Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationFri, 16 Dec 2016 16:40:09 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481902829u92hh3w905qfp8k.htm/, Retrieved Fri, 01 Nov 2024 03:35:07 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300377, Retrieved Fri, 01 Nov 2024 03:35:07 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact83
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Backward Selection] [] [2016-12-16 13:36:55] [683f400e1b95307fc738e729f07c4fce]
-    D  [ARIMA Backward Selection] [] [2016-12-16 14:17:56] [683f400e1b95307fc738e729f07c4fce]
- R  D    [ARIMA Backward Selection] [] [2016-12-16 14:51:40] [683f400e1b95307fc738e729f07c4fce]
- RM D        [Decomposition by Loess] [] [2016-12-16 15:40:09] [404ac5ee4f7301873f6a96ef36861981] [Current]
Feedback Forum

Post a new message
Dataseries X:
1880
3600
4600
6560
7840
8560
10120
9240
9320
7000
3960
4680
3920
1560
4800
5240
8000
9760
9800
9280
7680
7760
5680
4560
1560
3680
4200
7400
7040
8480
9720
9760
9440
7240
5080
4080
5120
4400
5160
6680
8240
8960
9280
9880
8480
7320
4880
5280
4080
4720
6360
5760
9000
9160
10480
10160
9120
7880
5080
4360
4480
6000
6120
6200
8960
8680
10240
10920
8440
7760
5320
3920
4040
2960
6280
6320
7160
8160




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300377&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300377&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300377&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal781079
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 781 & 0 & 79 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300377&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]781[/C][C]0[/C][C]79[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300377&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300377&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal781079
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
11880738.503444020201-3168.00512272896189.5016787087-1141.4965559798
236003870.17840869851-2906.458101164946236.27969246643270.178408698506
346004310.42570938364-1393.483415607796283.05770622416-289.574290616362
465607241.50435783856-441.010754830016319.50639699145681.504357838559
578408035.440123733291288.604788507976355.95508775874195.440123733286
685608652.389064309642082.292014841546385.3189208488292.3890643096402
71012010695.76958597313129.547660088036414.68275393889575.769585973077
892408994.672252420913050.193285164346435.13446241476-245.327747579094
9932010273.57492882951910.838900279846455.58617089062953.574928829535
1070006915.37234590106652.9444806383796431.68317346056-84.6276540989356
1139603357.1696085806-1844.94978461116407.78017603049-602.830391419396
1246805325.32782399843-2360.514265352136395.1864413537645.327823998428
1339204625.41241605199-3168.00512272896382.59270667691705.412416051989
141560-350.87392507706-2906.458101164946377.33202624199-1910.87392507706
1548004621.41206980072-1393.483415607796372.07134580708-178.587930199283
1652404530.2916587115-441.010754830016390.71909611851-709.708341288501
1780008302.028365062081288.604788507976409.36684642995302.028365062084
18976010999.89371136162082.292014841546437.81427379691239.89371136156
19980010004.19063874813129.547660088036466.26170116386204.190638748112
2092809023.926768296213050.193285164346485.87994653946-256.073231703795
2176806943.66290780511910.838900279846505.49819191506-736.337092194904
2277608363.96818610931652.9444806383796503.08733325231603.968186109314
