Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSat, 17 Dec 2016 12:51:09 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/17/t1481975486xra7whxzpn402vx.htm/, Retrieved Fri, 01 Nov 2024 03:46:12 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300730, Retrieved Fri, 01 Nov 2024 03:46:12 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact99
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [statpap regre mul] [2016-12-17 11:51:09] [863feeaf19a0ddfce7bd9c25059c4d8a] [Current]
Feedback Forum

Post a new message
Dataseries X:
2	3	3	3	14
1	2	2	4	19
2	3	3	4	17
3	3	2	3	17
3	3	3	3	15
2	3	3	4	20
3	3	3	3	15
3	3	3	3	19
3	3	3	3	15
2	3	3	3	15
2	3	3	4	19
3	3	3	3	15
2	4	4	5	20
2	4	3	4	18
2	3	3	4	15
3	3	2	3	14
2	2	3	5	20
3	1	3	2	16
2	2	3	2	16
2	3	3	3	10
3	3	3	3	19
2	4	3	3	19
3	3	3	3	16
2	2	3	4	15
2	2	2	4	18
2	3	3	4	17
2	3	3	4	19
3	5	4	2	17
2	2	3	4	14
3	3	3	3	19
2	2	2	3	20
2	4	3	4	5
2	2	2	2	19
2	4	3	4	16
2	3	3	4	15
3	3	3	3	16
2	4	3	3	18
2	2	4	4	16
3	3	3	3	15
2	2	2	4	17
3	3	3	3	13
2	3	3	3	20
3	3	3	4	19
2	4	3	4	7
3	3	2	3	13
3	3	3	3	16
3	4	3	3	16
2	3	2	3	16
2	2	1	1	18
3	4	3	3	18
2	2	3	4	16
2	2	3	4	17
1	1	1	2	19
2	2	3	4	16
2	1	3	4	19
3	3	3	3	13
2	5	3	5	16
3	4	3	3	13
4	4	3	2	12
3	3	3	3	17
2	5	2	4	17
3	4	3	3	17
2	3	3	3	16
2	2	3	4	16
2	2	2	3	14
2	3	3	4	16
2	4	3	3	13
2	3	3	5	16
2	5	3	4	14
2	2	2	4	20
2	2	3	4	12
2	2	2	2	13
3	3	3	3	18
1	1	3	5	14
2	3	3	4	19
2	3	3	4	18
2	2	2	4	14
2	3	3	4	18
3	3	3	3	19
3	3	3	3	15
2	2	3	4	14
2	3	3	4	17
2	4	3	4	19
3	3	3	3	13
2	5	3	4	19
3	1	3	3	18
3	3	3	3	20
2	2	3	3	15
2	4	3	4	15
3	2	3	3	15
4	4	3	3	20
3	3	3	3	15
3	3	3	3	19
3	3	3	3	18
2	4	3	4	18
3	3	3	3	15
2	2	2	3	20
5	5	5	5	17
3	3	3	3	12
4	4	3	3	18
2	4	4	4	19
2	2	3	4	20
2	2	3	4	13
2	2	3	4	17
2	2	3	4	15
3	3	3	3	16
2	2	3	4	18
2	2	3	4	18
3	3	3	3	14
3	3	3	3	15
3	3	3	3	12
2	2	3	3	17
1	3	4	4	14
2	2	3	3	18
2	2	2	3	17
2	4	3	4	17
2	2	3	3	20
3	1	3	3	16
2	5	3	4	14
2	2	3	3	15
3	3	3	3	18
3	3	3	3	20
2	3	3	3	17
3	3	3	3	17
3	4	3	4	17
4	3	3	3	17
2	3	3	4	15
2	2	3	4	17
3	3	3	3	18
2	2	3	3	17
2	2	3	4	20
3	3	3	3	15
2	2	2	4	16
2	3	3	4	15
3	3	3	3	18
2	4	4	5	0
2	2	2	4	20
1	5	2	4	19
3	3	3	3	14
2	3	2	3	16
3	3	3	3	15
2	3	3	4	17
2	2	3	4	18
2	4	3	3	20
2	3	3	3	17
2	5	3	3	18
2	2	2	3	15
2	2	3	3	16
2	2	3	4	11
2	4	3	4	15
3	2	3	3	18
2	3	3	2	17
2	3	2	2	16
3	3	3	3	12
3	3	3	3	19
2	2	4	4	18
4	4	3	3	15
2	4	3	4	17
2	3	3	2	19
2	4	3	4	18
4	4	3	3	19
3	3	3	3	16
3	3	3	3	16
2	2	2	3	16
2	4	3	3	14
2	2	3	3	16
3	2	3	4	14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300730&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300730&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300730&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
a[t] = + 2.10349 + 0.119201b[t] + 0.485348c[t] -0.439168d[t] + 0.00192909e[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
a[t] =  +  2.10349 +  0.119201b[t] +  0.485348c[t] -0.439168d[t] +  0.00192909e[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300730&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]a[t] =  +  2.10349 +  0.119201b[t] +  0.485348c[t] -0.439168d[t] +  0.00192909e[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300730&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300730&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
a[t] = + 2.10349 + 0.119201b[t] + 0.485348c[t] -0.439168d[t] + 0.00192909e[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+2.103 0.407+5.1680e+00 6.876e-07 3.438e-07
b+0.1192 0.04858+2.4540e+00 0.0152 0.0076
c+0.4854 0.09463+5.1290e+00 8.226e-07 4.113e-07
d-0.4392 0.06386-6.8770e+00 1.263e-10 6.314e-11
e+0.001929 0.01524+1.2660e-01 0.8994 0.4497

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +2.103 &  0.407 & +5.1680e+00 &  6.876e-07 &  3.438e-07 \tabularnewline
b & +0.1192 &  0.04858 & +2.4540e+00 &  0.0152 &  0.0076 \tabularnewline
c & +0.4854 &  0.09463 & +5.1290e+00 &  8.226e-07 &  4.113e-07 \tabularnewline
d & -0.4392 &  0.06386 & -6.8770e+00 &  1.263e-10 &  6.314e-11 \tabularnewline
e & +0.001929 &  0.01524 & +1.2660e-01 &  0.8994 &  0.4497 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300730&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+2.103[/C][C] 0.407[/C][C]+5.1680e+00[/C][C] 6.876e-07[/C][C] 3.438e-07[/C][/ROW]
[ROW][C]b[/C][C]+0.1192[/C][C] 0.04858[/C][C]+2.4540e+00[/C][C] 0.0152[/C][C] 0.0076[/C][/ROW]
[ROW][C]c[/C][C]+0.4854[/C][C] 0.09463[/C][C]+5.1290e+00[/C][C] 8.226e-07[/C][C] 4.113e-07[/C][/ROW]
[ROW][C]d[/C][C]-0.4392[/C][C] 0.06386[/C][C]-6.8770e+00[/C][C] 1.263e-10[/C][C] 6.314e-11[/C][/ROW]
[ROW][C]e[/C][C]+0.001929[/C][C] 0.01524[/C][C]+1.2660e-01[/C][C] 0.8994[/C][C] 0.4497[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300730&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300730&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+2.103 0.407+5.1680e+00 6.876e-07 3.438e-07
b+0.1192 0.04858+2.4540e+00 0.0152 0.0076
c+0.4854 0.09463+5.1290e+00 8.226e-07 4.113e-07
d-0.4392 0.06386-6.8770e+00 1.263e-10 6.314e-11
e+0.001929 0.01524+1.2660e-01 0.8994 0.4497







Multiple Linear Regression - Regression Statistics
Multiple R 0.5499
R-squared 0.3024
Adjusted R-squared 0.2852
F-TEST (value) 17.56
F-TEST (DF numerator)4
F-TEST (DF denominator)162
p-value 5.484e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.5408
Sum Squared Residuals 47.38

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.5499 \tabularnewline
R-squared &  0.3024 \tabularnewline
Adjusted R-squared &  0.2852 \tabularnewline
F-TEST (value) &  17.56 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 162 \tabularnewline
p-value &  5.484e-12 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.5408 \tabularnewline
Sum Squared Residuals &  47.38 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300730&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.5499[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.3024[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.2852[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 17.56[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]162[/C][/ROW]
[ROW][C]p-value[/C][C] 5.484e-12[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.5408[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 47.38[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300730&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300730&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.5499
R-squared 0.3024
Adjusted R-squared 0.2852
F-TEST (value) 17.56
F-TEST (DF numerator)4
F-TEST (DF denominator)162
p-value 5.484e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.5408
Sum Squared Residuals 47.38







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 2 2.627-0.6266
2 1 1.593-0.5926
3 2 2.193-0.1933
4 3 2.147 0.8529
5 3 2.629 0.3714
6 2 2.199-0.1991
7 3 2.629 0.3714
8 3 2.636 0.3637
9 3 2.629 0.3714
10 2 2.629-0.6286
11 2 2.197-0.1971
12 3 2.629 0.3714
13 2 2.364-0.3644
14 2 2.314-0.3144
15 2 2.189-0.1894
16 3 2.141 0.8587
17 2 1.641 0.3593
18 3 2.831 0.1687
19 2 2.95-0.9505
20 2 2.619-0.6189
21 3 2.636 0.3637
22 2 2.755-0.7555
23 3 2.631 0.3695
24 2 2.07-0.0702
25 2 1.591 0.4094
26 2 2.193-0.1933
27 2 2.197-0.1971
28 3 3.795-0.7953
29 2 2.068-0.06827
30 3 2.636 0.3637
31 2 2.034-0.03367
32 2 2.289-0.2893
33 2 2.471-0.4709
34 2 2.311-0.3105
35 2 2.189-0.1894
36 3 2.631 0.3695
37 2 2.754-0.7536
38 2 2.557-0.5575
39 3 2.629 0.3714
40 2 1.589 0.4113
41 3 2.625 0.3753
