Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationSat, 17 Dec 2016 00:52:19 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/17/t1481932584s07klyp6cb4u4f3.htm/, Retrieved Fri, 01 Nov 2024 04:39:13 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:39:13 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
4751.5
4649.2
4664.9
4691.3
4713.7
4772.8
4748.9
4801
4891.9
4891.9
4903.5
4976.4
5009.8
4946.4
4981.9
5013.8
5015.5
5070.7
5000.9
5059.1
5156.8
5002.6
5059.1
5164.1
5087.9
5140.8
5192.8
5177.6
5167.8
5248.4
5097.5
5187.3
5261.5
5179.7
5205.6
5353.3
5425.7
5215.2
5215.6
5216.4
5208.2
5237.5
5175
5300.2
5279.3
5262.6
5220.5
5372.1
5406
5317.2
5258.4
5204.2
5304.2
5300.2
5228.8
5303.3
5296
5341.1
5354.8
5447.8
5405.6
5333.4
5291.9
5414.4
5317.2
5380.5
5431.5
5363.5
5435.4
5499.8
5447.4
5633
5617.4
5567.8
5574
5710.4
5583.1
5610.8
5620.1
5759.4
5838.7
5843.3
5821
5895.1
5881.6
5827.7
5865.9
5918.4
5875.2
6078.4
5986.3
6019.7
6255.7
6128.4
6210
6301.8
6305.7
6261.2
6200.5
6185.5
6237.4
6399
6182.5
6292.3
6419.8
6273.7
6344.8
6490.4
6355.4
6383.1
6377.3
6324.9
6342.2
6364.1
6249.5
6439.2
6409.4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.7409-0.43850.05020.22490.1667-0.2465-0.9998
(p-val)(0.1909 )(0.1995 )(0.8471 )(0.6889 )(0.1069 )(0.0178 )(0 )
Estimates ( 2 )-0.8397-0.501800.31990.1711-0.2442-0.9997
(p-val)(0 )(0 )(NA )(0.1115 )(0.0978 )(0.0169 )(0 )
Estimates ( 3 )-0.5707-0.3884000.1908-0.2358-1
(p-val)(0 )(0 )(NA )(NA )(0.068 )(0.0217 )(0 )
Estimates ( 4 )-0.5963-0.3846000-0.2318-0.9999
(p-val)(0 )(0 )(NA )(NA )(NA )(0.0226 )(0.0404 )
Estimates ( 5 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & -0.7409 & -0.4385 & 0.0502 & 0.2249 & 0.1667 & -0.2465 & -0.9998 \tabularnewline
(p-val) & (0.1909 ) & (0.1995 ) & (0.8471 ) & (0.6889 ) & (0.1069 ) & (0.0178 ) & (0 ) \tabularnewline
Estimates ( 2 ) & -0.8397 & -0.5018 & 0 & 0.3199 & 0.1711 & -0.2442 & -0.9997 \tabularnewline
(p-val) & (0 ) & (0 ) & (NA ) & (0.1115 ) & (0.0978 ) & (0.0169 ) & (0 ) \tabularnewline
Estimates ( 3 ) & -0.5707 & -0.3884 & 0 & 0 & 0.1908 & -0.2358 & -1 \tabularnewline
(p-val) & (0 ) & (0 ) & (NA ) & (NA ) & (0.068 ) & (0.0217 ) & (0 ) \tabularnewline
Estimates ( 4 ) & -0.5963 & -0.3846 & 0 & 0 & 0 & -0.2318 & -0.9999 \tabularnewline
(p-val) & (0 ) & (0 ) & (NA ) & (NA ) & (NA ) & (0.0226 ) & (0.0404 ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.7409[/C][C]-0.4385[/C][C]0.0502[/C][C]0.2249[/C][C]0.1667[/C][C]-0.2465[/C][C]-0.9998[/C][/ROW]
[ROW][C](p-val)[/C][C](0.1909 )[/C][C](0.1995 )[/C][C](0.8471 )[/C][C](0.6889 )[/C][C](0.1069 )[/C][C](0.0178 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-0.8397[/C][C]-0.5018[/C][C]0[/C][C]0.3199[/C][C]0.1711[/C][C]-0.2442[/C][C]-0.9997[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0 )[/C][C](NA )[/C][C](0.1115 )[/C][C](0.0978 )[/C][C](0.0169 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-0.5707[/C][C]-0.3884[/C][C]0[/C][C]0[/C][C]0.1908[/C][C]-0.2358[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0.068 )[/C][C](0.0217 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]-0.5963[/C][C]-0.3846[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.2318[/C][C]-0.9999[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.0226 )[/C][C](0.0404 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.7409-0.43850.05020.22490.1667-0.2465-0.9998
