Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_twosampletests_mean.wasp
Title produced by softwarePaired and Unpaired Two Samples Tests about the Mean
Date of computationSat, 17 Dec 2016 13:28:26 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/17/t1481978063fixy3idedbj9o4m.htm/, Retrieved Fri, 01 Nov 2024 03:42:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300755, Retrieved Fri, 01 Nov 2024 03:42:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact95
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Paired and Unpaired Two Samples Tests about the Mean] [paired two sample...] [2016-12-17 12:28:26] [5f1120677e74ff8306822a772764e796] [Current]
Feedback Forum

Post a new message
Dataseries X:
3	4	3	4
5	5	5	4
5	4	4	4
5	4	4	4
4	4	3	4
5	5	5	5
5	4	3	3
5	5	5	4
5	5	4	1
5	4	3	3
5	5	5	4
NA	4	5	3
5	5	5	5
5	5	4	4
4	4	3	4
3	4	4	3
5	5	5	5
NA	NA	NA	NA
5	4	3	4
5	3	3	5
4	4	4	4
2	5	1	2
5	5	4	5
5	5	4	5
5	5	4	2
4	4	4	3
4	5	5	4
4	5	4	4
5	5	4	5
5	5	4	3
4	NA	4	2
5	5	4	5
5	5	5	5
1	1	1	2
5	5	4	5
4	5	4	3
4	4	4	3
4	4	4	4
5	5	4	4
4	4	5	3
4	4	4	3
5	4	4	4
3	3	4	NA
5	5	5	5
5	5	5	4
2	2	1	2
3	3	3	4
4	4	3	5
4	5	3	4
NA	NA	NA	4
5	5	4	4
5	5	5	3
4	4	4	4
5	5	3	4
5	5	5	4
4	4	4	4
5	5	4	5
4	5	3	1
4	4	4	4
3	4	3	3
4	4	3	1
4	5	4	4
5	4	4	4
4	5	4	4
4	5	4	3
4	4	4	4
4	3	3	4
4	4	4	4
2	4	4	3
4	5	4	3
4	4	3	3
5	5	5	5
3	3	3	3
3	4	3	3
5	4	5	4
4	3	3	4
5	5	5	4
4	5	4	5
4	3	3	4
5	5	3	5
5	5	5	4
5	4	3	3
4	4	3	3
5	4	4	4
5	5	5	4
2	5	4	2
5	4	5	5
5	5	4	4
5	5	5	5
5	4	4	2
4	4	4	3
4	4	4	3
5	5	5	5
4	4	4	3
5	5	5	4
5	5	4	4
5	4	5	4
4	4	4	3
5	5	5	5
5	5	5	2
3	4	2	3
5	4	5	4
5	5	5	4
5	5	5	5
4	3	NA	3
4	4	5	4
4	4	4	3
4	4	4	4
5	5	5	3
5	5	4	4
4	4	2	4
3	4	4	4
3	4	3	2
4	4	5	4
4	4	3	3
5	5	4	4
5	4	4	4
4	4	5	4
5	5	5	5
5	4	4	3
4	4	3	3
4	4	3	4
5	5	4	4
5	5	5	5
5	5	3	4
5	5	3	4
4	5	4	4
5	4	4	4
3	4	4	4
5	5	4	3
5	4	5	4
4	5	4	4
5	5	5	5
4	4	4	3
4	4	4	4
4	4	4	3
4	4	5	5
2	3	2	4
4	4	4	3
5	4	5	4
5	5	5	5
5	5	5	4
4	4	4	2
4	5	4	3
5	4	4	2
5	4	4	4
5	4	5	4
5	5	5	5
5	3	5	4
5	4	5	4
4	4	4	3
5	4	4	3
3	3	3	2
3	4	4	4
4	5	4	5
4	5	4	4
3	5	3	5
3	4	3	2
5	5	5	4
5	5	4	4
5	4	4	2
5	4	4	4
5	5	5	4
5	4	5	4
5	5	5	4
5	4	5	2
4	4	4	4
4	4	5	3
2	4	5	3




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300755&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300755&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300755&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Two Sample t-test (paired)
Difference: Mean1 - Mean2-0.0121212121212121
t-stat-0.203530347054845
df164
p-value0.838972850085736
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.129714253065611,0.105471828823187]
F-test to compare two variances
F-stat1.48237765502217
df165
p-value0.0118577048470438
H0 value1
Alternativetwo.sided
CI Level0.95
CI[1.09135978475525,2.01349137360953]

\begin{tabular}{lllllllll}
\hline
Two Sample t-test (paired) \tabularnewline
Difference: Mean1 - Mean2 & -0.0121212121212121 \tabularnewline
t-stat & -0.203530347054845 \tabularnewline
df & 164 \tabularnewline
p-value & 0.838972850085736 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.129714253065611,0.105471828823187] \tabularnewline
F-test to compare two variances \tabularnewline
F-stat & 1.48237765502217 \tabularnewline
df & 165 \tabularnewline
p-value & 0.0118577048470438 \tabularnewline
H0 value & 1 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [1.09135978475525,2.01349137360953] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300755&T=1