42 2 2.638-0.6382
43 3 2.197 0.8029
44 2 2.293-0.2932
45 3 2.139 0.8606
46 3 2.631 0.3695
47 3 2.75 0.2503
48 2 2.145-0.1452
49 2 2.423-0.4228
50 3 2.754 0.2464
51 2 2.072-0.07213
52 2 2.074-0.07406
53 1 1.866-0.8664
54 2 2.072-0.07213
55 2 1.959 0.04128
56 3 2.625 0.3753
57 2 1.991 0.009432
58 3 2.744 0.2561
59 4 3.181 0.8188
60 3 2.632 0.3676
61 2 1.946 0.05368
62 3 2.752 0.2484
63 2 2.631-0.6305
64 2 2.072-0.07213
65 2 2.022-0.02209
66 2 2.191-0.1913
67 2 2.744-0.7439
68 2 1.752 0.2478
69 2 2.426-0.4259
70 2 1.595 0.4055
71 2 2.064-0.06442
72 2 2.459-0.4593
73 3 2.634 0.3656
74 1 1.51-0.5099
75 2 2.197-0.1971
76 2 2.195-0.1952
77 2 1.583 0.4171
78 2 2.195-0.1952
79 3 2.636 0.3637
80 3 2.629 0.3714
81 2 2.068-0.06827
82 2 2.193-0.1933
83 2 2.316-0.3163
84 3 2.625 0.3753
85 2 2.436-0.4355
86 3 2.396 0.604
87 3 2.638 0.3618
88 2 2.509-0.5094
89 2 2.309-0.3086
90 3 2.509 0.4906
91 4 2.757 1.243
92 3 2.629 0.3714
93 3 2.636 0.3637
94 3 2.634 0.3656
95 2 2.314-0.3144
96 3 2.629 0.3714
97 2 2.034-0.03367
98 5 2.963 2.037
99 3 2.623 0.3772
100 4 2.754 1.246
101 2 2.802-0.8017
102 2 2.08-0.07985
103 2 2.066-0.06635
104 2 2.074-0.07406
105 2 2.07-0.0702
106 3 2.631 0.3695
107 2 2.076-0.07599
108 2 2.076-0.07599
109 3 2.627 0.3734
110 3 2.629 0.3714
111 3 2.623 0.3772
112 2 2.513-0.5132
113 1 2.673-1.673
114 2 2.515-0.5152
115 2 2.028-0.02788
116 2 2.312-0.3125
117 2 2.519-0.519
118 3 2.392 0.6079
119 2 2.426-0.4259
120 2 2.509-0.5094
121 3 2.634 0.3656
122 3 2.638 0.3618
123 2 2.632-0.6324
124 3 2.632 0.3676
125 3 2.312 0.6875
126 4 2.632 1.368
127 2 2.189-0.1894
128 2 2.074-0.07406
129 3 2.634 0.3656
130 2 2.513-0.5132
131 2 2.08-0.07985
132 3 2.629 0.3714
133 2 1.587 0.4132
134 2 2.189-0.1894
135 3 2.634 0.3656
136 2 2.326-0.3258
137 2 1.595 0.4055
138 1 1.95-0.9502
139 3 2.627 0.3734
140 2 2.145-0.1452
141 3 2.629 0.3714
142 2 2.193-0.1933
143 2 2.076-0.07599
144 2 2.757-0.7574
145 2 2.632-0.6324
146 2 2.873-0.8728
147 2 2.024-0.02402
148 2 2.511-0.5113
149 2 2.062-0.06249
150 2 2.309-0.3086
151 3 2.515 0.4848
152 2 3.072-1.072
153 2 2.584-0.5843
154 3 2.623 0.3772
155 3 2.636 0.3637
156 2 2.561-0.5613
157 4 2.748 1.252
158 2 2.312-0.3125
159 2 3.075-1.075
160 2 2.314-0.3144
161 4 2.755 1.245
162 3 2.631 0.3695
163 3 2.631 0.3695
164 2 2.026-0.02595
165 2 2.746-0.7458
166 2 2.511-0.5113
167 3 2.068 0.9317

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  2 &  2.627 & -0.6266 \tabularnewline
2 &  1 &  1.593 & -0.5926 \tabularnewline
3 &  2 &  2.193 & -0.1933 \tabularnewline
4 &  3 &  2.147 &  0.8529 \tabularnewline
5 &  3 &  2.629 &  0.3714 \tabularnewline
6 &  2 &  2.199 & -0.1991 \tabularnewline
7 &  3 &  2.629 &  0.3714 \tabularnewline
8 &  3 &  2.636 &  0.3637 \tabularnewline
9 &  3 &  2.629 &  0.3714 \tabularnewline
10 &  2 &  2.629 & -0.6286 \tabularnewline
11 &  2 &  2.197 & -0.1971 \tabularnewline
12 &  3 &  2.629 &  0.3714 \tabularnewline
13 &  2 &  2.364 & -0.3644 \tabularnewline
14 &  2 &  2.314 & -0.3144 \tabularnewline
15 &  2 &  2.189 & -0.1894 \tabularnewline
16 &  3 &  2.141 &  0.8587 \tabularnewline
17 &  2 &  1.641 &  0.3593 \tabularnewline
18 &  3 &  2.831 &  0.1687 \tabularnewline
19 &  2 &  2.95 & -0.9505 \tabularnewline
20 &  2 &  2.619 & -0.6189 \tabularnewline
21 &  3 &  2.636 &  0.3637 \tabularnewline
22 &  2 &  2.755 & -0.7555 \tabularnewline
23 &  3 &  2.631 &  0.3695 \tabularnewline
24 &  2 &  2.07 & -0.0702 \tabularnewline
25 &  2 &  1.591 &  0.4094 \tabularnewline
26 &  2 &  2.193 & -0.1933 \tabularnewline
27 &  2 &  2.197 & -0.1971 \tabularnewline
28 &  3 &  3.795 & -0.7953 \tabularnewline
29 &  2 &  2.068 & -0.06827 \tabularnewline
30 &  3 &  2.636 &  0.3637 \tabularnewline
31 &  2 &  2.034 & -0.03367 \tabularnewline
32 &  2 &  2.289 & -0.2893 \tabularnewline
33 &  2 &  2.471 & -0.4709 \tabularnewline
34 &  2 &  2.311 & -0.3105 \tabularnewline
35 &  2 &  2.189 & -0.1894 \tabularnewline
36 &  3 &  2.631 &  0.3695 \tabularnewline
37 &  2 &  2.754 & -0.7536 \tabularnewline
38 &  2 &  2.557 & -0.5575 \tabularnewline
39 &  3 &  2.629 &  0.3714 \tabularnewline
40 &  2 &  1.589 &  0.4113 \tabularnewline
41 &  3 &  2.625 &  0.3753 \tabularnewline
42 &  2 &  2.638 & -0.6382 \tabularnewline
43 &  3 &  2.197 &  0.8029 \tabularnewline
44 &  2 &  2.293 & -0.2932 \tabularnewline
45 &  3 &  2.139 &  0.8606 \tabularnewline
46 &  3 &  2.631 &  0.3695 \tabularnewline
47 &  3 &  2.75 &  0.2503 \tabularnewline
48 &  2 &  2.145 & -0.1452 \tabularnewline
49 &  2 &  2.423 & -0.4228 \tabularnewline
50 &  3 &  2.754 &  0.2464 \tabularnewline
51 &  2 &  2.072 & -0.07213 \tabularnewline
52 &  2 &  2.074 & -0.07406 \tabularnewline
53 &  1 &  1.866 & -0.8664 \tabularnewline
54 &  2 &  2.072 & -0.07213 \tabularnewline
55 &  2 &  1.959 &  0.04128 \tabularnewline
56 &  3 &  2.625 &  0.3753 \tabularnewline
57 &  2 &  1.991 &  0.009432 \tabularnewline
58 &  3 &  2.744 &  0.2561 \tabularnewline
59 &  4 &  3.181 &  0.8188 \tabularnewline
60 &  3 &  2.632 &  0.3676 \tabularnewline
61 &  2 &  1.946 &  0.05368 \tabularnewline
62 &  3 &  2.752 &  0.2484 \tabularnewline
63 &  2 &  2.631 & -0.6305 \tabularnewline
64 &  2 &  2.072 & -0.07213 \tabularnewline
65 &  2 &  2.022 & -0.02209 \tabularnewline
66 &  2 &  2.191 & -0.1913 \tabularnewline
67 &  2 &  2.744 & -0.7439 \tabularnewline
68 &  2 &  1.752 &  0.2478 \tabularnewline
69 &  2 &  2.426 & -0.4259 \tabularnewline
70 &  2 &  1.595 &  0.4055 \tabularnewline
71 &  2 &  2.064 & -0.06442 \tabularnewline
72 &  2 &  2.459 & -0.4593 \tabularnewline
73 &  3 &  2.634 &  0.3656 \tabularnewline
74 &  1 &  1.51 & -0.5099 \tabularnewline
75 &  2 &  2.197 & -0.1971 \tabularnewline
76 &  2 &  2.195 & -0.1952 \tabularnewline
77 &  2 &  1.583 &  0.4171 \tabularnewline
78 &  2 &  2.195 & -0.1952 \tabularnewline
79 &  3 &  2.636 &  0.3637 \tabularnewline
80 &  3 &  2.629 &  0.3714 \tabularnewline
81 &  2 &  2.068 & -0.06827 \tabularnewline
82 &  2 &  2.193 & -0.1933 \tabularnewline
83 &  2 &  2.316 & -0.3163 \tabularnewline
84 &  3 &  2.625 &  0.3753 \tabularnewline
85 &  2 &  2.436 & -0.4355 \tabularnewline
86 &  3 &  2.396 &  0.604 \tabularnewline
87 &  3 &  2.638 &  0.3618 \tabularnewline
88 &  2 &  2.509 & -0.5094 \tabularnewline
89 &  2 &  2.309 & -0.3086 \tabularnewline
90 &  3 &  2.509 &  0.4906 \tabularnewline
91 &  4 &  2.757 &  1.243 \tabularnewline
92 &  3 &  2.629 &  0.3714 \tabularnewline
93 &  3 &  2.636 &  0.3637 \tabularnewline
94 &  3 &  2.634 &  0.3656 \tabularnewline
95 &  2 &  2.314 & -0.3144 \tabularnewline
96 &  3 &  2.629 &  0.3714 \tabularnewline
97 &  2 &  2.034 & -0.03367 \tabularnewline
98 &  5 &  2.963 &  2.037 \tabularnewline
99 &  3 &  2.623 &  0.3772 \tabularnewline
100 &  4 &  2.754 &  1.246 \tabularnewline
101 &  2 &  2.802 & -0.8017 \tabularnewline
102 &  2 &  2.08 & -0.07985 \tabularnewline
103 &  2 &  2.066 & -0.06635 \tabularnewline
104 &  2 &  2.074 & -0.07406 \tabularnewline
105 &  2 &  2.07 & -0.0702 \tabularnewline
106 &  3 &  2.631 &  0.3695 \tabularnewline
107 &  2 &  2.076 & -0.07599 \tabularnewline
108 &  2 &  2.076 & -0.07599 \tabularnewline
109 &  3 &  2.627 &  0.3734 \tabularnewline
110 &  3 &  2.629 &  0.3714 \tabularnewline
111 &  3 &  2.623 &  0.3772 \tabularnewline
112 &  2 &  2.513 & -0.5132 \tabularnewline
113 &  1 &  2.673 & -1.673 \tabularnewline
114 &  2 &  2.515 & -0.5152 \tabularnewline