(p-val)(0.1909 )(0.1995 )(0.8471 )(0.6889 )(0.1069 )(0.0178 )(0 )
Estimates ( 2 )-0.8397-0.501800.31990.1711-0.2442-0.9997
(p-val)(0 )(0 )(NA )(0.1115 )(0.0978 )(0.0169 )(0 )
Estimates ( 3 )-0.5707-0.3884000.1908-0.2358-1
(p-val)(0 )(0 )(NA )(NA )(0.068 )(0.0217 )(0 )
Estimates ( 4 )-0.5963-0.3846000-0.2318-0.9999
(p-val)(0 )(0 )(NA )(NA )(NA )(0.0226 )(0.0404 )
Estimates ( 5 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-15.818874650761
24.1058687443902
24.3302760146494
23.4916199386958
-7.18772145633319
-10.0166617446666
-41.7575983907042
-15.5709960212705
-5.41563068974727
-110.551096244825
-28.3410378373884
-0.352015831595288
-60.9720084388225
57.6297116917783
38.9081228148832
12.6610712740739
-26.5456485326162
-2.59274580024171
-67.9028259010601
-7.43029334158957
-29.891725067803
19.0959760146369
-3.87629956391153
43.0986051827261
96.8151961330274
-110.425506210935
-95.5584997093737
-84.1264936109448
-22.1648027166911
-41.6890113003633
7.0881374627637
46.3190555830524
-49.3045378867024
-5.23811024795028
-71.4752757347855
9.39854867419351
-20.9420227123101
50.8563758584789
-41.4474534904333
-78.0532892470034
25.898793922833
-17.2454791442226
-7.10505643000885
-38.0549993994848
-54.22376562719
50.6577590634402
44.1716469280514
16.4703800241325
-50.1418924666226
-54.8812578983472
-64.1043523924648
94.8157149240483
-71.6805537844278
-3.22953434514948
80.8075798210293
-46.4905398630884
-7.58188667165661
45.4618081592136
-18.1071452320925
67.685142584235
11.9178676434079
52.5826262750814
11.5088490010709
81.8108804175293
-35.5141177882465
-48.8129378735061
-12.3417272032253
110.667530568353
82.329466783158
69.8015882111197
9.23495825424194
-63.4227862552353
-65.1347221184958
-21.6774903973158
24.9552747113986
40.8509393520607
-4.13098125935498
149.439624114641
50.2237071226568
-34.5950626088087
113.92621391962
-20.5766316983834
86.1301573264738
4.42636016872814
27.8228409754965
30.2214351825196
-49.4724801639774
-54.1500689569155
3.93159414477628
73.1698398909544
-82.4781644331764
14.3949653148617
7.24363567807258
-45.4090048394582
-0.422665585921698
11.0752333703629
-104.518247798265
25.426804857731
18.828630475592
-20.6250138900676
-21.6616501767974
-54.5312122248235
-37.9478259932829
72.6974018646228
-28.6614375879835

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-15.818874650761 \tabularnewline
24.1058687443902 \tabularnewline
24.3302760146494 \tabularnewline
23.4916199386958 \tabularnewline
-7.18772145633319 \tabularnewline
-10.0166617446666 \tabularnewline
-41.7575983907042 \tabularnewline
-15.5709960212705 \tabularnewline
-5.41563068974727 \tabularnewline
-110.551096244825 \tabularnewline
-28.3410378373884 \tabularnewline
-0.352015831595288 \tabularnewline
-60.9720084388225 \tabularnewline
57.6297116917783 \tabularnewline
38.9081228148832 \tabularnewline
12.6610712740739 \tabularnewline
