
9943854339.26786121416-23.44468948789524454.17682827373-45.7321387858365
10043104180.001581369235.544584448877574434.4538341819-129.998418630773
10143704335.73525374014-10.4660938301994414.73084009006-34.2647462598607
10244254467.30139143483-19.15986191646034401.8584704816342.3013914348294
10344604479.8674357979651.14646332884234388.986100873219.8674357979553
10444304491.01489222474-10.19782065651924379.1829284317861.0148922247417
10543604369.94124199559-19.32099798594344369.379755990359.94124199558973
10643204310.61251875298-34.51316383647544363.9006450835-9.38748124702215
10743704403.50601599208-21.92755016872484358.4215341766433.5060159920822
10843704324.6500887277659.05455439227734356.29535687997-45.3499112722448
10943054250.326117736915.504702679797394354.16917958329-54.6738822630896
11042554141.5553680138117.77989191407534350.66474007212-113.444631986193
11143104296.28438892695-23.44468948789524347.16030056094-13.7156110730466
11243754400.436364585735.544584448877574344.019050965425.4363645857256
11343654399.58829246035-10.4660938301994340.8778013698534.5882924603484
11444004480.3727985727-19.15986191646034338.7870633437680.3727985726973
11543854382.1572113534851.14646332884234336.69632531768-2.84278864651878
11643054284.89861998335-10.19782065651924335.29920067316-20.1013800166456

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 7085 & 7053.65141992892 & 5.50470267979739 & 7110.84387739129 & -31.3485800710832 \tabularnewline
2 & 7390 & 7664.64713466504 & 17.7798919140753 & 7097.57297342089 & 274.647134665038 \tabularnewline
3 & 6920 & 6779.14262003741 & -23.4446894878952 & 7084.30206945049 & -140.857379962593 \tabularnewline
4 & 6955 & 6833.74121955479 & 5.54458444887757 & 7070.71419599633 & -121.258780445212 \tabularnewline
5 & 6965 & 6883.33977128802 & -10.466093830199 & 7057.12632254218 & -81.6602287119822 \tabularnewline
6 & 6990 & 6956.96313854863 & -19.1598619164603 & 7042.19672336783 & -33.0368614513709 \tabularnewline
7 & 7080 & 7081.58641247768 & 51.1464633288423 & 7027.26712419348 & 1.58641247767628 \tabularnewline
8 & 7030 & 7058.65168060885 & -10.1978206565192 & 7011.54614004767 & 28.6516806088493 \tabularnewline
9 & 7090 & 7203.49584208408 & -19.3209979859434 & 6995.82515590186 & 113.495842084085 \tabularnewline
10 & 7035 & 7126.96970649974 & -34.5131638364754 & 6977.54345733674 & 91.969706499739 \tabularnewline
11 & 6960 & 6982.66579139711 & -21.9275501687248 & 6959.26175877162 & 22.6657913971085 \tabularnewline
12 & 7035 & 7100.76676025497 & 59.0545543922773 & 6910.17868535276 & 65.7667602549654 \tabularnewline
13 & 6845 & 6823.3996853863 & 5.50470267979739 & 6861.0956119339 & -21.6003146136973 \tabularnewline
14 & 6970 & 7144.33194481534 & 17.7798919140753 & 6777.88816327059 & 174.33194481534 \tabularnewline
15 & 6885 & 7098.76397488063 & -23.4446894878952 & 6694.68071460727 & 213.763974880625 \tabularnewline
16 & 6935 & 7274.14085397781 & 5.54458444887757 & 6590.31456157331 & 339.14085397781 \tabularnewline
17 & 6480 & 6484.51768529084 & -10.466093830199 & 6485.94840853935 & 4.51768529084438 \tabularnewline
18 & 6340 & 6325.5433103771 & -19.1598619164603 & 6373.61655153936 & -14.4566896228962 \tabularnewline
19 & 6200 & 6087.5688421318 & 51.1464633288423 & 6261.28469453936 & -112.431157868201 \tabularnewline
20 & 5990 & 5841.54492771561 & -10.1978206565192 & 6148.65289294091 & -148.455072284386 \tabularnewline
21 & 5920 & 5823.29990664349 & -19.3209979859434 & 6036.02109134245 & -96.7000933565096 \tabularnewline
22 & 5750 & 5590.7744730251 & -34.5131638364754 & 5943.73869081137 & -159.225526974898 \tabularnewline
23 & 5675 & 5520.47125988843 & -21.9275501687248 & 5851.45629028029 & -154.52874011157 \tabularnewline
24 & 5890 & 5926.14726596803 & 59.0545543922773 & 5794.79817963969 & 36.1472659680321 \tabularnewline
25 & 5655 & 5566.35522832112 & 5.50470267979739 & 5738.14006899909 & -88.6447716788834 \tabularnewline
26 & 5515 & 5301.7479155723 & 17.7798919140753 & 5710.47219251363 & -213.252084427704 \tabularnewline
27 & 5585 & 5510.64037345972 & -23.4446894878952 & 5682.80431602817 & -74.3596265402775 \tabularnewline
28 & 5630 & 5585.90290612093 & 5.54458444887757 & 5668.55250943019 & -44.097093879067 \tabularnewline
29 & 5720 & 5796.16539099799 & -10.466093830199 & 5654.30070283221 & 76.1653909979932 \tabularnewline
30 & 5650 & 5676.8904761538 & -19.1598619164603 & 5642.26938576266 & 26.890476153796 \tabularnewline
31 & 5645 & 5608.61546797803 & 51.1464633288423 & 5630.23806869312 & -36.3845320219662 \tabularnewline