2356806704.27331002154-1844.94978461116500.676474589551024.27331002154
2445605000.25508872275-2360.514265352136480.25917662938440.255088722746
251560-171.836755940313-3168.00512272896459.84187866922-1731.83675594031
2636803797.8450508816-2906.458101164946468.61305028333117.845050881605
2742003316.09919371035-1393.483415607796477.38422189745-883.900806289652
2874008737.94852046468-441.010754830016503.062234365321337.94852046469
2970406262.654964658831288.604788507976528.7402468332-777.345035341174
3084808286.03904500882082.292014841546591.66894014966-193.960954991198
3197209655.854706445863129.547660088036654.59763346611-64.145293554142
3297609726.289650669163050.193285164346743.5170641665-33.7103493308377
33944010136.72460485331910.838900279846832.43649486689696.724604853265
3472406939.61189797384652.9444806383796887.44362138778-300.388102026163
3550805062.49903670242-1844.94978461116942.45074790868-17.5009632975816
3640803558.73745640581-2360.514265352136961.77680894632-521.262543594188
3751206426.90225274494-3168.00512272896981.102869983961306.90225274494
3844004741.84833798811-2906.458101164946964.60976317683341.848337988105
3951604765.36675923809-1393.483415607796948.1166563697-394.633240761907
4066806880.08404154436-441.010754830016920.92671328565200.084041544362
4182408297.658441290431288.604788507976893.7367702015957.6584412904349
4289608950.367129579022082.292014841546887.34085557944-9.63287042097727
4392808549.507398954693129.547660088036880.94494095728-730.492601045308
4498809812.256882369553050.193285164346897.54983246611-67.7431176304481
4584808135.006375745211910.838900279846914.15472397495-344.993624254788
4673207033.6833557712652.9444806383796953.37216359043-286.316644228805
4748804612.36018140519-1844.94978461116992.58960320591-267.639818594812
4852805878.57868273721-2360.514265352137041.93558261492598.578682737212
4940804236.72356070497-3168.00512272897091.28156202393156.723560704972
5047205205.36246252842-2906.458101164947141.09563863652485.362462528419
5163606922.57370035869-1393.483415607797190.9097152491562.573700358692
5257604752.64998380627-441.010754830017208.36077102374-1007.35001619373
5390009485.583384693661288.604788507977225.81182679837485.583384693658
5491609013.133700114912082.292014841547224.57428504354-146.866299885085
551048010607.11559662333129.547660088037223.33674328872127.115596623252
561016010023.80484519743050.193285164347246.00186963827-136.195154802605
5791209060.494103732341910.838900279847268.66699598782-59.505896267663
5878807813.11534974127652.9444806383797293.94016962035-66.8846502587321
5950804685.73644135821-1844.94978461117319.21334325289-394.26355864179
6043603758.43219510131-2360.514265352137322.08207025082-601.567804898689
6144804803.05432548015-3168.00512272897324.95079724875323.054325480148
6260007584.23163843456-2906.458101164947322.226462730371584.23163843456
6361206313.9812873958-1393.483415607797319.502128212193.981287395798
6462005537.15847359936-441.010754830017303.85228123065-662.841526400642
6589609343.192777242721288.604788507977288.20243424931383.192777242723
6686808045.29492486862082.292014841547232.41306028986-634.7050751314
671024010173.82865358163129.547660088037176.62368633041-66.1713464184413
681092011690.2671007823050.193285164347099.5396140537770.267100781965
6984407946.705557943171910.838900279847022.45554177698-493.294442056827
7077607913.73713558171652.9444806383796953.31838377991153.737135581709
7153205600.76855882825-1844.94978461116884.18122578284280.768558828255
7239203396.50068150376-2360.514265352136804.01358384837-523.499318496244