115 &  2 &  2.028 & -0.02788 \tabularnewline
116 &  2 &  2.312 & -0.3125 \tabularnewline
117 &  2 &  2.519 & -0.519 \tabularnewline
118 &  3 &  2.392 &  0.6079 \tabularnewline
119 &  2 &  2.426 & -0.4259 \tabularnewline
120 &  2 &  2.509 & -0.5094 \tabularnewline
121 &  3 &  2.634 &  0.3656 \tabularnewline
122 &  3 &  2.638 &  0.3618 \tabularnewline
123 &  2 &  2.632 & -0.6324 \tabularnewline
124 &  3 &  2.632 &  0.3676 \tabularnewline
125 &  3 &  2.312 &  0.6875 \tabularnewline
126 &  4 &  2.632 &  1.368 \tabularnewline
127 &  2 &  2.189 & -0.1894 \tabularnewline
128 &  2 &  2.074 & -0.07406 \tabularnewline
129 &  3 &  2.634 &  0.3656 \tabularnewline
130 &  2 &  2.513 & -0.5132 \tabularnewline
131 &  2 &  2.08 & -0.07985 \tabularnewline
132 &  3 &  2.629 &  0.3714 \tabularnewline
133 &  2 &  1.587 &  0.4132 \tabularnewline
134 &  2 &  2.189 & -0.1894 \tabularnewline
135 &  3 &  2.634 &  0.3656 \tabularnewline
136 &  2 &  2.326 & -0.3258 \tabularnewline
137 &  2 &  1.595 &  0.4055 \tabularnewline
138 &  1 &  1.95 & -0.9502 \tabularnewline
139 &  3 &  2.627 &  0.3734 \tabularnewline
140 &  2 &  2.145 & -0.1452 \tabularnewline
141 &  3 &  2.629 &  0.3714 \tabularnewline
142 &  2 &  2.193 & -0.1933 \tabularnewline
143 &  2 &  2.076 & -0.07599 \tabularnewline
144 &  2 &  2.757 & -0.7574 \tabularnewline
145 &  2 &  2.632 & -0.6324 \tabularnewline
146 &  2 &  2.873 & -0.8728 \tabularnewline
147 &  2 &  2.024 & -0.02402 \tabularnewline
148 &  2 &  2.511 & -0.5113 \tabularnewline
149 &  2 &  2.062 & -0.06249 \tabularnewline
150 &  2 &  2.309 & -0.3086 \tabularnewline
151 &  3 &  2.515 &  0.4848 \tabularnewline
152 &  2 &  3.072 & -1.072 \tabularnewline
153 &  2 &  2.584 & -0.5843 \tabularnewline
154 &  3 &  2.623 &  0.3772 \tabularnewline
155 &  3 &  2.636 &  0.3637 \tabularnewline
156 &  2 &  2.561 & -0.5613 \tabularnewline
157 &  4 &  2.748 &  1.252 \tabularnewline
158 &  2 &  2.312 & -0.3125 \tabularnewline
159 &  2 &  3.075 & -1.075 \tabularnewline
160 &  2 &  2.314 & -0.3144 \tabularnewline
161 &  4 &  2.755 &  1.245 \tabularnewline
162 &  3 &  2.631 &  0.3695 \tabularnewline
163 &  3 &  2.631 &  0.3695 \tabularnewline
164 &  2 &  2.026 & -0.02595 \tabularnewline
165 &  2 &  2.746 & -0.7458 \tabularnewline
166 &  2 &  2.511 & -0.5113 \tabularnewline
167 &  3 &  2.068 &  0.9317 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300730&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 2[/C][C] 2.627[/C][C]-0.6266[/C][/ROW]
[ROW][C]2[/C][C] 1[/C][C] 1.593[/C][C]-0.5926[/C][/ROW]
[ROW][C]3[/C][C] 2[/C][C] 2.193[/C][C]-0.1933[/C][/ROW]
[ROW][C]4[/C][C] 3[/C][C] 2.147[/C][C] 0.8529[/C][/ROW]
[ROW][C]5[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]6[/C][C] 2[/C][C] 2.199[/C][C]-0.1991[/C][/ROW]
[ROW][C]7[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]8[/C][C] 3[/C][C] 2.636[/C][C] 0.3637[/C][/ROW]
[ROW][C]9[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]10[/C][C] 2[/C][C] 2.629[/C][C]-0.6286[/C][/ROW]
[ROW][C]11[/C][C] 2[/C][C] 2.197[/C][C]-0.1971[/C][/ROW]
[ROW][C]12[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]13[/C][C] 2[/C][C] 2.364[/C][C]-0.3644[/C][/ROW]
[ROW][C]14[/C][C] 2[/C][C] 2.314[/C][C]-0.3144[/C][/ROW]
[ROW][C]15[/C][C] 2[/C][C] 2.189[/C][C]-0.1894[/C][/ROW]
[ROW][C]16[/C][C] 3[/C][C] 2.141[/C][C] 0.8587[/C][/ROW]
[ROW][C]17[/C][C] 2[/C][C] 1.641[/C][C] 0.3593[/C][/ROW]
[ROW][C]18[/C][C] 3[/C][C] 2.831[/C][C] 0.1687[/C][/ROW]
[ROW][C]19[/C][C] 2[/C][C] 2.95[/C][C]-0.9505[/C][/ROW]
[ROW][C]20[/C][C] 2[/C][C] 2.619[/C][C]-0.6189[/C][/ROW]
[ROW][C]21[/C][C] 3[/C][C] 2.636[/C][C] 0.3637[/C][/ROW]
[ROW][C]22[/C][C] 2[/C][C] 2.755[/C][C]-0.7555[/C][/ROW]
[ROW][C]23[/C][C] 3[/C][C] 2.631[/C][C] 0.3695[/C][/ROW]
[ROW][C]24[/C][C] 2[/C][C] 2.07[/C][C]-0.0702[/C][/ROW]
[ROW][C]25[/C][C] 2[/C][C] 1.591[/C][C] 0.4094[/C][/ROW]
[ROW][C]26[/C][C] 2[/C][C] 2.193[/C][C]-0.1933[/C][/ROW]
[ROW][C]27[/C][C] 2[/C][C] 2.197[/C][C]-0.1971[/C][/ROW]
[ROW][C]28[/C][C] 3[/C][C] 3.795[/C][C]-0.7953[/C][/ROW]
[ROW][C]29[/C][C] 2[/C][C] 2.068[/C][C]-0.06827[/C][/ROW]
[ROW][C]30[/C][C] 3[/C][C] 2.636[/C][C] 0.3637[/C][/ROW]
[ROW][C]31[/C][C] 2[/C][C] 2.034[/C][C]-0.03367[/C][/ROW]
[ROW][C]32[/C][C] 2[/C][C] 2.289[/C][C]-0.2893[/C][/ROW]
[ROW][C]33[/C][C] 2[/C][C] 2.471[/C][C]-0.4709[/C][/ROW]
[ROW][C]34[/C][C] 2[/C][C] 2.311[/C][C]-0.3105[/C][/ROW]
[ROW][C]35[/C][C] 2[/C][C] 2.189[/C][C]-0.1894[/C][/ROW]
[ROW][C]36[/C][C] 3[/C][C] 2.631[/C][C] 0.3695[/C][/ROW]
[ROW][C]37[/C][C] 2[/C][C] 2.754[/C][C]-0.7536[/C][/ROW]
[ROW][C]38[/C][C] 2[/C][C] 2.557[/C][C]-0.5575[/C][/ROW]
[ROW][C]39[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]40[/C][C] 2[/C][C] 1.589[/C][C] 0.4113[/C][/ROW]
[ROW][C]41[/C][C] 3[/C][C] 2.625[/C][C] 0.3753[/C][/ROW]
[ROW][C]42[/C][C] 2[/C][C] 2.638[/C][C]-0.6382[/C][/ROW]
[ROW][C]43[/C][C] 3[/C][C] 2.197[/C][C] 0.8029[/C][/ROW]
[ROW][C]44[/C][C] 2[/C][C] 2.293[/C][C]-0.2932[/C][/ROW]
[ROW][C]45[/C][C] 3[/C][C] 2.139[/C][C] 0.8606[/C][/ROW]
[ROW][C]46[/C][C] 3[/C][C] 2.631[/C][C] 0.3695[/C][/ROW]
[ROW][C]47[/C][C] 3[/C][C] 2.75[/C][C] 0.2503[/C][/ROW]
[ROW][C]48[/C][C] 2[/C][C] 2.145[/C][C]-0.1452[/C][/ROW]
[ROW][C]49[/C][C] 2[/C][C] 2.423[/C][C]-0.4228[/C][/ROW]
[ROW][C]50[/C][C] 3[/C][C] 2.754[/C][C] 0.2464[/C][/ROW]
[ROW][C]51[/C][C] 2[/C][C] 2.072[/C][C]-0.07213[/C][/ROW]
[ROW][C]52[/C][C] 2[/C][C] 2.074[/C][C]-0.07406[/C][/ROW]
[ROW][C]53[/C][C] 1[/C][C] 1.866[/C][C]-0.8664[/C][/ROW]
[ROW][C]54[/C][C] 2[/C][C] 2.072[/C][C]-0.07213[/C][/ROW]
[ROW][C]55[/C][C] 2[/C][C] 1.959[/C][C] 0.04128[/C][/ROW]
[ROW][C]56[/C][C] 3[/C][C] 2.625[/C][C] 0.3753[/C][/ROW]
[ROW][C]57[/C][C] 2[/C][C] 1.991[/C][C] 0.009432[/C][/ROW]
[ROW][C]58[/C][C] 3[/C][C] 2.744[/C][C] 0.2561[/C][/ROW]
[ROW][C]59[/C][C] 4[/C][C] 3.181[/C][C] 0.8188[/C][/ROW]
[ROW][C]60[/C][C] 3[/C][C] 2.632[/C][C] 0.3676[/C][/ROW]
[ROW][C]61[/C][C] 2[/C][C] 1.946[/C][C] 0.05368[/C][/ROW]
[ROW][C]62[/C][C] 3[/C][C] 2.752[/C][C] 0.2484[/C][/ROW]
[ROW][C]63[/C][C] 2[/C][C] 2.631[/C][C]-0.6305[/C][/ROW]
[ROW][C]64[/C][C] 2[/C][C] 2.072[/C][C]-0.07213[/C][/ROW]
[ROW][C]65[/C][C] 2[/C][C] 2.022[/C][C]-0.02209[/C][/ROW]
[ROW][C]66[/C][C] 2[/C][C] 2.191[/C][C]-0.1913[/C][/ROW]
[ROW][C]67[/C][C] 2[/C][C] 2.744[/C][C]-0.7439[/C][/ROW]
[ROW][C]68[/C][C] 2[/C][C] 1.752[/C][C] 0.2478[/C][/ROW]
[ROW][C]69[/C][C] 2[/C][C] 2.426[/C][C]-0.4259[/C][/ROW]
[ROW][C]70[/C][C] 2[/C][C] 1.595[/C][C] 0.4055[/C][/ROW]
[ROW][C]71[/C][C] 2[/C][C] 2.064[/C][C]-0.06442[/C][/ROW]
[ROW][C]72[/C][C] 2[/C][C] 2.459[/C][C]-0.4593[/C][/ROW]
[ROW][C]73[/C][C] 3[/C][C] 2.634[/C][C] 0.3656[/C][/ROW]
[ROW][C]74[/C][C] 1[/C][C] 1.51[/C][C]-0.5099[/C][/ROW]
[ROW][C]75[/C][C] 2[/C][C] 2.197[/C][C]-0.1971[/C][/ROW]
[ROW][C]76[/C][C] 2[/C][C] 2.195[/C][C]-0.1952[/C][/ROW]
[ROW][C]77[/C][C] 2[/C][C] 1.583[/C][C] 0.4171[/C][/ROW]
[ROW][C]78[/C][C] 2[/C][C] 2.195[/C][C]-0.1952[/C][/ROW]
[ROW][C]79[/C][C] 3[/C][C] 2.636[/C][C] 0.3637[/C][/ROW]
[ROW][C]80[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]81[/C][C] 2[/C][C] 2.068[/C][C]-0.06827[/C][/ROW]
[ROW][C]82[/C][C] 2[/C][C] 2.193[/C][C]-0.1933[/C][/ROW]
[ROW][C]83[/C][C] 2[/C][C] 2.316[/C][C]-0.3163[/C][/ROW]
[ROW][C]84[/C][C] 3[/C][C] 2.625[/C][C] 0.3753[/C][/ROW]
[ROW][C]85[/C][C] 2[/C][C] 2.436[/C][C]-0.4355[/C][/ROW]
[ROW][C]86[/C][C] 3[/C][C] 2.396[/C][C] 0.604[/C][/ROW]