32 & 5735 & 5867.87856781245 & -10.1978206565192 & 5612.31925284407 & 132.878567812449 \tabularnewline
33 & 5680 & 5784.92056099092 & -19.3209979859434 & 5594.40043699502 & 104.920560990925 \tabularnewline
34 & 5620 & 5715.48250519849 & -34.5131638364754 & 5559.03065863798 & 95.4825051984944 \tabularnewline
35 & 5525 & 5548.26666988778 & -21.9275501687248 & 5523.66088028095 & 23.2666698877792 \tabularnewline
36 & 5500 & 5470.95946430025 & 59.0545543922773 & 5469.98598130747 & -29.0405356997453 \tabularnewline
37 & 5545 & 5668.18421498621 & 5.50470267979739 & 5416.31108233399 & 123.184214986211 \tabularnewline
38 & 5430 & 5487.19308273726 & 17.7798919140753 & 5355.02702534867 & 57.1930827372562 \tabularnewline
39 & 5290 & 5309.70172112455 & -23.4446894878952 & 5293.74296836335 & 19.7017211245493 \tabularnewline
40 & 5235 & 5227.72902856754 & 5.54458444887757 & 5236.72638698358 & -7.27097143245646 \tabularnewline
41 & 5085 & 5000.75628822639 & -10.466093830199 & 5179.70980560381 & -84.2437117736126 \tabularnewline
42 & 4885 & 4657.26172527082 & -19.1598619164603 & 5131.89813664564 & -227.738274729184 \tabularnewline
43 & 5120 & 5104.76706898368 & 51.1464633288423 & 5084.08646768748 & -15.2329310163213 \tabularnewline
44 & 5030 & 5027.9071674618 & -10.1978206565192 & 5042.29065319472 & -2.09283253820377 \tabularnewline
45 & 4860 & 4738.82615928398 & -19.3209979859434 & 5000.49483870197 & -121.173840716023 \tabularnewline
46 & 4915 & 4890.18372850221 & -34.5131638364754 & 4974.32943533427 & -24.8162714977943 \tabularnewline
47 & 5030 & 5133.76351820215 & -21.9275501687248 & 4948.16403196657 & 103.763518202151 \tabularnewline
48 & 5115 & 5226.31314342238 & 59.0545543922773 & 4944.63230218534 & 111.313143422381 \tabularnewline
49 & 4880 & 4813.39472491609 & 5.50470267979739 & 4941.10057240411 & -66.6052750839071 \tabularnewline
50 & 4780 & 4593.97253115758 & 17.7798919140753 & 4948.24757692834 & -186.027468842419 \tabularnewline
51 & 4765 & 4598.05010803532 & -23.4446894878952 & 4955.39458145258 & -166.949891964682 \tabularnewline
52 & 4815 & 4656.82315360385 & 5.54458444887757 & 4967.63226194727 & -158.17684639615 \tabularnewline
53 & 4980 & 4990.59615138823 & -10.466093830199 & 4979.86994244197 & 10.5961513882321 \tabularnewline
54 & 5050 & 5120.88605941078 & -19.1598619164603 & 4998.27380250568 & 70.8860594107791 \tabularnewline
55 & 5280 & 5492.17587410176 & 51.1464633288423 & 5016.6776625694 & 212.175874101761 \tabularnewline
56 & 5040 & 5052.81097286336 & -10.1978206565192 & 5037.38684779316 & 12.8109728633599 \tabularnewline
57 & 4980 & 4921.22496496902 & -19.3209979859434 & 5058.09603301692 & -58.7750350309789 \tabularnewline
58 & 5025 & 5018.12261786142 & -34.5131638364754 & 5066.39054597506 & -6.87738213858302 \tabularnewline
59 & 5175 & 5297.24249123553 & -21.9275501687248 & 5074.6850589332 & 122.242491235529 \tabularnewline
60 & 5205 & 5283.27883795839 & 59.0545543922773 & 5067.66660764933 & 78.2788379583926 \tabularnewline
61 & 5155 & 5243.84714095474 & 5.50470267979739 & 5060.64815636547 & 88.8471409547374 \tabularnewline
62 & 4995 & 4924.07553675337 & 17.7798919140753 & 5048.14457133255 & -70.9244632466252 \tabularnewline
63 & 5035 & 5057.80370318826 & -23.4446894878952 & 5035.64098629963 & 22.8037031882614 \tabularnewline
64 & 5005 & 4982.71156528353 & 5.54458444887757 & 5021.74385026759 & -22.2884347164672 \tabularnewline
65 & 4975 & 4952.61937959465 & -10.466093830199 & 5007.84671423554 & -22.3806204053462 \tabularnewline
66 & 4940 & 4904.17496915818 & -19.1598619164603 & 4994.98489275828 & -35.8250308418183 \tabularnewline
67 & 5015 & 4996.73046539014 & 51.1464633288423 & 4982.12307128101 & -18.2695346098553 \tabularnewline
68 & 4920 & 4872.25769117162 & -10.1978206565192 & 4977.9401294849 & -47.742308828384 \tabularnewline
69 & 4950 & 4945.56381029715 & -19.3209979859434 & 4973.75718768879 & -4.43618970284933 \tabularnewline
70 & 4930 & 4918.9082384701 & -34.5131638364754 & 4975.60492536637 & -11.0917615298958 \tabularnewline
71 & 4905 & 4854.47488712477 & -21.9275501687248 & 4977.45266304395 & -50.525112875227 \tabularnewline
72 & 5015 & 4990.96782270056 & 59.0545543922773 & 4979.97762290716 & -24.0321772994421 \tabularnewline
73 & 5010 & 5031.99271454982 & 5.50470267979739 & 4982.50258277038 & 21.9927145498232 \tabularnewline
74 & 5045 & 5087.79376854486 & 17.7798919140753 & 4984.42633954107 & 42.793768544856 \tabularnewline
75 & 5000 & 5037.09459317614 & -23.4446894878952 & 4986.35009631176 & 37.0945931761362 \tabularnewline