7340404524.15918081499-3168.00512272896723.84594191391484.159180814994
7429602183.91737620984-2906.458101164946642.54072495509-776.082623790158
7562807392.24790761151-1393.483415607796561.235507996281112.24790761151
7663206601.28166159077-441.010754830016479.72909323924281.281661590769
7771606633.172533009831288.604788507976398.2226784822-526.827466990171
7881607922.855419238332082.292014841546314.85256592013-237.144580761673

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 1880 & 738.503444020201 & -3168.0051227289 & 6189.5016787087 & -1141.4965559798 \tabularnewline
2 & 3600 & 3870.17840869851 & -2906.45810116494 & 6236.27969246643 & 270.178408698506 \tabularnewline
3 & 4600 & 4310.42570938364 & -1393.48341560779 & 6283.05770622416 & -289.574290616362 \tabularnewline
4 & 6560 & 7241.50435783856 & -441.01075483001 & 6319.50639699145 & 681.504357838559 \tabularnewline
5 & 7840 & 8035.44012373329 & 1288.60478850797 & 6355.95508775874 & 195.440123733286 \tabularnewline
6 & 8560 & 8652.38906430964 & 2082.29201484154 & 6385.31892084882 & 92.3890643096402 \tabularnewline
7 & 10120 & 10695.7695859731 & 3129.54766008803 & 6414.68275393889 & 575.769585973077 \tabularnewline
8 & 9240 & 8994.67225242091 & 3050.19328516434 & 6435.13446241476 & -245.327747579094 \tabularnewline
9 & 9320 & 10273.5749288295 & 1910.83890027984 & 6455.58617089062 & 953.574928829535 \tabularnewline
10 & 7000 & 6915.37234590106 & 652.944480638379 & 6431.68317346056 & -84.6276540989356 \tabularnewline
11 & 3960 & 3357.1696085806 & -1844.9497846111 & 6407.78017603049 & -602.830391419396 \tabularnewline
12 & 4680 & 5325.32782399843 & -2360.51426535213 & 6395.1864413537 & 645.327823998428 \tabularnewline
13 & 3920 & 4625.41241605199 & -3168.0051227289 & 6382.59270667691 & 705.412416051989 \tabularnewline
14 & 1560 & -350.87392507706 & -2906.45810116494 & 6377.33202624199 & -1910.87392507706 \tabularnewline
15 & 4800 & 4621.41206980072 & -1393.48341560779 & 6372.07134580708 & -178.587930199283 \tabularnewline
16 & 5240 & 4530.2916587115 & -441.01075483001 & 6390.71909611851 & -709.708341288501 \tabularnewline
17 & 8000 & 8302.02836506208 & 1288.60478850797 & 6409.36684642995 & 302.028365062084 \tabularnewline
18 & 9760 & 10999.8937113616 & 2082.29201484154 & 6437.8142737969 & 1239.89371136156 \tabularnewline
19 & 9800 & 10004.1906387481 & 3129.54766008803 & 6466.26170116386 & 204.190638748112 \tabularnewline
20 & 9280 & 9023.92676829621 & 3050.19328516434 & 6485.87994653946 & -256.073231703795 \tabularnewline
21 & 7680 & 6943.6629078051 & 1910.83890027984 & 6505.49819191506 & -736.337092194904 \tabularnewline
22 & 7760 & 8363.96818610931 & 652.944480638379 & 6503.08733325231 & 603.968186109314 \tabularnewline
23 & 5680 & 6704.27331002154 & -1844.9497846111 & 6500.67647458955 & 1024.27331002154 \tabularnewline
24 & 4560 & 5000.25508872275 & -2360.51426535213 & 6480.25917662938 & 440.255088722746 \tabularnewline
25 & 1560 & -171.836755940313 & -3168.0051227289 & 6459.84187866922 & -1731.83675594031 \tabularnewline
26 & 3680 & 3797.8450508816 & -2906.45810116494 & 6468.61305028333 & 117.845050881605 \tabularnewline
27 & 4200 & 3316.09919371035 & -1393.48341560779 & 6477.38422189745 & -883.900806289652 \tabularnewline
28 & 7400 & 8737.94852046468 & -441.01075483001 & 6503.06223436532 & 1337.94852046469 \tabularnewline
29 & 7040 & 6262.65496465883 & 1288.60478850797 & 6528.7402468332 & -777.345035341174 \tabularnewline
30 & 8480 & 8286.0390450088 & 2082.29201484154 & 6591.66894014966 & -193.960954991198 \tabularnewline