[ROW][C]87[/C][C] 3[/C][C] 2.638[/C][C] 0.3618[/C][/ROW]
[ROW][C]88[/C][C] 2[/C][C] 2.509[/C][C]-0.5094[/C][/ROW]
[ROW][C]89[/C][C] 2[/C][C] 2.309[/C][C]-0.3086[/C][/ROW]
[ROW][C]90[/C][C] 3[/C][C] 2.509[/C][C] 0.4906[/C][/ROW]
[ROW][C]91[/C][C] 4[/C][C] 2.757[/C][C] 1.243[/C][/ROW]
[ROW][C]92[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]93[/C][C] 3[/C][C] 2.636[/C][C] 0.3637[/C][/ROW]
[ROW][C]94[/C][C] 3[/C][C] 2.634[/C][C] 0.3656[/C][/ROW]
[ROW][C]95[/C][C] 2[/C][C] 2.314[/C][C]-0.3144[/C][/ROW]
[ROW][C]96[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]97[/C][C] 2[/C][C] 2.034[/C][C]-0.03367[/C][/ROW]
[ROW][C]98[/C][C] 5[/C][C] 2.963[/C][C] 2.037[/C][/ROW]
[ROW][C]99[/C][C] 3[/C][C] 2.623[/C][C] 0.3772[/C][/ROW]
[ROW][C]100[/C][C] 4[/C][C] 2.754[/C][C] 1.246[/C][/ROW]
[ROW][C]101[/C][C] 2[/C][C] 2.802[/C][C]-0.8017[/C][/ROW]
[ROW][C]102[/C][C] 2[/C][C] 2.08[/C][C]-0.07985[/C][/ROW]
[ROW][C]103[/C][C] 2[/C][C] 2.066[/C][C]-0.06635[/C][/ROW]
[ROW][C]104[/C][C] 2[/C][C] 2.074[/C][C]-0.07406[/C][/ROW]
[ROW][C]105[/C][C] 2[/C][C] 2.07[/C][C]-0.0702[/C][/ROW]
[ROW][C]106[/C][C] 3[/C][C] 2.631[/C][C] 0.3695[/C][/ROW]
[ROW][C]107[/C][C] 2[/C][C] 2.076[/C][C]-0.07599[/C][/ROW]
[ROW][C]108[/C][C] 2[/C][C] 2.076[/C][C]-0.07599[/C][/ROW]
[ROW][C]109[/C][C] 3[/C][C] 2.627[/C][C] 0.3734[/C][/ROW]
[ROW][C]110[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]111[/C][C] 3[/C][C] 2.623[/C][C] 0.3772[/C][/ROW]
[ROW][C]112[/C][C] 2[/C][C] 2.513[/C][C]-0.5132[/C][/ROW]
[ROW][C]113[/C][C] 1[/C][C] 2.673[/C][C]-1.673[/C][/ROW]
[ROW][C]114[/C][C] 2[/C][C] 2.515[/C][C]-0.5152[/C][/ROW]
[ROW][C]115[/C][C] 2[/C][C] 2.028[/C][C]-0.02788[/C][/ROW]
[ROW][C]116[/C][C] 2[/C][C] 2.312[/C][C]-0.3125[/C][/ROW]
[ROW][C]117[/C][C] 2[/C][C] 2.519[/C][C]-0.519[/C][/ROW]
[ROW][C]118[/C][C] 3[/C][C] 2.392[/C][C] 0.6079[/C][/ROW]
[ROW][C]119[/C][C] 2[/C][C] 2.426[/C][C]-0.4259[/C][/ROW]
[ROW][C]120[/C][C] 2[/C][C] 2.509[/C][C]-0.5094[/C][/ROW]
[ROW][C]121[/C][C] 3[/C][C] 2.634[/C][C] 0.3656[/C][/ROW]
[ROW][C]122[/C][C] 3[/C][C] 2.638[/C][C] 0.3618[/C][/ROW]
[ROW][C]123[/C][C] 2[/C][C] 2.632[/C][C]-0.6324[/C][/ROW]
[ROW][C]124[/C][C] 3[/C][C] 2.632[/C][C] 0.3676[/C][/ROW]
[ROW][C]125[/C][C] 3[/C][C] 2.312[/C][C] 0.6875[/C][/ROW]
[ROW][C]126[/C][C] 4[/C][C] 2.632[/C][C] 1.368[/C][/ROW]
[ROW][C]127[/C][C] 2[/C][C] 2.189[/C][C]-0.1894[/C][/ROW]
[ROW][C]128[/C][C] 2[/C][C] 2.074[/C][C]-0.07406[/C][/ROW]
[ROW][C]129[/C][C] 3[/C][C] 2.634[/C][C] 0.3656[/C][/ROW]
[ROW][C]130[/C][C] 2[/C][C] 2.513[/C][C]-0.5132[/C][/ROW]
[ROW][C]131[/C][C] 2[/C][C] 2.08[/C][C]-0.07985[/C][/ROW]
[ROW][C]132[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]133[/C][C] 2[/C][C] 1.587[/C][C] 0.4132[/C][/ROW]
[ROW][C]134[/C][C] 2[/C][C] 2.189[/C][C]-0.1894[/C][/ROW]
[ROW][C]135[/C][C] 3[/C][C] 2.634[/C][C] 0.3656[/C][/ROW]
[ROW][C]136[/C][C] 2[/C][C] 2.326[/C][C]-0.3258[/C][/ROW]
[ROW][C]137[/C][C] 2[/C][C] 1.595[/C][C] 0.4055[/C][/ROW]
[ROW][C]138[/C][C] 1[/C][C] 1.95[/C][C]-0.9502[/C][/ROW]
[ROW][C]139[/C][C] 3[/C][C] 2.627[/C][C] 0.3734[/C][/ROW]
[ROW][C]140[/C][C] 2[/C][C] 2.145[/C][C]-0.1452[/C][/ROW]
[ROW][C]141[/C][C] 3[/C][C] 2.629[/C][C] 0.3714[/C][/ROW]
[ROW][C]142[/C][C] 2[/C][C] 2.193[/C][C]-0.1933[/C][/ROW]
[ROW][C]143[/C][C] 2[/C][C] 2.076[/C][C]-0.07599[/C][/ROW]
[ROW][C]144[/C][C] 2[/C][C] 2.757[/C][C]-0.7574[/C][/ROW]
[ROW][C]145[/C][C] 2[/C][C] 2.632[/C][C]-0.6324[/C][/ROW]
[ROW][C]146[/C][C] 2[/C][C] 2.873[/C][C]-0.8728[/C][/ROW]
[ROW][C]147[/C][C] 2[/C][C] 2.024[/C][C]-0.02402[/C][/ROW]
[ROW][C]148[/C][C] 2[/C][C] 2.511[/C][C]-0.5113[/C][/ROW]
[ROW][C]149[/C][C] 2[/C][C] 2.062[/C][C]-0.06249[/C][/ROW]
[ROW][C]150[/C][C] 2[/C][C] 2.309[/C][C]-0.3086[/C][/ROW]
[ROW][C]151[/C][C] 3[/C][C] 2.515[/C][C] 0.4848[/C][/ROW]
[ROW][C]152[/C][C] 2[/C][C] 3.072[/C][C]-1.072[/C][/ROW]
[ROW][C]153[/C][C] 2[/C][C] 2.584[/C][C]-0.5843[/C][/ROW]
[ROW][C]154[/C][C] 3[/C][C] 2.623[/C][C] 0.3772[/C][/ROW]
[ROW][C]155[/C][C] 3[/C][C] 2.636[/C][C] 0.3637[/C][/ROW]
[ROW][C]156[/C][C] 2[/C][C] 2.561[/C][C]-0.5613[/C][/ROW]
[ROW][C]157[/C][C] 4[/C][C] 2.748[/C][C] 1.252[/C][/ROW]
[ROW][C]158[/C][C] 2[/C][C] 2.312[/C][C]-0.3125[/C][/ROW]
[ROW][C]159[/C][C] 2[/C][C] 3.075[/C][C]-1.075[/C][/ROW]
[ROW][C]160[/C][C] 2[/C][C] 2.314[/C][C]-0.3144[/C][/ROW]
[ROW][C]161[/C][C] 4[/C][C] 2.755[/C][C] 1.245[/C][/ROW]
[ROW][C]162[/C][C] 3[/C][C] 2.631[/C][C] 0.3695[/C][/ROW]
[ROW][C]163[/C][C] 3[/C][C] 2.631[/C][C] 0.3695[/C][/ROW]
[ROW][C]164[/C][C] 2[/C][C] 2.026[/C][C]-0.02595[/C][/ROW]
[ROW][C]165[/C][C] 2[/C][C] 2.746[/C][C]-0.7458[/C][/ROW]
[ROW][C]166[/C][C] 2[/C][C] 2.511[/C][C]-0.5113[/C][/ROW]
[ROW][C]167[/C][C] 3[/C][C] 2.068[/C][C] 0.9317[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300730&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300730&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 2 2.627-0.6266
2 1 1.593-0.5926
3 2 2.193-0.1933
4 3 2.147 0.8529
5 3 2.629 0.3714
6 2 2.199-0.1991
7 3 2.629 0.3714
8 3 2.636 0.3637
9 3 2.629 0.3714
10 2 2.629-0.6286
11 2 2.197-0.1971
12 3 2.629 0.3714
13 2 2.364-0.3644
14 2 2.314-0.3144
15 2 2.189-0.1894
16 3 2.141 0.8587
17 2 1.641 0.3593
18 3 2.831 0.1687
19 2 2.95-0.9505
20 2 2.619-0.6189
21 3 2.636 0.3637
22 2 2.755-0.7555
23 3 2.631 0.3695
24 2 2.07-0.0702
25 2 1.591 0.4094
26 2 2.193-0.1933
27 2 2.197-0.1971
28 3 3.795-0.7953
29 2 2.068-0.06827
30 3 2.636 0.3637
31 2 2.034-0.03367
32 2 2.289-0.2893
33 2 2.471-0.4709
34 2 2.311-0.3105
35 2 2.189-0.1894
36 3 2.631 0.3695
37 2 2.754-0.7536
38 2 2.557-0.5575
39 3 2.629 0.3714
40 2 1.589 0.4113
41 3 2.625 0.3753
42 2 2.638-0.6382
43 3 2.197 0.8029
44 2 2.293-0.2932
45 3 2.139 0.8606
46 3 2.631 0.3695
47 3 2.75 0.2503
48 2 2.145-0.1452
49 2 2.423-0.4228
50 3 2.754 0.2464
51 2 2.072-0.07213
52 2 2.074-0.07406
53 1 1.866-0.8664
54 2 2.072-0.07213
55 2 1.959 0.04128
56 3 2.625 0.3753
57 2 1.991 0.009432
58 3 2.744 0.2561
59 4 3.181 0.8188
60 3 2.632 0.3676
61 2 1.946 0.05368
62 3 2.752 0.2484
63 2 2.631-0.6305
64 2 2.072-0.07213
65 2 2.022-0.02209
66 2 2.191-0.1913
67 2 2.744-0.7439
68 2 1.752 0.2478
69 2 2.426-0.4259
70 2 1.595 0.4055
71 2 2.064-0.06442
72 2 2.459-0.4593
73 3 2.634 0.3656
74 1 1.51-0.5099
75 2 2.197-0.1971
76 2 2.195-0.1952
77 2 1.583 0.4171
78 2 2.195-0.1952
79 3 2.636 0.3637
80 3 2.629 0.3714
81 2 2.068-0.06827
82 2 2.193-0.1933
83 2 2.316-0.3163
84 3 2.625 0.3753
85 2 2.436-0.4355
86 3 2.396 0.604
87 3 2.638 0.3618
88 2 2.509-0.5094
89 2 2.309-0.3086
90 3 2.509 0.4906
91 4 2.757 1.243
92 3 2.629 0.3714
93 3 2.636 0.3637
94 3 2.634 0.3656
95 2 2.314-0.3144
96 3 2.629 0.3714
97 2 2.034-0.03367
98 5 2.963 2.037
99 3 2.623 0.3772
100 4 2.754 1.246
101 2 2.802-0.8017
102 2 2.08-0.07985
103 2 2.066-0.06635
104 2 2.074-0.07406
105 2 2.07-0.0702
106 3 2.631 0.3695
107 2 2.076-0.07599
108 2 2.076-0.07599
109 3 2.627 0.3734
110 3 2.629 0.3714
111 3 2.623 0.3772
112 2 2.513-0.5132
113 1 2.673-1.673
114 2 2.515-0.5152
115 2 2.028-0.02788
116 2 2.312-0.3125
117 2 2.519-0.519
118 3 2.392 0.6079
119 2 2.426-0.4259
120 2 2.509-0.5094
121 3 2.634 0.3656
122 3 2.638 0.3618
123 2 2.632-0.6324
124 3 2.632 0.3676
125 3 2.312 0.6875
126 4 2.632 1.368
127 2 2.189-0.1894
128 2 2.074-0.07406
129 3 2.634 0.3656
130 2 2.513-0.5132
131 2 2.08-0.07985
132 3 2.629 0.3714
133 2 1.587 0.4132
134 2 2.189-0.1894