-26.5456485326162 \tabularnewline
-2.59274580024171 \tabularnewline
-67.9028259010601 \tabularnewline
-7.43029334158957 \tabularnewline
-29.891725067803 \tabularnewline
19.0959760146369 \tabularnewline
-3.87629956391153 \tabularnewline
43.0986051827261 \tabularnewline
96.8151961330274 \tabularnewline
-110.425506210935 \tabularnewline
-95.5584997093737 \tabularnewline
-84.1264936109448 \tabularnewline
-22.1648027166911 \tabularnewline
-41.6890113003633 \tabularnewline
7.0881374627637 \tabularnewline
46.3190555830524 \tabularnewline
-49.3045378867024 \tabularnewline
-5.23811024795028 \tabularnewline
-71.4752757347855 \tabularnewline
9.39854867419351 \tabularnewline
-20.9420227123101 \tabularnewline
50.8563758584789 \tabularnewline
-41.4474534904333 \tabularnewline
-78.0532892470034 \tabularnewline
25.898793922833 \tabularnewline
-17.2454791442226 \tabularnewline
-7.10505643000885 \tabularnewline
-38.0549993994848 \tabularnewline
-54.22376562719 \tabularnewline
50.6577590634402 \tabularnewline
44.1716469280514 \tabularnewline
16.4703800241325 \tabularnewline
-50.1418924666226 \tabularnewline
-54.8812578983472 \tabularnewline
-64.1043523924648 \tabularnewline
94.8157149240483 \tabularnewline
-71.6805537844278 \tabularnewline
-3.22953434514948 \tabularnewline
80.8075798210293 \tabularnewline
-46.4905398630884 \tabularnewline
-7.58188667165661 \tabularnewline
45.4618081592136 \tabularnewline
-18.1071452320925 \tabularnewline
67.685142584235 \tabularnewline
11.9178676434079 \tabularnewline
52.5826262750814 \tabularnewline
11.5088490010709 \tabularnewline
81.8108804175293 \tabularnewline
-35.5141177882465 \tabularnewline
-48.8129378735061 \tabularnewline
-12.3417272032253 \tabularnewline
110.667530568353 \tabularnewline
82.329466783158 \tabularnewline
69.8015882111197 \tabularnewline
9.23495825424194 \tabularnewline
-63.4227862552353 \tabularnewline
-65.1347221184958 \tabularnewline
-21.6774903973158 \tabularnewline
24.9552747113986 \tabularnewline
40.8509393520607 \tabularnewline
-4.13098125935498 \tabularnewline
149.439624114641 \tabularnewline
50.2237071226568 \tabularnewline
-34.5950626088087 \tabularnewline
113.92621391962 \tabularnewline
-20.5766316983834 \tabularnewline
86.1301573264738 \tabularnewline
4.42636016872814 \tabularnewline
27.8228409754965 \tabularnewline
30.2214351825196 \tabularnewline
-49.4724801639774 \tabularnewline
-54.1500689569155 \tabularnewline
3.93159414477628 \tabularnewline
73.1698398909544 \tabularnewline
-82.4781644331764 \tabularnewline
14.3949653148617 \tabularnewline
7.24363567807258 \tabularnewline
-45.4090048394582 \tabularnewline
-0.422665585921698 \tabularnewline
11.0752333703629 \tabularnewline
-104.518247798265 \tabularnewline
25.426804857731 \tabularnewline
18.828630475592 \tabularnewline
-20.6250138900676 \tabularnewline
-21.6616501767974 \tabularnewline
-54.5312122248235 \tabularnewline
-37.9478259932829 \tabularnewline
72.6974018646228 \tabularnewline
-28.6614375879835 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-15.818874650761[/C][/ROW]
[ROW][C]24.1058687443902[/C][/ROW]
[ROW][C]24.3302760146494[/C][/ROW]
[ROW][C]23.4916199386958[/C][/ROW]