76 & 5060 & 5128.32922625045 & 5.54458444887757 & 4986.12618930067 & 68.3292262504492 \tabularnewline
77 & 4950 & 4924.56381154061 & -10.466093830199 & 4985.90228228959 & -25.4361884593882 \tabularnewline
78 & 4995 & 5028.36578969151 & -19.1598619164603 & 4980.79407222495 & 33.3657896915074 \tabularnewline
79 & 4975 & 4923.16767451084 & 51.1464633288423 & 4975.68586216032 & -51.832325489162 \tabularnewline
80 & 4930 & 4902.29803610351 & -10.1978206565192 & 4967.89978455301 & -27.7019638964912 \tabularnewline
81 & 5000 & 5059.20729104024 & -19.3209979859434 & 4960.1137069457 & 59.2072910402412 \tabularnewline
82 & 4955 & 4990.94786926926 & -34.5131638364754 & 4953.56529456721 & 35.9478692692637 \tabularnewline
83 & 4900 & 4874.91066798 & -21.9275501687248 & 4947.01688218872 & -25.0893320199975 \tabularnewline
84 & 4910 & 4821.44262185892 & 59.0545543922773 & 4939.50282374881 & -88.5573781410831 \tabularnewline
85 & 4940 & 4942.50653201131 & 5.50470267979739 & 4931.98876530889 & 2.50653201131172 \tabularnewline
86 & 4945 & 4954.007094968 & 17.7798919140753 & 4918.21301311792 & 9.00709496800482 \tabularnewline
87 & 4975 & 5069.00742856095 & -23.4446894878952 & 4904.43726092695 & 94.0074285609471 \tabularnewline
88 & 4900 & 4914.07987331565 & 5.54458444887757 & 4880.37554223548 & 14.0798733156453 \tabularnewline
89 & 4950 & 5054.15227028619 & -10.466093830199 & 4856.313823544 & 104.152270286194 \tabularnewline
90 & 4865 & 4927.64140454589 & -19.1598619164603 & 4821.51845737057 & 62.6414045458896 \tabularnewline
91 & 4870 & 4902.13044547402 & 51.1464633288423 & 4786.72309119714 & 32.1304454740202 \tabularnewline
92 & 4785 & 4838.36128971371 & -10.1978206565192 & 4741.8365309428 & 53.3612897137145 \tabularnewline
93 & 4715 & 4752.37102729747 & -19.3209979859434 & 4696.94997068847 & 37.3710272974713 \tabularnewline
94 & 4630 & 4646.14167347798 & -34.5131638364754 & 4648.3714903585 & 16.1416734779787 \tabularnewline
95 & 4515 & 4452.1345401402 & -21.9275501687248 & 4599.79301002852 & -62.8654598597968 \tabularnewline
96 & 4510 & 4403.26045947182 & 59.0545543922773 & 4557.68498613591 & -106.739540528183 \tabularnewline
97 & 4485 & 4448.91833507691 & 5.50470267979739 & 4515.57696224329 & -36.0816649230874 \tabularnewline
98 & 4470 & 4437.34321282741 & 17.7798919140753 & 4484.87689525851 & -32.6567871725856 \tabularnewline
99 & 4385 & 4339.26786121416 & -23.4446894878952 & 4454.17682827373 & -45.7321387858365 \tabularnewline
100 & 4310 & 4180.00158136923 & 5.54458444887757 & 4434.4538341819 & -129.998418630773 \tabularnewline
101 & 4370 & 4335.73525374014 & -10.466093830199 & 4414.73084009006 & -34.2647462598607 \tabularnewline
102 & 4425 & 4467.30139143483 & -19.1598619164603 & 4401.85847048163 & 42.3013914348294 \tabularnewline
103 & 4460 & 4479.86743579796 & 51.1464633288423 & 4388.9861008732 & 19.8674357979553 \tabularnewline
104 & 4430 & 4491.01489222474 & -10.1978206565192 & 4379.18292843178 & 61.0148922247417 \tabularnewline
105 & 4360 & 4369.94124199559 & -19.3209979859434 & 4369.37975599035 & 9.94124199558973 \tabularnewline
106 & 4320 & 4310.61251875298 & -34.5131638364754 & 4363.9006450835 & -9.38748124702215 \tabularnewline
107 & 4370 & 4403.50601599208 & -21.9275501687248 & 4358.42153417664 & 33.5060159920822 \tabularnewline
108 & 4370 & 4324.65008872776 & 59.0545543922773 & 4356.29535687997 & -45.3499112722448 \tabularnewline
109 & 4305 & 4250.32611773691 & 5.50470267979739 & 4354.16917958329 & -54.6738822630896 \tabularnewline
110 & 4255 & 4141.55536801381 & 17.7798919140753 & 4350.66474007212 & -113.444631986193 \tabularnewline
111 & 4310 & 4296.28438892695 & -23.4446894878952 & 4347.16030056094 & -13.7156110730466 \tabularnewline
112 & 4375 & 4400.43636458573 & 5.54458444887757 & 4344.0190509654 & 25.4363645857256 \tabularnewline
113 & 4365 & 4399.58829246035 & -10.466093830199 & 4340.87780136985 & 34.5882924603484 \tabularnewline
114 & 4400 & 4480.3727985727 & -19.1598619164603 & 4338.78706334376 & 80.3727985726973 \tabularnewline
115 & 4385 & 4382.15721135348 & 51.1464633288423 & 4336.69632531768 & -2.84278864651878 \tabularnewline
116 & 4305 & 4284.89861998335 & -10.1978206565192 & 4335.29920067316 & -20.1013800166456 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301016&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]7085[/C][C]7053.65141992892[/C][C]5.50470267979739[/C][C]7110.84387739129[/C][C]-31.3485800710832[/C][/ROW]
[ROW][C]2[/C][C]7390[/C][C]7664.64713466504[/C][C]17.7798919140753[/C][C]7097.57297342089[/C][C]274.647134665038[/C][/ROW]