31 & 9720 & 9655.85470644586 & 3129.54766008803 & 6654.59763346611 & -64.145293554142 \tabularnewline
32 & 9760 & 9726.28965066916 & 3050.19328516434 & 6743.5170641665 & -33.7103493308377 \tabularnewline
33 & 9440 & 10136.7246048533 & 1910.83890027984 & 6832.43649486689 & 696.724604853265 \tabularnewline
34 & 7240 & 6939.61189797384 & 652.944480638379 & 6887.44362138778 & -300.388102026163 \tabularnewline
35 & 5080 & 5062.49903670242 & -1844.9497846111 & 6942.45074790868 & -17.5009632975816 \tabularnewline
36 & 4080 & 3558.73745640581 & -2360.51426535213 & 6961.77680894632 & -521.262543594188 \tabularnewline
37 & 5120 & 6426.90225274494 & -3168.0051227289 & 6981.10286998396 & 1306.90225274494 \tabularnewline
38 & 4400 & 4741.84833798811 & -2906.45810116494 & 6964.60976317683 & 341.848337988105 \tabularnewline
39 & 5160 & 4765.36675923809 & -1393.48341560779 & 6948.1166563697 & -394.633240761907 \tabularnewline
40 & 6680 & 6880.08404154436 & -441.01075483001 & 6920.92671328565 & 200.084041544362 \tabularnewline
41 & 8240 & 8297.65844129043 & 1288.60478850797 & 6893.73677020159 & 57.6584412904349 \tabularnewline
42 & 8960 & 8950.36712957902 & 2082.29201484154 & 6887.34085557944 & -9.63287042097727 \tabularnewline
43 & 9280 & 8549.50739895469 & 3129.54766008803 & 6880.94494095728 & -730.492601045308 \tabularnewline
44 & 9880 & 9812.25688236955 & 3050.19328516434 & 6897.54983246611 & -67.7431176304481 \tabularnewline
45 & 8480 & 8135.00637574521 & 1910.83890027984 & 6914.15472397495 & -344.993624254788 \tabularnewline
46 & 7320 & 7033.6833557712 & 652.944480638379 & 6953.37216359043 & -286.316644228805 \tabularnewline
47 & 4880 & 4612.36018140519 & -1844.9497846111 & 6992.58960320591 & -267.639818594812 \tabularnewline
48 & 5280 & 5878.57868273721 & -2360.51426535213 & 7041.93558261492 & 598.578682737212 \tabularnewline
49 & 4080 & 4236.72356070497 & -3168.0051227289 & 7091.28156202393 & 156.723560704972 \tabularnewline
50 & 4720 & 5205.36246252842 & -2906.45810116494 & 7141.09563863652 & 485.362462528419 \tabularnewline
51 & 6360 & 6922.57370035869 & -1393.48341560779 & 7190.9097152491 & 562.573700358692 \tabularnewline
52 & 5760 & 4752.64998380627 & -441.01075483001 & 7208.36077102374 & -1007.35001619373 \tabularnewline
53 & 9000 & 9485.58338469366 & 1288.60478850797 & 7225.81182679837 & 485.583384693658 \tabularnewline
54 & 9160 & 9013.13370011491 & 2082.29201484154 & 7224.57428504354 & -146.866299885085 \tabularnewline
55 & 10480 & 10607.1155966233 & 3129.54766008803 & 7223.33674328872 & 127.115596623252 \tabularnewline
56 & 10160 & 10023.8048451974 & 3050.19328516434 & 7246.00186963827 & -136.195154802605 \tabularnewline
57 & 9120 & 9060.49410373234 & 1910.83890027984 & 7268.66699598782 & -59.505896267663 \tabularnewline
58 & 7880 & 7813.11534974127 & 652.944480638379 & 7293.94016962035 & -66.8846502587321 \tabularnewline
59 & 5080 & 4685.73644135821 & -1844.9497846111 & 7319.21334325289 & -394.26355864179 \tabularnewline
60 & 4360 & 3758.43219510131 & -2360.51426535213 & 7322.08207025082 & -601.567804898689 \tabularnewline
61 & 4480 & 4803.05432548015 & -3168.0051227289 & 7324.95079724875 & 323.054325480148 \tabularnewline
62 & 6000 & 7584.23163843456 & -2906.45810116494 & 7322.22646273037 & 1584.23163843456 \tabularnewline
63 & 6120 & 6313.9812873958 & -1393.48341560779 & 7319.502128212 & 193.981287395798 \tabularnewline
64 & 6200 & 5537.15847359936 & -441.01075483001 & 7303.85228123065 & -662.841526400642 \tabularnewline