135 3 2.634 0.3656
136 2 2.326-0.3258
137 2 1.595 0.4055
138 1 1.95-0.9502
139 3 2.627 0.3734
140 2 2.145-0.1452
141 3 2.629 0.3714
142 2 2.193-0.1933
143 2 2.076-0.07599
144 2 2.757-0.7574
145 2 2.632-0.6324
146 2 2.873-0.8728
147 2 2.024-0.02402
148 2 2.511-0.5113
149 2 2.062-0.06249
150 2 2.309-0.3086
151 3 2.515 0.4848
152 2 3.072-1.072
153 2 2.584-0.5843
154 3 2.623 0.3772
155 3 2.636 0.3637
156 2 2.561-0.5613
157 4 2.748 1.252
158 2 2.312-0.3125
159 2 3.075-1.075
160 2 2.314-0.3144
161 4 2.755 1.245
162 3 2.631 0.3695
163 3 2.631 0.3695
164 2 2.026-0.02595
165 2 2.746-0.7458
166 2 2.511-0.5113
167 3 2.068 0.9317







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.4272 0.8543 0.5728
9 0.3126 0.6251 0.6874
10 0.4257 0.8513 0.5743
11 0.2997 0.5994 0.7003
12 0.248 0.496 0.752
13 0.1663 0.3326 0.8337
14 0.2188 0.4375 0.7812
15 0.1818 0.3636 0.8182
16 0.1806 0.3613 0.8194
17 0.386 0.772 0.614
18 0.3066 0.6133 0.6934
19 0.5074 0.9853 0.4926
20 0.499 0.998 0.501
21 0.4415 0.883 0.5585
22 0.5462 0.9075 0.4538
23 0.5211 0.9578 0.4789
24 0.4504 0.9008 0.5496
25 0.3879 0.7759 0.6121
26 0.3273 0.6545 0.6727
27 0.2726 0.5452 0.7274
28 0.2482 0.4964 0.7518
29 0.199 0.398 0.801
30 0.1839 0.3678 0.8161
31 0.1675 0.335 0.8325
32 0.1336 0.2672 0.8664
33 0.1617 0.3234 0.8383
34 0.1331 0.2663 0.8669
35 0.1048 0.2096 0.8952
36 0.1014 0.2028 0.8986
37 0.1132 0.2265 0.8868
38 0.09814 0.1963 0.9019
39 0.09553 0.1911 0.9045
40 0.07796 0.1559 0.922
41 0.07414 0.1483 0.9259
42 0.07562 0.1512 0.9244
43 0.1213 0.2426 0.8787
44 0.1013 0.2026 0.8987
45 0.1221 0.2441 0.8779
46 0.1153 0.2305 0.8847
47 0.1018 0.2037 0.8982
48 0.09157 0.1831 0.9084
49 0.1109 0.2217 0.8891
50 0.09902 0.198 0.901
51 0.07898 0.158 0.921
52 0.06216 0.1243 0.9378
53 0.114 0.2279 0.886
54 0.09181 0.1836 0.9082
55 0.07323 0.1465 0.9268
56 0.06742 0.1348 0.9326
57 0.05319 0.1064 0.9468
58 0.04455 0.0891 0.9554
59 0.06784 0.1357 0.9322
60 0.06181 0.1236 0.9382
61 0.04905 0.0981 0.9509
62 0.04075 0.0815 0.9592
63 0.04431 0.08861 0.9557
64 0.0343 0.06859 0.9657
65 0.02639 0.05279 0.9736
66 0.02065 0.04129 0.9794
67 0.02739 0.05479 0.9726
68 0.02193 0.04385 0.9781
69 0.02007 0.04015 0.9799
70 0.01775 0.03549 0.9823
71 0.01332 0.02664 0.9867
72 0.01247 0.02495 0.9875
73 0.01113 0.02226 0.9889
74 0.01084 0.02168 0.9892
75 0.008213 0.01643 0.9918
76 0.006163 0.01233 0.9938
77 0.005409 0.01082 0.9946
78 0.004002 0.008003 0.996
79 0.003495 0.006989 0.9965
80 0.003023 0.006045 0.997
81 0.002122 0.004244 0.9979
82 0.00153 0.003061 0.9985
83 0.001191 0.002382 0.9988
84 0.001009 0.002019 0.999
85 0.0008801 0.00176 0.9991
86 0.001039 0.002078 0.999
87 0.0008707 0.001741 0.9991
88 0.00083 0.00166 0.9992
89 0.0006336 0.001267 0.9994
90 0.0006076 0.001215 0.9994
91 0.003173 0.006346 0.9968
92 0.002659 0.005318 0.9973
93 0.002189 0.004378 0.9978
94 0.001799 0.003599 0.9982
95 0.001412 0.002824 0.9986
96 0.001164 0.002328 0.9988
97 0.0008023 0.001605 0.9992
98 0.05347 0.1069 0.9465
99 0.04666 0.09332 0.9533
100 0.1248 0.2497 0.8752
101 0.1416 0.2832 0.8584
102 0.1177 0.2353 0.8823
103 0.09688 0.1938 0.9031
104 0.07872 0.1574 0.9213
105 0.06331 0.1266 0.9367
106 0.05652 0.113 0.9435
107 0.04459 0.08918 0.9554
108 0.03476 0.06952 0.9652
109 0.03044 0.06088 0.9696
110 0.02679 0.05358 0.9732
111 0.02353 0.04706 0.9765
112 0.02242 0.04485 0.9776
113 0.1295 0.2589 0.8705
114 0.127 0.2539 0.873
115 0.1038 0.2076 0.8962
116 0.08829 0.1766 0.9117
117 0.08771 0.1754 0.9123
118 0.08611 0.1722 0.9139
119 0.07517 0.1503 0.9248
120 0.07305 0.1461 0.927
121 0.06419 0.1284 0.9358
122 0.05639 0.1128 0.9436
123 0.05823 0.1165 0.9418
124 0.05097 0.1019 0.949
125 0.06188 0.1238 0.9381
126 0.2029 0.4057 0.7971
127 0.1706 0.3412 0.8294
128 0.1408 0.2816 0.8592
129 0.1312 0.2624 0.8688
130 0.127 0.254 0.873
131 0.1025 0.2049 0.8975
132 0.09327 0.1865 0.9067
133 0.07732 0.1546 0.9227
134 0.06046 0.1209 0.9395
135 0.05493 0.1099 0.9451
136 0.05821 0.1164 0.9418
137 0.05625 0.1125 0.9438
138 0.0703 0.1406 0.9297
139 0.05918 0.1184 0.9408
140 0.04376 0.08751 0.9562
141 0.03802 0.07604 0.962
142 0.02827 0.05654 0.9717
143 0.01971 0.03943 0.9803
144 0.01867 0.03734 0.9813
145 0.01668 0.03335 0.9833
146 0.02306 0.04611 0.9769
147 0.01506 0.03012 0.9849
148 0.01152 0.02304 0.9885
149 0.008068 0.01614 0.9919
150 0.008645 0.01729 0.9914
151 0.009677 0.01935 0.9903
152 0.01129 0.02259 0.9887
153 0.01011 0.02021 0.9899
154 0.005685 0.01137 0.9943
155 0.004261 0.008522 0.9957
156 0.002515 0.005029 0.9975
157 0.0139 0.0278 0.9861
158 0.01276 0.02552 0.9872
159 0.02501 0.05001 0.975

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.4272 &  0.8543 &  0.5728 \tabularnewline
9 &  0.3126 &  0.6251 &  0.6874 \tabularnewline
10 &  0.4257 &  0.8513 &  0.5743 \tabularnewline
11 &  0.2997 &  0.5994 &  0.7003 \tabularnewline
12 &  0.248 &  0.496 &  0.752 \tabularnewline
13 &  0.1663 &  0.3326 &  0.8337 \tabularnewline
14 &  0.2188 &  0.4375 &  0.7812 \tabularnewline
15 &  0.1818 &  0.3636 &  0.8182 \tabularnewline
16 &  0.1806 &  0.3613 &  0.8194 \tabularnewline
17 &  0.386 &  0.772 &  0.614 \tabularnewline
18 &  0.3066 &  0.6133 &  0.6934 \tabularnewline
19 &  0.5074 &  0.9853 &  0.4926 \tabularnewline
20 &  0.499 &  0.998 &  0.501 \tabularnewline
21 &  0.4415 &  0.883 &  0.5585 \tabularnewline
22 &  0.5462 &  0.9075 &  0.4538 \tabularnewline
23 &  0.5211 &  0.9578 &  0.4789 \tabularnewline
24 &  0.4504 &  0.9008 &  0.5496 \tabularnewline
25 &  0.3879 &  0.7759 &  0.6121 \tabularnewline
26 &  0.3273 &  0.6545 &  0.6727 \tabularnewline
27 &  0.2726 &  0.5452 &  0.7274 \tabularnewline
28 &  0.2482 &  0.4964 &  0.7518 \tabularnewline
29 &  0.199 &  0.398 &  0.801 \tabularnewline
30 &  0.1839 &  0.3678 &  0.8161 \tabularnewline
31 &  0.1675 &  0.335 &  0.8325 \tabularnewline
32 &  0.1336 &  0.2672 &  0.8664 \tabularnewline
33 &  0.1617 &  0.3234 &  0.8383 \tabularnewline
34 &  0.1331 &  0.2663 &  0.8669 \tabularnewline
35 &  0.1048 &  0.2096 &  0.8952 \tabularnewline
36 &  0.1014 &  0.2028 &  0.8986 \tabularnewline
37 &  0.1132 &  0.2265 &  0.8868 \tabularnewline
38 &  0.09814 &  0.1963 &  0.9019 \tabularnewline
39 &  0.09553 &  0.1911 &  0.9045 \tabularnewline
40 &  0.07796 &  0.1559 &  0.922 \tabularnewline
41 &  0.07414 &  0.1483 &  0.9259 \tabularnewline
42 &  0.07562 &  0.1512 &  0.9244 \tabularnewline
43 &  0.1213 &  0.2426 &  0.8787 \tabularnewline
44 &  0.1013 &  0.2026 &  0.8987 \tabularnewline
45 &  0.1221 &  0.2441 &  0.8779 \tabularnewline
46 &  0.1153 &  0.2305 &  0.8847 \tabularnewline
47 &  0.1018 &  0.2037 &  0.8982 \tabularnewline
48 &  0.09157 &  0.1831 &  0.9084 \tabularnewline
49 &  0.1109 &  0.2217 &  0.8891 \tabularnewline
50 &  0.09902 &  0.198 &  0.901 \tabularnewline
51 &  0.07898 &  0.158 &  0.921 \tabularnewline
52 &  0.06216 &  0.1243 &  0.9378 \tabularnewline
53 &  0.114 &  0.2279 &  0.886 \tabularnewline
54 &  0.09181 &  0.1836 &  0.9082 \tabularnewline
55 &  0.07323 &  0.1465 &  0.9268 \tabularnewline
56 &  0.06742 &  0.1348 &  0.9326 \tabularnewline
57 &  0.05319 &  0.1064 &  0.9468 \tabularnewline
58 &  0.04455 &  0.0891 &  0.9554 \tabularnewline
59 &  0.06784 &  0.1357 &  0.9322 \tabularnewline
60 &  0.06181 &  0.1236 &  0.9382 \tabularnewline
61 &  0.04905 &  0.0981 &  0.9509 \tabularnewline
62 &  0.04075 &  0.0815 &  0.9592 \tabularnewline