[ROW][C]3[/C][C]6920[/C][C]6779.14262003741[/C][C]-23.4446894878952[/C][C]7084.30206945049[/C][C]-140.857379962593[/C][/ROW]
[ROW][C]4[/C][C]6955[/C][C]6833.74121955479[/C][C]5.54458444887757[/C][C]7070.71419599633[/C][C]-121.258780445212[/C][/ROW]
[ROW][C]5[/C][C]6965[/C][C]6883.33977128802[/C][C]-10.466093830199[/C][C]7057.12632254218[/C][C]-81.6602287119822[/C][/ROW]
[ROW][C]6[/C][C]6990[/C][C]6956.96313854863[/C][C]-19.1598619164603[/C][C]7042.19672336783[/C][C]-33.0368614513709[/C][/ROW]
[ROW][C]7[/C][C]7080[/C][C]7081.58641247768[/C][C]51.1464633288423[/C][C]7027.26712419348[/C][C]1.58641247767628[/C][/ROW]
[ROW][C]8[/C][C]7030[/C][C]7058.65168060885[/C][C]-10.1978206565192[/C][C]7011.54614004767[/C][C]28.6516806088493[/C][/ROW]
[ROW][C]9[/C][C]7090[/C][C]7203.49584208408[/C][C]-19.3209979859434[/C][C]6995.82515590186[/C][C]113.495842084085[/C][/ROW]
[ROW][C]10[/C][C]7035[/C][C]7126.96970649974[/C][C]-34.5131638364754[/C][C]6977.54345733674[/C][C]91.969706499739[/C][/ROW]
[ROW][C]11[/C][C]6960[/C][C]6982.66579139711[/C][C]-21.9275501687248[/C][C]6959.26175877162[/C][C]22.6657913971085[/C][/ROW]
[ROW][C]12[/C][C]7035[/C][C]7100.76676025497[/C][C]59.0545543922773[/C][C]6910.17868535276[/C][C]65.7667602549654[/C][/ROW]
[ROW][C]13[/C][C]6845[/C][C]6823.3996853863[/C][C]5.50470267979739[/C][C]6861.0956119339[/C][C]-21.6003146136973[/C][/ROW]
[ROW][C]14[/C][C]6970[/C][C]7144.33194481534[/C][C]17.7798919140753[/C][C]6777.88816327059[/C][C]174.33194481534[/C][/ROW]
[ROW][C]15[/C][C]6885[/C][C]7098.76397488063[/C][C]-23.4446894878952[/C][C]6694.68071460727[/C][C]213.763974880625[/C][/ROW]
[ROW][C]16[/C][C]6935[/C][C]7274.14085397781[/C][C]5.54458444887757[/C][C]6590.31456157331[/C][C]339.14085397781[/C][/ROW]
[ROW][C]17[/C][C]6480[/C][C]6484.51768529084[/C][C]-10.466093830199[/C][C]6485.94840853935[/C][C]4.51768529084438[/C][/ROW]
[ROW][C]18[/C][C]6340[/C][C]6325.5433103771[/C][C]-19.1598619164603[/C][C]6373.61655153936[/C][C]-14.4566896228962[/C][/ROW]
[ROW][C]19[/C][C]6200[/C][C]6087.5688421318[/C][C]51.1464633288423[/C][C]6261.28469453936[/C][C]-112.431157868201[/C][/ROW]
[ROW][C]20[/C][C]5990[/C][C]5841.54492771561[/C][C]-10.1978206565192[/C][C]6148.65289294091[/C][C]-148.455072284386[/C][/ROW]
[ROW][C]21[/C][C]5920[/C][C]5823.29990664349[/C][C]-19.3209979859434[/C][C]6036.02109134245[/C][C]-96.7000933565096[/C][/ROW]
[ROW][C]22[/C][C]5750[/C][C]5590.7744730251[/C][C]-34.5131638364754[/C][C]5943.73869081137[/C][C]-159.225526974898[/C][/ROW]
[ROW][C]23[/C][C]5675[/C][C]5520.47125988843[/C][C]-21.9275501687248[/C][C]5851.45629028029[/C][C]-154.52874011157[/C][/ROW]
[ROW][C]24[/C][C]5890[/C][C]5926.14726596803[/C][C]59.0545543922773[/C][C]5794.79817963969[/C][C]36.1472659680321[/C][/ROW]
[ROW][C]25[/C][C]5655[/C][C]5566.35522832112[/C][C]5.50470267979739[/C][C]5738.14006899909[/C][C]-88.6447716788834[/C][/ROW]
[ROW][C]26[/C][C]5515[/C][C]5301.7479155723[/C][C]17.7798919140753[/C][C]5710.47219251363[/C][C]-213.252084427704[/C][/ROW]
[ROW][C]27[/C][C]5585[/C][C]5510.64037345972[/C][C]-23.4446894878952[/C][C]5682.80431602817[/C][C]-74.3596265402775[/C][/ROW]
[ROW][C]28[/C][C]5630[/C][C]5585.90290612093[/C][C]5.54458444887757[/C][C]5668.55250943019[/C][C]-44.097093879067[/C][/ROW]
[ROW][C]29[/C][C]5720[/C][C]5796.16539099799[/C][C]-10.466093830199[/C][C]5654.30070283221[/C][C]76.1653909979932[/C][/ROW]
[ROW][C]30[/C][C]5650[/C][C]5676.8904761538[/C][C]-19.1598619164603[/C][C]5642.26938576266[/C][C]26.890476153796[/C][/ROW]
[ROW][C]31[/C][C]5645[/C][C]5608.61546797803[/C][C]51.1464633288423[/C][C]5630.23806869312[/C][C]-36.3845320219662[/C][/ROW]
[ROW][C]32[/C][C]5735[/C][C]5867.87856781245[/C][C]-10.1978206565192[/C][C]5612.31925284407[/C][C]132.878567812449[/C][/ROW]
[ROW][C]33[/C][C]5680[/C][C]5784.92056099092[/C][C]-19.3209979859434[/C][C]5594.40043699502[/C][C]104.920560990925[/C][/ROW]
[ROW][C]34[/C][C]5620[/C][C]5715.48250519849[/C][C]-34.5131638364754[/C][C]5559.03065863798[/C][C]95.4825051984944[/C][/ROW]
[ROW][C]35[/C][C]5525[/C][C]5548.26666988778[/C][C]-21.9275501687248[/C][C]5523.66088028095[/C][C]23.2666698877792[/C][/ROW]
[ROW][C]36[/C][C]5500[/C][C]5470.95946430025[/C][C]59.0545543922773[/C][C]5469.98598130747[/C][C]-29.0405356997453[/C][/ROW]
[ROW][C]37[/C][C]5545[/C][C]5668.18421498621[/C][C]5.50470267979739[/C][C]5416.31108233399[/C][C]123.184214986211[/C][/ROW]
[ROW][C]38[/C][C]5430[/C][C]5487.19308273726[/C][C]17.7798919140753[/C][C]5355.02702534867[/C][C]57.1930827372562[/C][/ROW]
[ROW][C]39[/C][C]5290[/C][C]5309.70172112455[/C][C]-23.4446894878952[/C][C]5293.74296836335[/C][C]19.7017211245493[/C][/ROW]