[TABLE]
[ROW][C]Two Sample t-test (paired)[/C][/ROW]
[ROW][C]Difference: Mean1 - Mean2[/C][C]-0.0121212121212121[/C][/ROW]
[ROW][C]t-stat[/C][C]-0.203530347054845[/C][/ROW]
[ROW][C]df[/C][C]164[/C][/ROW]
[ROW][C]p-value[/C][C]0.838972850085736[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.129714253065611,0.105471828823187][/C][/ROW]
[ROW][C]F-test to compare two variances[/C][/ROW]
[ROW][C]F-stat[/C][C]1.48237765502217[/C][/ROW]
[ROW][C]df[/C][C]165[/C][/ROW]
[ROW][C]p-value[/C][C]0.0118577048470438[/C][/ROW]
[ROW][C]H0 value[/C][C]1[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][1.09135978475525,2.01349137360953][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300755&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300755&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Two Sample t-test (paired)
Difference: Mean1 - Mean2-0.0121212121212121
t-stat-0.203530347054845
df164
p-value0.838972850085736
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.129714253065611,0.105471828823187]
F-test to compare two variances
F-stat1.48237765502217
df165
p-value0.0118577048470438
H0 value1
Alternativetwo.sided
CI Level0.95
CI[1.09135978475525,2.01349137360953]







Welch Two Sample t-test (paired)
Difference: Mean1 - Mean2-0.0121212121212121
t-stat-0.203530347054845
df164
p-value0.838972850085736
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.129714253065611,0.105471828823187]

\begin{tabular}{lllllllll}
\hline
Welch Two Sample t-test (paired) \tabularnewline
Difference: Mean1 - Mean2 & -0.0121212121212121 \tabularnewline
t-stat & -0.203530347054845 \tabularnewline
df & 164 \tabularnewline
p-value & 0.838972850085736 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.129714253065611,0.105471828823187] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300755&T=2

[TABLE]
[ROW][C]Welch Two Sample t-test (paired)[/C][/ROW]
[ROW][C]Difference: Mean1 - Mean2[/C][C]-0.0121212121212121[/C][/ROW]
[ROW][C]t-stat[/C][C]-0.203530347054845[/C][/ROW]
[ROW][C]df[/C][C]164[/C][/ROW]
[ROW][C]p-value[/C][C]0.838972850085736[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.129714253065611,0.105471828823187][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300755&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300755&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Welch Two Sample t-test (paired)
Difference: Mean1 - Mean2-0.0121212121212121
t-stat-0.203530347054845
df164
p-value0.838972850085736
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.129714253065611,0.105471828823187]







Wilcoxon Signed-Rank Test with continuity correction (paired)
W1066
p-value0.965595426460418
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.072289156626506
p-value0.778595910853877
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.512048192771084
p-value0

\begin{tabular}{lllllllll}
\hline
Wilcoxon Signed-Rank Test with continuity correction (paired) \tabularnewline
W & 1066 \tabularnewline
p-value & 0.965595426460418 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
Kolmogorov-Smirnov Test to compare Distributions of two Samples \tabularnewline
KS Statistic & 0.072289156626506 \tabularnewline
p-value & 0.778595910853877 \tabularnewline
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples \tabularnewline
KS Statistic & 0.512048192771084 \tabularnewline
p-value & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300755&T=3

[TABLE]
[ROW][C]Wilcoxon Signed-Rank Test with continuity correction (paired)[/C][/ROW]
[ROW][C]W[/C][C]1066[/C][/ROW]
[ROW][C]p-value[/C][C]0.965595426460418[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributions of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.072289156626506[/C][/ROW]
[ROW][C]p-value[/C][C]0.778595910853877[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.512048192771084[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300755&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300755&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Wilcoxon Signed-Rank Test with continuity correction (paired)
W1066
p-value0.965595426460418
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.072289156626506
p-value0.778595910853877
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.512048192771084
p-value0



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = paired ; par6 = 0.0 ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = paired ; par6 = 0.0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #column number of first sample
par2 <- as.numeric(par2) #column number of second sample
par3 <- as.numeric(par3) #confidence (= 1 - alpha)
if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE
par6 <- as.numeric(par6) #H0
z <- t(y)
if (par1 == par2) stop('Please, select two different column numbers')
if (par1 < 1) stop('Please, select a column number greater than zero for the first sample')
if (par2 < 1) stop('Please, select a column number greater than zero for the second sample')
if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller')
if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller')
if (par3 <= 0) stop('The confidence level should be larger than zero')
if (par3 >= 1) stop('The confidence level should be smaller than zero')
(r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(v.t <- var.test(z[,par1],z[,par2],conf.level=par3))
(r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3))
(ks.t <- ks.test(z[,par1],z[,par2],alternative=par4))
m1 <- mean(z[,par1],na.rm=T)
m2 <- mean(z[,par2],na.rm=T)
mdiff <- m1 - m2
newsam1 <- z[!is.na(z[,par1]),par1]
newsam2 <- z[,par2]+mdiff
newsam2 <- newsam2[!is.na(newsam2)]
(ks1.t <- ks.test(newsam1,newsam2,alternative=par4))
mydf <- data.frame(cbind(z[,par1],z[,par2]))
colnames(mydf) <- c('Variable 1','Variable 2')
bitmap(file='test1.png')
boxplot(mydf, notch=TRUE, ylab='value',main=main)
dev.off()
bitmap(file='test2.png')
qqnorm(z[,par1],main='Normal QQplot - Variable 1')
qqline(z[,par1])
dev.off()
bitmap(file='test3.png')
qqnorm(z[,par2],main='Normal QQplot - Variable 2')
qqline(z[,par2])
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.t$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.t$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.t$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-test to compare two variances',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-stat',header=TRUE)
a<-table.element(a,v.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,v.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,v.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,v.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,v.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(v.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.w$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.w$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.w$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.w$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.w$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.w$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.w$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.w$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.w$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
myWlabel <- 'Wilcoxon Signed-Rank Test'
if (par5=='unpaired') myWlabel = 'Wilcoxon Rank-Sum Test (Mann–Whitney U test)'
a<-table.element(a,paste(myWlabel,' with continuity correction (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'W',header=TRUE)
a<-table.element(a,w.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,w.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,w.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,w.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributions of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks1.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks1.t$p.value)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')