63 &  0.04431 &  0.08861 &  0.9557 \tabularnewline
64 &  0.0343 &  0.06859 &  0.9657 \tabularnewline
65 &  0.02639 &  0.05279 &  0.9736 \tabularnewline
66 &  0.02065 &  0.04129 &  0.9794 \tabularnewline
67 &  0.02739 &  0.05479 &  0.9726 \tabularnewline
68 &  0.02193 &  0.04385 &  0.9781 \tabularnewline
69 &  0.02007 &  0.04015 &  0.9799 \tabularnewline
70 &  0.01775 &  0.03549 &  0.9823 \tabularnewline
71 &  0.01332 &  0.02664 &  0.9867 \tabularnewline
72 &  0.01247 &  0.02495 &  0.9875 \tabularnewline
73 &  0.01113 &  0.02226 &  0.9889 \tabularnewline
74 &  0.01084 &  0.02168 &  0.9892 \tabularnewline
75 &  0.008213 &  0.01643 &  0.9918 \tabularnewline
76 &  0.006163 &  0.01233 &  0.9938 \tabularnewline
77 &  0.005409 &  0.01082 &  0.9946 \tabularnewline
78 &  0.004002 &  0.008003 &  0.996 \tabularnewline
79 &  0.003495 &  0.006989 &  0.9965 \tabularnewline
80 &  0.003023 &  0.006045 &  0.997 \tabularnewline
81 &  0.002122 &  0.004244 &  0.9979 \tabularnewline
82 &  0.00153 &  0.003061 &  0.9985 \tabularnewline
83 &  0.001191 &  0.002382 &  0.9988 \tabularnewline
84 &  0.001009 &  0.002019 &  0.999 \tabularnewline
85 &  0.0008801 &  0.00176 &  0.9991 \tabularnewline
86 &  0.001039 &  0.002078 &  0.999 \tabularnewline
87 &  0.0008707 &  0.001741 &  0.9991 \tabularnewline
88 &  0.00083 &  0.00166 &  0.9992 \tabularnewline
89 &  0.0006336 &  0.001267 &  0.9994 \tabularnewline
90 &  0.0006076 &  0.001215 &  0.9994 \tabularnewline
91 &  0.003173 &  0.006346 &  0.9968 \tabularnewline
92 &  0.002659 &  0.005318 &  0.9973 \tabularnewline
93 &  0.002189 &  0.004378 &  0.9978 \tabularnewline
94 &  0.001799 &  0.003599 &  0.9982 \tabularnewline
95 &  0.001412 &  0.002824 &  0.9986 \tabularnewline
96 &  0.001164 &  0.002328 &  0.9988 \tabularnewline
97 &  0.0008023 &  0.001605 &  0.9992 \tabularnewline
98 &  0.05347 &  0.1069 &  0.9465 \tabularnewline
99 &  0.04666 &  0.09332 &  0.9533 \tabularnewline
100 &  0.1248 &  0.2497 &  0.8752 \tabularnewline
101 &  0.1416 &  0.2832 &  0.8584 \tabularnewline
102 &  0.1177 &  0.2353 &  0.8823 \tabularnewline
103 &  0.09688 &  0.1938 &  0.9031 \tabularnewline
104 &  0.07872 &  0.1574 &  0.9213 \tabularnewline
105 &  0.06331 &  0.1266 &  0.9367 \tabularnewline
106 &  0.05652 &  0.113 &  0.9435 \tabularnewline
107 &  0.04459 &  0.08918 &  0.9554 \tabularnewline
108 &  0.03476 &  0.06952 &  0.9652 \tabularnewline
109 &  0.03044 &  0.06088 &  0.9696 \tabularnewline
110 &  0.02679 &  0.05358 &  0.9732 \tabularnewline
111 &  0.02353 &  0.04706 &  0.9765 \tabularnewline
112 &  0.02242 &  0.04485 &  0.9776 \tabularnewline
113 &  0.1295 &  0.2589 &  0.8705 \tabularnewline
114 &  0.127 &  0.2539 &  0.873 \tabularnewline
115 &  0.1038 &  0.2076 &  0.8962 \tabularnewline
116 &  0.08829 &  0.1766 &  0.9117 \tabularnewline
117 &  0.08771 &  0.1754 &  0.9123 \tabularnewline
118 &  0.08611 &  0.1722 &  0.9139 \tabularnewline
119 &  0.07517 &  0.1503 &  0.9248 \tabularnewline
120 &  0.07305 &  0.1461 &  0.927 \tabularnewline
121 &  0.06419 &  0.1284 &  0.9358 \tabularnewline
122 &  0.05639 &  0.1128 &  0.9436 \tabularnewline
123 &  0.05823 &  0.1165 &  0.9418 \tabularnewline
124 &  0.05097 &  0.1019 &  0.949 \tabularnewline
125 &  0.06188 &  0.1238 &  0.9381 \tabularnewline
126 &  0.2029 &  0.4057 &  0.7971 \tabularnewline
127 &  0.1706 &  0.3412 &  0.8294 \tabularnewline
128 &  0.1408 &  0.2816 &  0.8592 \tabularnewline
129 &  0.1312 &  0.2624 &  0.8688 \tabularnewline
130 &  0.127 &  0.254 &  0.873 \tabularnewline
131 &  0.1025 &  0.2049 &  0.8975 \tabularnewline
132 &  0.09327 &  0.1865 &  0.9067 \tabularnewline
133 &  0.07732 &  0.1546 &  0.9227 \tabularnewline
134 &  0.06046 &  0.1209 &  0.9395 \tabularnewline
135 &  0.05493 &  0.1099 &  0.9451 \tabularnewline
136 &  0.05821 &  0.1164 &  0.9418 \tabularnewline
137 &  0.05625 &  0.1125 &  0.9438 \tabularnewline
138 &  0.0703 &  0.1406 &  0.9297 \tabularnewline
139 &  0.05918 &  0.1184 &  0.9408 \tabularnewline
140 &  0.04376 &  0.08751 &  0.9562 \tabularnewline
141 &  0.03802 &  0.07604 &  0.962 \tabularnewline
142 &  0.02827 &  0.05654 &  0.9717 \tabularnewline
143 &  0.01971 &  0.03943 &  0.9803 \tabularnewline
144 &  0.01867 &  0.03734 &  0.9813 \tabularnewline
145 &  0.01668 &  0.03335 &  0.9833 \tabularnewline
146 &  0.02306 &  0.04611 &  0.9769 \tabularnewline
147 &  0.01506 &  0.03012 &  0.9849 \tabularnewline
148 &  0.01152 &  0.02304 &  0.9885 \tabularnewline
149 &  0.008068 &  0.01614 &  0.9919 \tabularnewline
150 &  0.008645 &  0.01729 &  0.9914 \tabularnewline
151 &  0.009677 &  0.01935 &  0.9903 \tabularnewline
152 &  0.01129 &  0.02259 &  0.9887 \tabularnewline
153 &  0.01011 &  0.02021 &  0.9899 \tabularnewline
154 &  0.005685 &  0.01137 &  0.9943 \tabularnewline
155 &  0.004261 &  0.008522 &  0.9957 \tabularnewline
156 &  0.002515 &  0.005029 &  0.9975 \tabularnewline
157 &  0.0139 &  0.0278 &  0.9861 \tabularnewline
158 &  0.01276 &  0.02552 &  0.9872 \tabularnewline
159 &  0.02501 &  0.05001 &  0.975 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300730&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.4272[/C][C] 0.8543[/C][C] 0.5728[/C][/ROW]
[ROW][C]9[/C][C] 0.3126[/C][C] 0.6251[/C][C] 0.6874[/C][/ROW]
[ROW][C]10[/C][C] 0.4257[/C][C] 0.8513[/C][C] 0.5743[/C][/ROW]
[ROW][C]11[/C][C] 0.2997[/C][C] 0.5994[/C][C] 0.7003[/C][/ROW]
[ROW][C]12[/C][C] 0.248[/C][C] 0.496[/C][C] 0.752[/C][/ROW]
[ROW][C]13[/C][C] 0.1663[/C][C] 0.3326[/C][C] 0.8337[/C][/ROW]
[ROW][C]14[/C][C] 0.2188[/C][C] 0.4375[/C][C] 0.7812[/C][/ROW]
[ROW][C]15[/C][C] 0.1818[/C][C] 0.3636[/C][C] 0.8182[/C][/ROW]
[ROW][C]16[/C][C] 0.1806[/C][C] 0.3613[/C][C] 0.8194[/C][/ROW]
[ROW][C]17[/C][C] 0.386[/C][C] 0.772[/C][C] 0.614[/C][/ROW]
[ROW][C]18[/C][C] 0.3066[/C][C] 0.6133[/C][C] 0.6934[/C][/ROW]
[ROW][C]19[/C][C] 0.5074[/C][C] 0.9853[/C][C] 0.4926[/C][/ROW]
[ROW][C]20[/C][C] 0.499[/C][C] 0.998[/C][C] 0.501[/C][/ROW]
[ROW][C]21[/C][C] 0.4415[/C][C] 0.883[/C][C] 0.5585[/C][/ROW]
[ROW][C]22[/C][C] 0.5462[/C][C] 0.9075[/C][C] 0.4538[/C][/ROW]
[ROW][C]23[/C][C] 0.5211[/C][C] 0.9578[/C][C] 0.4789[/C][/ROW]
[ROW][C]24[/C][C] 0.4504[/C][C] 0.9008[/C][C] 0.5496[/C][/ROW]
[ROW][C]25[/C][C] 0.3879[/C][C] 0.7759[/C][C] 0.6121[/C][/ROW]
[ROW][C]26[/C][C] 0.3273[/C][C] 0.6545[/C][C] 0.6727[/C][/ROW]
[ROW][C]27[/C][C] 0.2726[/C][C] 0.5452[/C][C] 0.7274[/C][/ROW]
[ROW][C]28[/C][C] 0.2482[/C][C] 0.4964[/C][C] 0.7518[/C][/ROW]
[ROW][C]29[/C][C] 0.199[/C][C] 0.398[/C][C] 0.801[/C][/ROW]
[ROW][C]30[/C][C] 0.1839[/C][C] 0.3678[/C][C] 0.8161[/C][/ROW]
[ROW][C]31[/C][C] 0.1675[/C][C] 0.335[/C][C] 0.8325[/C][/ROW]
[ROW][C]32[/C][C] 0.1336[/C][C] 0.2672[/C][C] 0.8664[/C][/ROW]
[ROW][C]33[/C][C] 0.1617[/C][C] 0.3234[/C][C] 0.8383[/C][/ROW]
[ROW][C]34[/C][C] 0.1331[/C][C] 0.2663[/C][C] 0.8669[/C][/ROW]
[ROW][C]35[/C][C] 0.1048[/C][C] 0.2096[/C][C] 0.8952[/C][/ROW]
[ROW][C]36[/C][C] 0.1014[/C][C] 0.2028[/C][C] 0.8986[/C][/ROW]
[ROW][C]37[/C][C] 0.1132[/C][C] 0.2265[/C][C] 0.8868[/C][/ROW]
[ROW][C]38[/C][C] 0.09814[/C][C] 0.1963[/C][C] 0.9019[/C][/ROW]
[ROW][C]39[/C][C] 0.09553[/C][C] 0.1911[/C][C] 0.9045[/C][/ROW]
[ROW][C]40[/C][C] 0.07796[/C][C] 0.1559[/C][C] 0.922[/C][/ROW]
[ROW][C]41[/C][C] 0.07414[/C][C] 0.1483[/C][C] 0.9259[/C][/ROW]
[ROW][C]42[/C][C] 0.07562[/C][C] 0.1512[/C][C] 0.9244[/C][/ROW]
[ROW][C]43[/C][C] 0.1213[/C][C] 0.2426[/C][C] 0.8787[/C][/ROW]