[ROW][C]40[/C][C]5235[/C][C]5227.72902856754[/C][C]5.54458444887757[/C][C]5236.72638698358[/C][C]-7.27097143245646[/C][/ROW]
[ROW][C]41[/C][C]5085[/C][C]5000.75628822639[/C][C]-10.466093830199[/C][C]5179.70980560381[/C][C]-84.2437117736126[/C][/ROW]
[ROW][C]42[/C][C]4885[/C][C]4657.26172527082[/C][C]-19.1598619164603[/C][C]5131.89813664564[/C][C]-227.738274729184[/C][/ROW]
[ROW][C]43[/C][C]5120[/C][C]5104.76706898368[/C][C]51.1464633288423[/C][C]5084.08646768748[/C][C]-15.2329310163213[/C][/ROW]
[ROW][C]44[/C][C]5030[/C][C]5027.9071674618[/C][C]-10.1978206565192[/C][C]5042.29065319472[/C][C]-2.09283253820377[/C][/ROW]
[ROW][C]45[/C][C]4860[/C][C]4738.82615928398[/C][C]-19.3209979859434[/C][C]5000.49483870197[/C][C]-121.173840716023[/C][/ROW]
[ROW][C]46[/C][C]4915[/C][C]4890.18372850221[/C][C]-34.5131638364754[/C][C]4974.32943533427[/C][C]-24.8162714977943[/C][/ROW]
[ROW][C]47[/C][C]5030[/C][C]5133.76351820215[/C][C]-21.9275501687248[/C][C]4948.16403196657[/C][C]103.763518202151[/C][/ROW]
[ROW][C]48[/C][C]5115[/C][C]5226.31314342238[/C][C]59.0545543922773[/C][C]4944.63230218534[/C][C]111.313143422381[/C][/ROW]
[ROW][C]49[/C][C]4880[/C][C]4813.39472491609[/C][C]5.50470267979739[/C][C]4941.10057240411[/C][C]-66.6052750839071[/C][/ROW]
[ROW][C]50[/C][C]4780[/C][C]4593.97253115758[/C][C]17.7798919140753[/C][C]4948.24757692834[/C][C]-186.027468842419[/C][/ROW]
[ROW][C]51[/C][C]4765[/C][C]4598.05010803532[/C][C]-23.4446894878952[/C][C]4955.39458145258[/C][C]-166.949891964682[/C][/ROW]
[ROW][C]52[/C][C]4815[/C][C]4656.82315360385[/C][C]5.54458444887757[/C][C]4967.63226194727[/C][C]-158.17684639615[/C][/ROW]
[ROW][C]53[/C][C]4980[/C][C]4990.59615138823[/C][C]-10.466093830199[/C][C]4979.86994244197[/C][C]10.5961513882321[/C][/ROW]
[ROW][C]54[/C][C]5050[/C][C]5120.88605941078[/C][C]-19.1598619164603[/C][C]4998.27380250568[/C][C]70.8860594107791[/C][/ROW]
[ROW][C]55[/C][C]5280[/C][C]5492.17587410176[/C][C]51.1464633288423[/C][C]5016.6776625694[/C][C]212.175874101761[/C][/ROW]
[ROW][C]56[/C][C]5040[/C][C]5052.81097286336[/C][C]-10.1978206565192[/C][C]5037.38684779316[/C][C]12.8109728633599[/C][/ROW]
[ROW][C]57[/C][C]4980[/C][C]4921.22496496902[/C][C]-19.3209979859434[/C][C]5058.09603301692[/C][C]-58.7750350309789[/C][/ROW]
[ROW][C]58[/C][C]5025[/C][C]5018.12261786142[/C][C]-34.5131638364754[/C][C]5066.39054597506[/C][C]-6.87738213858302[/C][/ROW]
[ROW][C]59[/C][C]5175[/C][C]5297.24249123553[/C][C]-21.9275501687248[/C][C]5074.6850589332[/C][C]122.242491235529[/C][/ROW]
[ROW][C]60[/C][C]5205[/C][C]5283.27883795839[/C][C]59.0545543922773[/C][C]5067.66660764933[/C][C]78.2788379583926[/C][/ROW]
[ROW][C]61[/C][C]5155[/C][C]5243.84714095474[/C][C]5.50470267979739[/C][C]5060.64815636547[/C][C]88.8471409547374[/C][/ROW]
[ROW][C]62[/C][C]4995[/C][C]4924.07553675337[/C][C]17.7798919140753[/C][C]5048.14457133255[/C][C]-70.9244632466252[/C][/ROW]
[ROW][C]63[/C][C]5035[/C][C]5057.80370318826[/C][C]-23.4446894878952[/C][C]5035.64098629963[/C][C]22.8037031882614[/C][/ROW]
[ROW][C]64[/C][C]5005[/C][C]4982.71156528353[/C][C]5.54458444887757[/C][C]5021.74385026759[/C][C]-22.2884347164672[/C][/ROW]
[ROW][C]65[/C][C]4975[/C][C]4952.61937959465[/C][C]-10.466093830199[/C][C]5007.84671423554[/C][C]-22.3806204053462[/C][/ROW]
[ROW][C]66[/C][C]4940[/C][C]4904.17496915818[/C][C]-19.1598619164603[/C][C]4994.98489275828[/C][C]-35.8250308418183[/C][/ROW]
[ROW][C]67[/C][C]5015[/C][C]4996.73046539014[/C][C]51.1464633288423[/C][C]4982.12307128101[/C][C]-18.2695346098553[/C][/ROW]
[ROW][C]68[/C][C]4920[/C][C]4872.25769117162[/C][C]-10.1978206565192[/C][C]4977.9401294849[/C][C]-47.742308828384[/C][/ROW]
[ROW][C]69[/C][C]4950[/C][C]4945.56381029715[/C][C]-19.3209979859434[/C][C]4973.75718768879[/C][C]-4.43618970284933[/C][/ROW]
[ROW][C]70[/C][C]4930[/C][C]4918.9082384701[/C][C]-34.5131638364754[/C][C]4975.60492536637[/C][C]-11.0917615298958[/C][/ROW]
[ROW][C]71[/C][C]4905[/C][C]4854.47488712477[/C][C]-21.9275501687248[/C][C]4977.45266304395[/C][C]-50.525112875227[/C][/ROW]
[ROW][C]72[/C][C]5015[/C][C]4990.96782270056[/C][C]59.0545543922773[/C][C]4979.97762290716[/C][C]-24.0321772994421[/C][/ROW]
[ROW][C]73[/C][C]5010[/C][C]5031.99271454982[/C][C]5.50470267979739[/C][C]4982.50258277038[/C][C]21.9927145498232[/C][/ROW]
[ROW][C]74[/C][C]5045[/C][C]5087.79376854486[/C][C]17.7798919140753[/C][C]4984.42633954107[/C][C]42.793768544856[/C][/ROW]
[ROW][C]75[/C][C]5000[/C][C]5037.09459317614[/C][C]-23.4446894878952[/C][C]4986.35009631176[/C][C]37.0945931761362[/C][/ROW]