[ROW][C]-7.18772145633319[/C][/ROW]
[ROW][C]-10.0166617446666[/C][/ROW]
[ROW][C]-41.7575983907042[/C][/ROW]
[ROW][C]-15.5709960212705[/C][/ROW]
[ROW][C]-5.41563068974727[/C][/ROW]
[ROW][C]-110.551096244825[/C][/ROW]
[ROW][C]-28.3410378373884[/C][/ROW]
[ROW][C]-0.352015831595288[/C][/ROW]
[ROW][C]-60.9720084388225[/C][/ROW]
[ROW][C]57.6297116917783[/C][/ROW]
[ROW][C]38.9081228148832[/C][/ROW]
[ROW][C]12.6610712740739[/C][/ROW]
[ROW][C]-26.5456485326162[/C][/ROW]
[ROW][C]-2.59274580024171[/C][/ROW]
[ROW][C]-67.9028259010601[/C][/ROW]
[ROW][C]-7.43029334158957[/C][/ROW]
[ROW][C]-29.891725067803[/C][/ROW]
[ROW][C]19.0959760146369[/C][/ROW]
[ROW][C]-3.87629956391153[/C][/ROW]
[ROW][C]43.0986051827261[/C][/ROW]
[ROW][C]96.8151961330274[/C][/ROW]
[ROW][C]-110.425506210935[/C][/ROW]
[ROW][C]-95.5584997093737[/C][/ROW]
[ROW][C]-84.1264936109448[/C][/ROW]
[ROW][C]-22.1648027166911[/C][/ROW]
[ROW][C]-41.6890113003633[/C][/ROW]
[ROW][C]7.0881374627637[/C][/ROW]
[ROW][C]46.3190555830524[/C][/ROW]
[ROW][C]-49.3045378867024[/C][/ROW]
[ROW][C]-5.23811024795028[/C][/ROW]
[ROW][C]-71.4752757347855[/C][/ROW]
[ROW][C]9.39854867419351[/C][/ROW]
[ROW][C]-20.9420227123101[/C][/ROW]
[ROW][C]50.8563758584789[/C][/ROW]
[ROW][C]-41.4474534904333[/C][/ROW]
[ROW][C]-78.0532892470034[/C][/ROW]
[ROW][C]25.898793922833[/C][/ROW]
[ROW][C]-17.2454791442226[/C][/ROW]
[ROW][C]-7.10505643000885[/C][/ROW]
[ROW][C]-38.0549993994848[/C][/ROW]
[ROW][C]-54.22376562719[/C][/ROW]
[ROW][C]50.6577590634402[/C][/ROW]
[ROW][C]44.1716469280514[/C][/ROW]
[ROW][C]16.4703800241325[/C][/ROW]
[ROW][C]-50.1418924666226[/C][/ROW]
[ROW][C]-54.8812578983472[/C][/ROW]
[ROW][C]-64.1043523924648[/C][/ROW]
[ROW][C]94.8157149240483[/C][/ROW]
[ROW][C]-71.6805537844278[/C][/ROW]
[ROW][C]-3.22953434514948[/C][/ROW]
[ROW][C]80.8075798210293[/C][/ROW]
[ROW][C]-46.4905398630884[/C][/ROW]
[ROW][C]-7.58188667165661[/C][/ROW]
[ROW][C]45.4618081592136[/C][/ROW]
[ROW][C]-18.1071452320925[/C][/ROW]
[ROW][C]67.685142584235[/C][/ROW]
[ROW][C]11.9178676434079[/C][/ROW]
[ROW][C]52.5826262750814[/C][/ROW]
[ROW][C]11.5088490010709[/C][/ROW]
[ROW][C]81.8108804175293[/C][/ROW]
[ROW][C]-35.5141177882465[/C][/ROW]
[ROW][C]-48.8129378735061[/C][/ROW]
[ROW][C]-12.3417272032253[/C][/ROW]
[ROW][C]110.667530568353[/C][/ROW]
[ROW][C]82.329466783158[/C][/ROW]
[ROW][C]69.8015882111197[/C][/ROW]
[ROW][C]9.23495825424194[/C][/ROW]
[ROW][C]-63.4227862552353[/C][/ROW]
[ROW][C]-65.1347221184958[/C][/ROW]
[ROW][C]-21.6774903973158[/C][/ROW]
[ROW][C]24.9552747113986[/C][/ROW]
[ROW][C]40.8509393520607[/C][/ROW]
[ROW][C]-4.13098125935498[/C][/ROW]
[ROW][C]149.439624114641[/C][/ROW]
[ROW][C]50.2237071226568[/C][/ROW]
[ROW][C]-34.5950626088087[/C][/ROW]
[ROW][C]113.92621391962[/C][/ROW]
[ROW][C]-20.5766316983834[/C][/ROW]
[ROW][C]86.1301573264738[/C][/ROW]
[ROW][C]4.42636016872814[/C][/ROW]
[ROW][C]27.8228409754965[/C][/ROW]
[ROW][C]30.2214351825196[/C][/ROW]
[ROW][C]-49.4724801639774[/C][/ROW]
[ROW][C]-54.1500689569155[/C][/ROW]
[ROW][C]3.93159414477628[/C][/ROW]
[ROW][C]73.1698398909544[/C][/ROW]
[ROW][C]-82.4781644331764[/C][/ROW]