[ROW][C]44[/C][C] 0.1013[/C][C] 0.2026[/C][C] 0.8987[/C][/ROW]
[ROW][C]45[/C][C] 0.1221[/C][C] 0.2441[/C][C] 0.8779[/C][/ROW]
[ROW][C]46[/C][C] 0.1153[/C][C] 0.2305[/C][C] 0.8847[/C][/ROW]
[ROW][C]47[/C][C] 0.1018[/C][C] 0.2037[/C][C] 0.8982[/C][/ROW]
[ROW][C]48[/C][C] 0.09157[/C][C] 0.1831[/C][C] 0.9084[/C][/ROW]
[ROW][C]49[/C][C] 0.1109[/C][C] 0.2217[/C][C] 0.8891[/C][/ROW]
[ROW][C]50[/C][C] 0.09902[/C][C] 0.198[/C][C] 0.901[/C][/ROW]
[ROW][C]51[/C][C] 0.07898[/C][C] 0.158[/C][C] 0.921[/C][/ROW]
[ROW][C]52[/C][C] 0.06216[/C][C] 0.1243[/C][C] 0.9378[/C][/ROW]
[ROW][C]53[/C][C] 0.114[/C][C] 0.2279[/C][C] 0.886[/C][/ROW]
[ROW][C]54[/C][C] 0.09181[/C][C] 0.1836[/C][C] 0.9082[/C][/ROW]
[ROW][C]55[/C][C] 0.07323[/C][C] 0.1465[/C][C] 0.9268[/C][/ROW]
[ROW][C]56[/C][C] 0.06742[/C][C] 0.1348[/C][C] 0.9326[/C][/ROW]
[ROW][C]57[/C][C] 0.05319[/C][C] 0.1064[/C][C] 0.9468[/C][/ROW]
[ROW][C]58[/C][C] 0.04455[/C][C] 0.0891[/C][C] 0.9554[/C][/ROW]
[ROW][C]59[/C][C] 0.06784[/C][C] 0.1357[/C][C] 0.9322[/C][/ROW]
[ROW][C]60[/C][C] 0.06181[/C][C] 0.1236[/C][C] 0.9382[/C][/ROW]
[ROW][C]61[/C][C] 0.04905[/C][C] 0.0981[/C][C] 0.9509[/C][/ROW]
[ROW][C]62[/C][C] 0.04075[/C][C] 0.0815[/C][C] 0.9592[/C][/ROW]
[ROW][C]63[/C][C] 0.04431[/C][C] 0.08861[/C][C] 0.9557[/C][/ROW]
[ROW][C]64[/C][C] 0.0343[/C][C] 0.06859[/C][C] 0.9657[/C][/ROW]
[ROW][C]65[/C][C] 0.02639[/C][C] 0.05279[/C][C] 0.9736[/C][/ROW]
[ROW][C]66[/C][C] 0.02065[/C][C] 0.04129[/C][C] 0.9794[/C][/ROW]
[ROW][C]67[/C][C] 0.02739[/C][C] 0.05479[/C][C] 0.9726[/C][/ROW]
[ROW][C]68[/C][C] 0.02193[/C][C] 0.04385[/C][C] 0.9781[/C][/ROW]
[ROW][C]69[/C][C] 0.02007[/C][C] 0.04015[/C][C] 0.9799[/C][/ROW]
[ROW][C]70[/C][C] 0.01775[/C][C] 0.03549[/C][C] 0.9823[/C][/ROW]
[ROW][C]71[/C][C] 0.01332[/C][C] 0.02664[/C][C] 0.9867[/C][/ROW]
[ROW][C]72[/C][C] 0.01247[/C][C] 0.02495[/C][C] 0.9875[/C][/ROW]
[ROW][C]73[/C][C] 0.01113[/C][C] 0.02226[/C][C] 0.9889[/C][/ROW]
[ROW][C]74[/C][C] 0.01084[/C][C] 0.02168[/C][C] 0.9892[/C][/ROW]
[ROW][C]75[/C][C] 0.008213[/C][C] 0.01643[/C][C] 0.9918[/C][/ROW]
[ROW][C]76[/C][C] 0.006163[/C][C] 0.01233[/C][C] 0.9938[/C][/ROW]
[ROW][C]77[/C][C] 0.005409[/C][C] 0.01082[/C][C] 0.9946[/C][/ROW]
[ROW][C]78[/C][C] 0.004002[/C][C] 0.008003[/C][C] 0.996[/C][/ROW]
[ROW][C]79[/C][C] 0.003495[/C][C] 0.006989[/C][C] 0.9965[/C][/ROW]
[ROW][C]80[/C][C] 0.003023[/C][C] 0.006045[/C][C] 0.997[/C][/ROW]
[ROW][C]81[/C][C] 0.002122[/C][C] 0.004244[/C][C] 0.9979[/C][/ROW]
[ROW][C]82[/C][C] 0.00153[/C][C] 0.003061[/C][C] 0.9985[/C][/ROW]
[ROW][C]83[/C][C] 0.001191[/C][C] 0.002382[/C][C] 0.9988[/C][/ROW]
[ROW][C]84[/C][C] 0.001009[/C][C] 0.002019[/C][C] 0.999[/C][/ROW]
[ROW][C]85[/C][C] 0.0008801[/C][C] 0.00176[/C][C] 0.9991[/C][/ROW]
[ROW][C]86[/C][C] 0.001039[/C][C] 0.002078[/C][C] 0.999[/C][/ROW]
[ROW][C]87[/C][C] 0.0008707[/C][C] 0.001741[/C][C] 0.9991[/C][/ROW]
[ROW][C]88[/C][C] 0.00083[/C][C] 0.00166[/C][C] 0.9992[/C][/ROW]
[ROW][C]89[/C][C] 0.0006336[/C][C] 0.001267[/C][C] 0.9994[/C][/ROW]
[ROW][C]90[/C][C] 0.0006076[/C][C] 0.001215[/C][C] 0.9994[/C][/ROW]
[ROW][C]91[/C][C] 0.003173[/C][C] 0.006346[/C][C] 0.9968[/C][/ROW]
[ROW][C]92[/C][C] 0.002659[/C][C] 0.005318[/C][C] 0.9973[/C][/ROW]
[ROW][C]93[/C][C] 0.002189[/C][C] 0.004378[/C][C] 0.9978[/C][/ROW]
[ROW][C]94[/C][C] 0.001799[/C][C] 0.003599[/C][C] 0.9982[/C][/ROW]
[ROW][C]95[/C][C] 0.001412[/C][C] 0.002824[/C][C] 0.9986[/C][/ROW]
[ROW][C]96[/C][C] 0.001164[/C][C] 0.002328[/C][C] 0.9988[/C][/ROW]
[ROW][C]97[/C][C] 0.0008023[/C][C] 0.001605[/C][C] 0.9992[/C][/ROW]
[ROW][C]98[/C][C] 0.05347[/C][C] 0.1069[/C][C] 0.9465[/C][/ROW]
[ROW][C]99[/C][C] 0.04666[/C][C] 0.09332[/C][C] 0.9533[/C][/ROW]
[ROW][C]100[/C][C] 0.1248[/C][C] 0.2497[/C][C] 0.8752[/C][/ROW]
[ROW][C]101[/C][C] 0.1416[/C][C] 0.2832[/C][C] 0.8584[/C][/ROW]
[ROW][C]102[/C][C] 0.1177[/C][C] 0.2353[/C][C] 0.8823[/C][/ROW]
[ROW][C]103[/C][C] 0.09688[/C][C] 0.1938[/C][C] 0.9031[/C][/ROW]
[ROW][C]104[/C][C] 0.07872[/C][C] 0.1574[/C][C] 0.9213[/C][/ROW]
[ROW][C]105[/C][C] 0.06331[/C][C] 0.1266[/C][C] 0.9367[/C][/ROW]
[ROW][C]106[/C][C] 0.05652[/C][C] 0.113[/C][C] 0.9435[/C][/ROW]
[ROW][C]107[/C][C] 0.04459[/C][C] 0.08918[/C][C] 0.9554[/C][/ROW]
[ROW][C]108[/C][C] 0.03476[/C][C] 0.06952[/C][C] 0.9652[/C][/ROW]
[ROW][C]109[/C][C] 0.03044[/C][C] 0.06088[/C][C] 0.9696[/C][/ROW]
[ROW][C]110[/C][C] 0.02679[/C][C] 0.05358[/C][C] 0.9732[/C][/ROW]
[ROW][C]111[/C][C] 0.02353[/C][C] 0.04706[/C][C] 0.9765[/C][/ROW]
[ROW][C]112[/C][C] 0.02242[/C][C] 0.04485[/C][C] 0.9776[/C][/ROW]
[ROW][C]113[/C][C] 0.1295[/C][C] 0.2589[/C][C] 0.8705[/C][/ROW]
[ROW][C]114[/C][C] 0.127[/C][C] 0.2539[/C][C] 0.873[/C][/ROW]
[ROW][C]115[/C][C] 0.1038[/C][C] 0.2076[/C][C] 0.8962[/C][/ROW]
[ROW][C]116[/C][C] 0.08829[/C][C] 0.1766[/C][C] 0.9117[/C][/ROW]
[ROW][C]117[/C][C] 0.08771[/C][C] 0.1754[/C][C] 0.9123[/C][/ROW]
[ROW][C]118[/C][C] 0.08611[/C][C] 0.1722[/C][C] 0.9139[/C][/ROW]
[ROW][C]119[/C][C] 0.07517[/C][C] 0.1503[/C][C] 0.9248[/C][/ROW]
[ROW][C]120[/C][C] 0.07305[/C][C] 0.1461[/C][C] 0.927[/C][/ROW]
[ROW][C]121[/C][C] 0.06419[/C][C] 0.1284[/C][C] 0.9358[/C][/ROW]
[ROW][C]122[/C][C] 0.05639[/C][C] 0.1128[/C][C] 0.9436[/C][/ROW]
[ROW][C]123[/C][C] 0.05823[/C][C] 0.1165[/C][C] 0.9418[/C][/ROW]
[ROW][C]124[/C][C] 0.05097[/C][C] 0.1019[/C][C] 0.949[/C][/ROW]
[ROW][C]125[/C][C] 0.06188[/C][C] 0.1238[/C][C] 0.9381[/C][/ROW]
[ROW][C]126[/C][C] 0.2029[/C][C] 0.4057[/C][C] 0.7971[/C][/ROW]
[ROW][C]127[/C][C] 0.1706[/C][C] 0.3412[/C][C] 0.8294[/C][/ROW]
[ROW][C]128[/C][C] 0.1408[/C][C] 0.2816[/C][C] 0.8592[/C][/ROW]
[ROW][C]129[/C][C] 0.1312[/C][C] 0.2624[/C][C] 0.8688[/C][/ROW]
[ROW][C]130[/C][C] 0.127[/C][C] 0.254[/C][C] 0.873[/C][/ROW]
[ROW][C]131[/C][C] 0.1025[/C][C] 0.2049[/C][C] 0.8975[/C][/ROW]
[ROW][C]132[/C][C] 0.09327[/C][C] 0.1865[/C][C] 0.9067[/C][/ROW]
[ROW][C]133[/C][C] 0.07732[/C][C] 0.1546[/C][C] 0.9227[/C][/ROW]
[ROW][C]134[/C][C] 0.06046[/C][C] 0.1209[/C][C] 0.9395[/C][/ROW]
[ROW][C]135[/C][C] 0.05493[/C][C] 0.1099[/C][C] 0.9451[/C][/ROW]
[ROW][C]136[/C][C] 0.05821[/C][C] 0.1164[/C][C] 0.9418[/C][/ROW]
[ROW][C]137[/C][C] 0.05625[/C][C] 0.1125[/C][C] 0.9438[/C][/ROW]
[ROW][C]138[/C][C] 0.0703[/C][C] 0.1406[/C][C] 0.9297[/C][/ROW]
[ROW][C]139[/C][C] 0.05918[/C][C] 0.1184[/C][C] 0.9408[/C][/ROW]
[ROW][C]140[/C][C] 0.04376[/C][C] 0.08751[/C][C] 0.9562[/C][/ROW]
[ROW][C]141[/C][C] 0.03802[/C][C] 0.07604[/C][C] 0.962[/C][/ROW]
[ROW][C]142[/C][C] 0.02827[/C][C] 0.05654[/C][C] 0.9717[/C][/ROW]
[ROW][C]143[/C][C] 0.01971[/C][C] 0.03943[/C][C] 0.9803[/C][/ROW]
[ROW][C]144[/C][C] 0.01867[/C][C] 0.03734[/C][C] 0.9813[/C][/ROW]
[ROW][C]145[/C][C] 0.01668[/C][C] 0.03335[/C][C] 0.9833[/C][/ROW]
[ROW][C]146[/C][C] 0.02306[/C][C] 0.04611[/C][C] 0.9769[/C][/ROW]
[ROW][C]147[/C][C] 0.01506[/C][C] 0.03012[/C][C] 0.9849[/C][/ROW]
[ROW][C]148[/C][C] 0.01152[/C][C] 0.02304[/C][C] 0.9885[/C][/ROW]
[ROW][C]149[/C][C] 0.008068[/C][C] 0.01614[/C][C] 0.9919[/C][/ROW]
[ROW][C]150[/C][C] 0.008645[/C][C] 0.01729[/C][C] 0.9914[/C][/ROW]
[ROW][C]151[/C][C] 0.009677[/C][C] 0.01935[/C][C] 0.9903[/C][/ROW]
[ROW][C]152[/C][C] 0.01129[/C][C] 0.02259[/C][C] 0.9887[/C][/ROW]
[ROW][C]153[/C][C] 0.01011[/C][C] 0.02021[/C][C] 0.9899[/C][/ROW]
[ROW][C]154[/C][C] 0.005685[/C][C] 0.01137[/C][C] 0.9943[/C][/ROW]
[ROW][C]155[/C][C] 0.004261[/C][C] 0.008522[/C][C] 0.9957[/C][/ROW]