[ROW][C]76[/C][C]5060[/C][C]5128.32922625045[/C][C]5.54458444887757[/C][C]4986.12618930067[/C][C]68.3292262504492[/C][/ROW]
[ROW][C]77[/C][C]4950[/C][C]4924.56381154061[/C][C]-10.466093830199[/C][C]4985.90228228959[/C][C]-25.4361884593882[/C][/ROW]
[ROW][C]78[/C][C]4995[/C][C]5028.36578969151[/C][C]-19.1598619164603[/C][C]4980.79407222495[/C][C]33.3657896915074[/C][/ROW]
[ROW][C]79[/C][C]4975[/C][C]4923.16767451084[/C][C]51.1464633288423[/C][C]4975.68586216032[/C][C]-51.832325489162[/C][/ROW]
[ROW][C]80[/C][C]4930[/C][C]4902.29803610351[/C][C]-10.1978206565192[/C][C]4967.89978455301[/C][C]-27.7019638964912[/C][/ROW]
[ROW][C]81[/C][C]5000[/C][C]5059.20729104024[/C][C]-19.3209979859434[/C][C]4960.1137069457[/C][C]59.2072910402412[/C][/ROW]
[ROW][C]82[/C][C]4955[/C][C]4990.94786926926[/C][C]-34.5131638364754[/C][C]4953.56529456721[/C][C]35.9478692692637[/C][/ROW]
[ROW][C]83[/C][C]4900[/C][C]4874.91066798[/C][C]-21.9275501687248[/C][C]4947.01688218872[/C][C]-25.0893320199975[/C][/ROW]
[ROW][C]84[/C][C]4910[/C][C]4821.44262185892[/C][C]59.0545543922773[/C][C]4939.50282374881[/C][C]-88.5573781410831[/C][/ROW]
[ROW][C]85[/C][C]4940[/C][C]4942.50653201131[/C][C]5.50470267979739[/C][C]4931.98876530889[/C][C]2.50653201131172[/C][/ROW]
[ROW][C]86[/C][C]4945[/C][C]4954.007094968[/C][C]17.7798919140753[/C][C]4918.21301311792[/C][C]9.00709496800482[/C][/ROW]
[ROW][C]87[/C][C]4975[/C][C]5069.00742856095[/C][C]-23.4446894878952[/C][C]4904.43726092695[/C][C]94.0074285609471[/C][/ROW]
[ROW][C]88[/C][C]4900[/C][C]4914.07987331565[/C][C]5.54458444887757[/C][C]4880.37554223548[/C][C]14.0798733156453[/C][/ROW]
[ROW][C]89[/C][C]4950[/C][C]5054.15227028619[/C][C]-10.466093830199[/C][C]4856.313823544[/C][C]104.152270286194[/C][/ROW]
[ROW][C]90[/C][C]4865[/C][C]4927.64140454589[/C][C]-19.1598619164603[/C][C]4821.51845737057[/C][C]62.6414045458896[/C][/ROW]
[ROW][C]91[/C][C]4870[/C][C]4902.13044547402[/C][C]51.1464633288423[/C][C]4786.72309119714[/C][C]32.1304454740202[/C][/ROW]
[ROW][C]92[/C][C]4785[/C][C]4838.36128971371[/C][C]-10.1978206565192[/C][C]4741.8365309428[/C][C]53.3612897137145[/C][/ROW]
[ROW][C]93[/C][C]4715[/C][C]4752.37102729747[/C][C]-19.3209979859434[/C][C]4696.94997068847[/C][C]37.3710272974713[/C][/ROW]
[ROW][C]94[/C][C]4630[/C][C]4646.14167347798[/C][C]-34.5131638364754[/C][C]4648.3714903585[/C][C]16.1416734779787[/C][/ROW]
[ROW][C]95[/C][C]4515[/C][C]4452.1345401402[/C][C]-21.9275501687248[/C][C]4599.79301002852[/C][C]-62.8654598597968[/C][/ROW]
[ROW][C]96[/C][C]4510[/C][C]4403.26045947182[/C][C]59.0545543922773[/C][C]4557.68498613591[/C][C]-106.739540528183[/C][/ROW]
[ROW][C]97[/C][C]4485[/C][C]4448.91833507691[/C][C]5.50470267979739[/C][C]4515.57696224329[/C][C]-36.0816649230874[/C][/ROW]
[ROW][C]98[/C][C]4470[/C][C]4437.34321282741[/C][C]17.7798919140753[/C][C]4484.87689525851[/C][C]-32.6567871725856[/C][/ROW]
[ROW][C]99[/C][C]4385[/C][C]4339.26786121416[/C][C]-23.4446894878952[/C][C]4454.17682827373[/C][C]-45.7321387858365[/C][/ROW]
[ROW][C]100[/C][C]4310[/C][C]4180.00158136923[/C][C]5.54458444887757[/C][C]4434.4538341819[/C][C]-129.998418630773[/C][/ROW]
[ROW][C]101[/C][C]4370[/C][C]4335.73525374014[/C][C]-10.466093830199[/C][C]4414.73084009006[/C][C]-34.2647462598607[/C][/ROW]
[ROW][C]102[/C][C]4425[/C][C]4467.30139143483[/C][C]-19.1598619164603[/C][C]4401.85847048163[/C][C]42.3013914348294[/C][/ROW]
[ROW][C]103[/C][C]4460[/C][C]4479.86743579796[/C][C]51.1464633288423[/C][C]4388.9861008732[/C][C]19.8674357979553[/C][/ROW]
[ROW][C]104[/C][C]4430[/C][C]4491.01489222474[/C][C]-10.1978206565192[/C][C]4379.18292843178[/C][C]61.0148922247417[/C][/ROW]
[ROW][C]105[/C][C]4360[/C][C]4369.94124199559[/C][C]-19.3209979859434[/C][C]4369.37975599035[/C][C]9.94124199558973[/C][/ROW]
[ROW][C]106[/C][C]4320[/C][C]4310.61251875298[/C][C]-34.5131638364754[/C][C]4363.9006450835[/C][C]-9.38748124702215[/C][/ROW]
[ROW][C]107[/C][C]4370[/C][C]4403.50601599208[/C][C]-21.9275501687248[/C][C]4358.42153417664[/C][C]33.5060159920822[/C][/ROW]
[ROW][C]108[/C][C]4370[/C][C]4324.65008872776[/C][C]59.0545543922773[/C][C]4356.29535687997[/C][C]-45.3499112722448[/C][/ROW]
[ROW][C]109[/C][C]4305[/C][C]4250.32611773691[/C][C]5.50470267979739[/C][C]4354.16917958329[/C][C]-54.6738822630896[/C][/ROW]
[ROW][C]110[/C][C]4255[/C][C]4141.55536801381[/C][C]17.7798919140753[/C][C]4350.66474007212[/C][C]-113.444631986193[/C][/ROW]
[ROW][C]111[/C][C]4310[/C][C]4296.28438892695[/C][C]-23.4446894878952[/C][C]4347.16030056094[/C][C]-13.7156110730466[/C][/ROW]
[ROW][C]112[/C][C]4375[/C][C]4400.43636458573[/C][C]5.54458444887757[/C][C]4344.0190509654[/C][C]25.4363645857256[/C][/ROW]