[ROW][C]14.3949653148617[/C][/ROW]
[ROW][C]7.24363567807258[/C][/ROW]
[ROW][C]-45.4090048394582[/C][/ROW]
[ROW][C]-0.422665585921698[/C][/ROW]
[ROW][C]11.0752333703629[/C][/ROW]
[ROW][C]-104.518247798265[/C][/ROW]
[ROW][C]25.426804857731[/C][/ROW]
[ROW][C]18.828630475592[/C][/ROW]
[ROW][C]-20.6250138900676[/C][/ROW]
[ROW][C]-21.6616501767974[/C][/ROW]
[ROW][C]-54.5312122248235[/C][/ROW]
[ROW][C]-37.9478259932829[/C][/ROW]
[ROW][C]72.6974018646228[/C][/ROW]
[ROW][C]-28.6614375879835[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-15.818874650761
24.1058687443902
24.3302760146494
23.4916199386958
-7.18772145633319
-10.0166617446666
-41.7575983907042
-15.5709960212705
-5.41563068974727
-110.551096244825
-28.3410378373884
-0.352015831595288
-60.9720084388225
57.6297116917783
38.9081228148832
12.6610712740739
-26.5456485326162
-2.59274580024171
-67.9028259010601
-7.43029334158957
-29.891725067803
19.0959760146369
-3.87629956391153
43.0986051827261
96.8151961330274
-110.425506210935
-95.5584997093737
-84.1264936109448
-22.1648027166911
-41.6890113003633
7.0881374627637
46.3190555830524
-49.3045378867024
-5.23811024795028
-71.4752757347855
9.39854867419351
-20.9420227123101
50.8563758584789
-41.4474534904333
-78.0532892470034
25.898793922833
-17.2454791442226
-7.10505643000885
-38.0549993994848
-54.22376562719
50.6577590634402
44.1716469280514
16.4703800241325
-50.1418924666226
-54.8812578983472
-64.1043523924648
94.8157149240483
-71.6805537844278
-3.22953434514948
80.8075798210293
-46.4905398630884
-7.58188667165661
45.4618081592136
-18.1071452320925
67.685142584235
11.9178676434079
52.5826262750814
11.5088490010709
81.8108804175293
-35.5141177882465
-48.8129378735061
-12.3417272032253
110.667530568353
82.329466783158
69.8015882111197
9.23495825424194
-63.4227862552353
-65.1347221184958
-21.6774903973158
24.9552747113986
40.8509393520607
-4.13098125935498
149.439624114641
50.2237071226568
-34.5950626088087
113.92621391962
-20.5766316983834
86.1301573264738
4.42636016872814
27.8228409754965
30.2214351825196
-49.4724801639774
-54.1500689569155
3.93159414477628
73.1698398909544
-82.4781644331764
14.3949653148617
7.24363567807258
-45.4090048394582
-0.422665585921698
11.0752333703629
-104.518247798265
25.426804857731
18.828630475592
-20.6250138900676
-21.6616501767974
-54.5312122248235
-37.9478259932829
72.6974018646228
-28.6614375879835



Parameters (Session):
par1 = additiveadditiveadditive112additive0FALSE12additive1212N3N3N3121212121212124additiveadditive11additiveadditiveadditiveadditiveadditiveadditiveadditiveadditiveadditive4additiveadditiveadditiveadditiveadditive4444441111FALSE1212FALSEFALSE ; par2 = 12121221211112periodic1212411124412124444124424periodic1110-2.011 ; par3 = Pearson Chi-Squared1010BFGS0000000111 ; par4 = 000121241244444011 ; par5 = 121212114112 ; par6 = 333333 ; par7 = 21211111 ; par8 = 022FALSEFALSE222 ; par9 = 011111 ; par10 = FALSEFALSE ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
par9 <- '1'
par8 <- '2'
par7 <- '1'
par6 <- '3'
par5 <- '1'
par4 <- '1'
par3 <- '1'
par2 <- '1'
par1 <- 'FALSE'
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')