[ROW][C]156[/C][C] 0.002515[/C][C] 0.005029[/C][C] 0.9975[/C][/ROW]
[ROW][C]157[/C][C] 0.0139[/C][C] 0.0278[/C][C] 0.9861[/C][/ROW]
[ROW][C]158[/C][C] 0.01276[/C][C] 0.02552[/C][C] 0.9872[/C][/ROW]
[ROW][C]159[/C][C] 0.02501[/C][C] 0.05001[/C][C] 0.975[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300730&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300730&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.4272 0.8543 0.5728
9 0.3126 0.6251 0.6874
10 0.4257 0.8513 0.5743
11 0.2997 0.5994 0.7003
12 0.248 0.496 0.752
13 0.1663 0.3326 0.8337
14 0.2188 0.4375 0.7812
15 0.1818 0.3636 0.8182
16 0.1806 0.3613 0.8194
17 0.386 0.772 0.614
18 0.3066 0.6133 0.6934
19 0.5074 0.9853 0.4926
20 0.499 0.998 0.501
21 0.4415 0.883 0.5585
22 0.5462 0.9075 0.4538
23 0.5211 0.9578 0.4789
24 0.4504 0.9008 0.5496
25 0.3879 0.7759 0.6121
26 0.3273 0.6545 0.6727
27 0.2726 0.5452 0.7274
28 0.2482 0.4964 0.7518
29 0.199 0.398 0.801
30 0.1839 0.3678 0.8161
31 0.1675 0.335 0.8325
32 0.1336 0.2672 0.8664
33 0.1617 0.3234 0.8383
34 0.1331 0.2663 0.8669
35 0.1048 0.2096 0.8952
36 0.1014 0.2028 0.8986
37 0.1132 0.2265 0.8868
38 0.09814 0.1963 0.9019
39 0.09553 0.1911 0.9045
40 0.07796 0.1559 0.922
41 0.07414 0.1483 0.9259
42 0.07562 0.1512 0.9244
43 0.1213 0.2426 0.8787
44 0.1013 0.2026 0.8987
45 0.1221 0.2441 0.8779
46 0.1153 0.2305 0.8847
47 0.1018 0.2037 0.8982
48 0.09157 0.1831 0.9084
49 0.1109 0.2217 0.8891
50 0.09902 0.198 0.901
51 0.07898 0.158 0.921
52 0.06216 0.1243 0.9378
53 0.114 0.2279 0.886
54 0.09181 0.1836 0.9082
55 0.07323 0.1465 0.9268
56 0.06742 0.1348 0.9326
57 0.05319 0.1064 0.9468
58 0.04455 0.0891 0.9554
59 0.06784 0.1357 0.9322
60 0.06181 0.1236 0.9382
61 0.04905 0.0981 0.9509
62 0.04075 0.0815 0.9592
63 0.04431 0.08861 0.9557
64 0.0343 0.06859 0.9657
65 0.02639 0.05279 0.9736
66 0.02065 0.04129 0.9794
67 0.02739 0.05479 0.9726
68 0.02193 0.04385 0.9781
69 0.02007 0.04015 0.9799
70 0.01775 0.03549 0.9823
71 0.01332 0.02664 0.9867
72 0.01247 0.02495 0.9875
73 0.01113 0.02226 0.9889
74 0.01084 0.02168 0.9892
75 0.008213 0.01643 0.9918
76 0.006163 0.01233 0.9938
77 0.005409 0.01082 0.9946
78 0.004002 0.008003 0.996
79 0.003495 0.006989 0.9965
80 0.003023 0.006045 0.997
81 0.002122 0.004244 0.9979
82 0.00153 0.003061 0.9985
83 0.001191 0.002382 0.9988
84 0.001009 0.002019 0.999
85 0.0008801 0.00176 0.9991
86 0.001039 0.002078 0.999
87 0.0008707 0.001741 0.9991
88 0.00083 0.00166 0.9992
89 0.0006336 0.001267 0.9994
90 0.0006076 0.001215 0.9994
91 0.003173 0.006346 0.9968
92 0.002659 0.005318 0.9973
93 0.002189 0.004378 0.9978
94 0.001799 0.003599 0.9982
95 0.001412 0.002824 0.9986
96 0.001164 0.002328 0.9988
97 0.0008023 0.001605 0.9992
98 0.05347 0.1069 0.9465
99 0.04666 0.09332 0.9533
100 0.1248 0.2497 0.8752
101 0.1416 0.2832 0.8584
102 0.1177 0.2353 0.8823
103 0.09688 0.1938 0.9031
104 0.07872 0.1574 0.9213
105 0.06331 0.1266 0.9367
106 0.05652 0.113 0.9435
107 0.04459 0.08918 0.9554
108 0.03476 0.06952 0.9652
109 0.03044 0.06088 0.9696
110 0.02679 0.05358 0.9732
111 0.02353 0.04706 0.9765
112 0.02242 0.04485 0.9776
113 0.1295 0.2589 0.8705
114 0.127 0.2539 0.873
115 0.1038 0.2076 0.8962
116 0.08829 0.1766 0.9117
117 0.08771 0.1754 0.9123
118 0.08611 0.1722 0.9139
119 0.07517 0.1503 0.9248
120 0.07305 0.1461 0.927
121 0.06419 0.1284 0.9358
122 0.05639 0.1128 0.9436
123 0.05823 0.1165 0.9418
124 0.05097 0.1019 0.949
125 0.06188 0.1238 0.9381
126 0.2029 0.4057 0.7971
127 0.1706 0.3412 0.8294
128 0.1408 0.2816 0.8592
129 0.1312 0.2624 0.8688
130 0.127 0.254 0.873
131 0.1025 0.2049 0.8975
132 0.09327 0.1865 0.9067
133 0.07732 0.1546 0.9227
134 0.06046 0.1209 0.9395
135 0.05493 0.1099 0.9451
136 0.05821 0.1164 0.9418
137 0.05625 0.1125 0.9438
138 0.0703 0.1406 0.9297
139 0.05918 0.1184 0.9408
140 0.04376 0.08751 0.9562
141 0.03802 0.07604 0.962
142 0.02827 0.05654 0.9717
143 0.01971 0.03943 0.9803
144 0.01867 0.03734 0.9813
145 0.01668 0.03335 0.9833
146 0.02306 0.04611 0.9769
147 0.01506 0.03012 0.9849
148 0.01152 0.02304 0.9885
149 0.008068 0.01614 0.9919
150 0.008645 0.01729 0.9914
151 0.009677 0.01935 0.9903
152 0.01129 0.02259 0.9887
153 0.01011 0.02021 0.9899
154 0.005685 0.01137 0.9943
155 0.004261 0.008522 0.9957
156 0.002515 0.005029 0.9975
157 0.0139 0.0278 0.9861
158 0.01276 0.02552 0.9872
159 0.02501 0.05001 0.975







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level22 0.1447NOK
5% type I error level490.322368NOK
10% type I error level650.427632NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 22 &  0.1447 & NOK \tabularnewline
5% type I error level & 49 & 0.322368 & NOK \tabularnewline
10% type I error level & 65 & 0.427632 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300730&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]22[/C][C] 0.1447[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]49[/C][C]0.322368[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]65[/C][C]0.427632[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300730&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300730&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level22 0.1447NOK
5% type I error level490.322368NOK
10% type I error level650.427632NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.6661, df1 = 2, df2 = 160, p-value = 0.07261
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 4.292, df1 = 8, df2 = 154, p-value = 0.0001104
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.63978, df1 = 2, df2 = 160, p-value = 0.5288

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.6661, df1 = 2, df2 = 160, p-value = 0.07261
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 4.292, df1 = 8, df2 = 154, p-value = 0.0001104
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.63978, df1 = 2, df2 = 160, p-value = 0.5288
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300730&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.6661, df1 = 2, df2 = 160, p-value = 0.07261
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 4.292, df1 = 8, df2 = 154, p-value = 0.0001104
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.63978, df1 = 2, df2 = 160, p-value = 0.5288
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300730&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300730&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.6661, df1 = 2, df2 = 160, p-value = 0.07261
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 4.292, df1 = 8, df2 = 154, p-value = 0.0001104
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.63978, df1 = 2, df2 = 160, p-value = 0.5288







Variance Inflation Factors (Multicollinearity)
> vif
       b        c        d        e 
1.104154 1.226467 1.114488 1.018723 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
       b        c        d        e 
1.104154 1.226467 1.114488 1.018723 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300730&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
       b        c        d        e 
1.104154 1.226467 1.114488 1.018723 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300730&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300730&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
       b        c        d        e 
1.104154 1.226467 1.114488 1.018723 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')