[ROW][C]113[/C][C]4365[/C][C]4399.58829246035[/C][C]-10.466093830199[/C][C]4340.87780136985[/C][C]34.5882924603484[/C][/ROW]
[ROW][C]114[/C][C]4400[/C][C]4480.3727985727[/C][C]-19.1598619164603[/C][C]4338.78706334376[/C][C]80.3727985726973[/C][/ROW]
[ROW][C]115[/C][C]4385[/C][C]4382.15721135348[/C][C]51.1464633288423[/C][C]4336.69632531768[/C][C]-2.84278864651878[/C][/ROW]
[ROW][C]116[/C][C]4305[/C][C]4284.89861998335[/C][C]-10.1978206565192[/C][C]4335.29920067316[/C][C]-20.1013800166456[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301016&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301016&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
170857053.651419928925.504702679797397110.84387739129-31.3485800710832
273907664.6471346650417.77989191407537097.57297342089274.647134665038
369206779.14262003741-23.44468948789527084.30206945049-140.857379962593
469556833.741219554795.544584448877577070.71419599633-121.258780445212
569656883.33977128802-10.4660938301997057.12632254218-81.6602287119822
669906956.96313854863-19.15986191646037042.19672336783-33.0368614513709
770807081.5864124776851.14646332884237027.267124193481.58641247767628
870307058.65168060885-10.19782065651927011.5461400476728.6516806088493
970907203.49584208408-19.32099798594346995.82515590186113.495842084085
1070357126.96970649974-34.51316383647546977.5434573367491.969706499739
1169606982.66579139711-21.92755016872486959.2617587716222.6657913971085
1270357100.7667602549759.05455439227736910.1786853527665.7667602549654
1368456823.39968538635.504702679797396861.0956119339-21.6003146136973
1469707144.3319448153417.77989191407536777.88816327059174.33194481534
1568857098.76397488063-23.44468948789526694.68071460727213.763974880625
1669357274.140853977815.544584448877576590.31456157331339.14085397781
1764806484.51768529084-10.4660938301996485.948408539354.51768529084438
1863406325.5433103771-19.15986191646036373.61655153936-14.4566896228962
1962006087.568842131851.14646332884236261.28469453936-112.431157868201
2059905841.54492771561-10.19782065651926148.65289294091-148.455072284386
2159205823.29990664349-19.32099798594346036.02109134245-96.7000933565096
2257505590.7744730251-34.51316383647545943.73869081137-159.225526974898
2356755520.47125988843-21.92755016872485851.45629028029-154.52874011157
2458905926.1472659680359.05455439227735794.7981796396936.1472659680321
2556555566.355228321125.504702679797395738.14006899909-88.6447716788834
2655155301.747915572317.77989191407535710.47219251363-213.252084427704
2755855510.64037345972-23.44468948789525682.80431602817-74.3596265402775
2856305585.902906120935.544584448877575668.55250943019-44.097093879067
2957205796.16539099799-10.4660938301995654.3007028322176.1653909979932
3056505676.8904761538-19.15986191646035642.2693857626626.890476153796
3156455608.6154679780351.14646332884235630.23806869312-36.3845320219662
3257355867.87856781245-10.19782065651925612.31925284407132.878567812449
3356805784.92056099092-19.32099798594345594.40043699502104.920560990925
3456205715.48250519849-34.51316383647545559.0306586379895.4825051984944
3555255548.26666988778-21.92755016872485523.6608802809523.2666698877792
3655005470.9594643002559.05455439227735469.98598130747-29.0405356997453
3755455668.184214986215.504702679797395416.31108233399123.184214986211
3854305487.1930827372617.77989191407535355.0270253486757.1930827372562
3952905309.70172112455-23.44468948789525293.7429683633519.7017211245493
4052355227.729028567545.544584448877575236.72638698358-7.27097143245646
4150855000.75628822639-10.4660938301995179.70980560381-84.2437117736126
4248854657.26172527082-19.15986191646035131.89813664564-227.738274729184
4351205104.7670689836851.14646332884235084.08646768748-15.2329310163213
4450305027.9071674618-10.19782065651925042.29065319472-2.09283253820377
4548604738.82615928398-19.32099798594345000.49483870197-121.173840716023
4649154890.18372850221-34.51316383647544974.32943533427-24.8162714977943
4750305133.76351820215-21.92755016872484948.16403196657103.763518202151
4851155226.3131434223859.05455439227734944.63230218534111.313143422381
4948804813.394724916095.504702679797394941.10057240411-66.6052750839071
5047804593.9725311575817.77989191407534948.24757692834-186.027468842419
5147654598.05010803532-23.44468948789524955.39458145258-166.949891964682
5248154656.823153603855.544584448877574967.63226194727-158.17684639615
5349804990.59615138823-10.4660938301994979.8699424419710.5961513882321
5450505120.88605941078-19.15986191646034998.2738025056870.8860594107791
5552805492.1758741017651.14646332884235016.6776625694212.175874101761
5650405052.81097286336-10.19782065651925037.3868477931612.8109728633599
5749804921.22496496902-19.32099798594345058.09603301692-58.7750350309789
5850255018.12261786142-34.51316383647545066.39054597506-6.87738213858302
5951755297.24249123553-21.92755016872485074.6850589332122.242491235529
6052055283.2788379583959.05455439227735067.6666076493378.2788379583926
6151555243.847140954745.504702679797395060.6481563654788.8471409547374
6249954924.0755367533717.77989191407535048.14457133255-70.9244632466252
6350355057.80370318826-23.44468948789525035.6409862996322.8037031882614
6450054982.711565283535.544584448877575021.74385026759-22.2884347164672
6549754952.61937959465-10.4660938301995007.84671423554-22.3806204053462
6649404904.17496915818-19.15986191646034994.98489275828-35.8250308418183
6750154996.7304653901451.14646332884234982.12307128101-18.2695346098553
6849204872.25769117162-10.19782065651924977.9401294849-47.742308828384
6949504945.56381029715-19.32099798594344973.75718768879-4.43618970284933
7049304918.9082384701-34.51316383647544975.60492536637-11.0917615298958
7149054854.47488712477-21.92755016872484977.45266304395-50.525112875227
7250154990.9678227005659.05455439227734979.97762290716-24.0321772994421
7350105031.992714549825.504702679797394982.5025827703821.9927145498232
7450455087.7937685448617.77989191407534984.4263395410742.793768544856
7550005037.09459317614-23.44468948789524986.3500963117637.0945931761362
7650605128.329226250455.544584448877574986.1261893006768.3292262504492
7749504924.56381154061-10.4660938301994985.90228228959-25.4361884593882
7849955028.36578969151-19.15986191646034980.7940722249533.3657896915074
7949754923.1676745108451.14646332884234975.68586216032-51.832325489162
8049304902.29803610351-10.19782065651924967.89978455301-27.7019638964912
8150005059.20729104024-19.32099798594344960.113706945759.2072910402412
8249554990.94786926926-34.51316383647544953.5652945672135.9478692692637
8349004874.91066798-21.92755016872484947.01688218872-25.0893320199975
8449104821.4426218589259.05455439227734939.50282374881-88.5573781410831
8549404942.506532011315.504702679797394931.988765308892.50653201131172
8649454954.00709496817.77989191407534918.213013117929.00709496800482
8749755069.00742856095-23.44468948789524904.4372609269594.0074285609471
8849004914.079873315655.544584448877574880.3755422354814.0798733156453
8949505054.15227028619-10.4660938301994856.313823544104.152270286194
9048654927.64140454589-19.15986191646034821.5184573705762.6414045458896
9148704902.1304454740251.14646332884234786.7230911971432.1304454740202
9247854838.36128971371-10.19782065651924741.836530942853.3612897137145
9347154752.37102729747-19.32099798594344696.9499706884737.3710272974713
9446304646.14167347798-34.51316383647544648.371490358516.1416734779787
9545154452.1345401402-21.92755016872484599.79301002852-62.8654598597968
9645104403.2604594718259.05455439227734557.68498613591-106.739540528183
9744854448.918335076915.504702679797394515.57696224329-36.0816649230874
9844704437.3432128274117.77989191407534484.87689525851-32.6567871725856
9943854339.26786121416-23.44468948789524454.17682827373-45.7321387858365
10043104180.001581369235.544584448877574434.4538341819-129.998418630773
10143704335.73525374014-10.4660938301994414.73084009006-34.2647462598607
10244254467.30139143483-19.15986191646034401.8584704816342.3013914348294
10344604479.8674357979651.14646332884234388.986100873219.8674357979553
10444304491.01489222474-10.19782065651924379.1829284317861.0148922247417
10543604369.94124199559-19.32099798594344369.379755990359.94124199558973
10643204310.61251875298-34.51316383647544363.9006450835-9.38748124702215
10743704403.50601599208-21.92755016872484358.4215341766433.5060159920822
10843704324.6500887277659.05455439227734356.29535687997-45.3499112722448
10943054250.326117736915.504702679797394354.16917958329-54.6738822630896
11042554141.5553680138117.77989191407534350.66474007212-113.444631986193
11143104296.28438892695-23.44468948789524347.16030056094-13.7156110730466
11243754400.436364585735.544584448877574344.019050965425.4363645857256
11343654399.58829246035-10.4660938301994340.8778013698534.5882924603484
11444004480.3727985727-19.15986191646034338.7870633437680.3727985726973
11543854382.1572113534851.14646332884234336.69632531768-2.84278864651878
11643054284.89861998335-10.19782065651924335.29920067316-20.1013800166456



Parameters (Session):
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')