65 & 8960 & 9343.19277724272 & 1288.60478850797 & 7288.20243424931 & 383.192777242723 \tabularnewline
66 & 8680 & 8045.2949248686 & 2082.29201484154 & 7232.41306028986 & -634.7050751314 \tabularnewline
67 & 10240 & 10173.8286535816 & 3129.54766008803 & 7176.62368633041 & -66.1713464184413 \tabularnewline
68 & 10920 & 11690.267100782 & 3050.19328516434 & 7099.5396140537 & 770.267100781965 \tabularnewline
69 & 8440 & 7946.70555794317 & 1910.83890027984 & 7022.45554177698 & -493.294442056827 \tabularnewline
70 & 7760 & 7913.73713558171 & 652.944480638379 & 6953.31838377991 & 153.737135581709 \tabularnewline
71 & 5320 & 5600.76855882825 & -1844.9497846111 & 6884.18122578284 & 280.768558828255 \tabularnewline
72 & 3920 & 3396.50068150376 & -2360.51426535213 & 6804.01358384837 & -523.499318496244 \tabularnewline
73 & 4040 & 4524.15918081499 & -3168.0051227289 & 6723.84594191391 & 484.159180814994 \tabularnewline
74 & 2960 & 2183.91737620984 & -2906.45810116494 & 6642.54072495509 & -776.082623790158 \tabularnewline
75 & 6280 & 7392.24790761151 & -1393.48341560779 & 6561.23550799628 & 1112.24790761151 \tabularnewline
76 & 6320 & 6601.28166159077 & -441.01075483001 & 6479.72909323924 & 281.281661590769 \tabularnewline
77 & 7160 & 6633.17253300983 & 1288.60478850797 & 6398.2226784822 & -526.827466990171 \tabularnewline
78 & 8160 & 7922.85541923833 & 2082.29201484154 & 6314.85256592013 & -237.144580761673 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300377&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]1880[/C][C]738.503444020201[/C][C]-3168.0051227289[/C][C]6189.5016787087[/C][C]-1141.4965559798[/C][/ROW]
[ROW][C]2[/C][C]3600[/C][C]3870.17840869851[/C][C]-2906.45810116494[/C][C]6236.27969246643[/C][C]270.178408698506[/C][/ROW]
[ROW][C]3[/C][C]4600[/C][C]4310.42570938364[/C][C]-1393.48341560779[/C][C]6283.05770622416[/C][C]-289.574290616362[/C][/ROW]
[ROW][C]4[/C][C]6560[/C][C]7241.50435783856[/C][C]-441.01075483001[/C][C]6319.50639699145[/C][C]681.504357838559[/C][/ROW]
[ROW][C]5[/C][C]7840[/C][C]8035.44012373329[/C][C]1288.60478850797[/C][C]6355.95508775874[/C][C]195.440123733286[/C][/ROW]
[ROW][C]6[/C][C]8560[/C][C]8652.38906430964[/C][C]2082.29201484154[/C][C]6385.31892084882[/C][C]92.3890643096402[/C][/ROW]
[ROW][C]7[/C][C]10120[/C][C]10695.7695859731[/C][C]3129.54766008803[/C][C]6414.68275393889[/C][C]575.769585973077[/C][/ROW]
[ROW][C]8[/C][C]9240[/C][C]8994.67225242091[/C][C]3050.19328516434[/C][C]6435.13446241476[/C][C]-245.327747579094[/C][/ROW]
[ROW][C]9[/C][C]9320[/C][C]10273.5749288295[/C][C]1910.83890027984[/C][C]6455.58617089062[/C][C]953.574928829535[/C][/ROW]
[ROW][C]10[/C][C]7000[/C][C]6915.37234590106[/C][C]652.944480638379[/C][C]6431.68317346056[/C][C]-84.6276540989356[/C][/ROW]
[ROW][C]11[/C][C]3960[/C][C]3357.1696085806[/C][C]-1844.9497846111[/C][C]6407.78017603049[/C][C]-602.830391419396[/C][/ROW]
[ROW][C]12[/C][C]4680[/C][C]5325.32782399843[/C][C]-2360.51426535213[/C][C]6395.1864413537[/C][C]645.327823998428[/C][/ROW]
[ROW][C]13[/C][C]3920[/C][C]4625.41241605199[/C][C]-3168.0051227289[/C][C]6382.59270667691[/C][C]705.412416051989[/C][/ROW]
[ROW][C]14[/C][C]1560[/C][C]-350.87392507706[/C][C]-2906.45810116494[/C][C]6377.33202624199[/C][C]-1910.87392507706[/C][/ROW]
[ROW][C]15[/C][C]4800[/C][C]4621.41206980072[/C][C]-1393.48341560779[/C][C]6372.07134580708[/C][C]-178.587930199283[/C][/ROW]
[ROW][C]16[/C][C]5240[/C][C]4530.2916587115[/C][C]-441.01075483001[/C][C]6390.71909611851[/C][C]-709.708341288501[/C][/ROW]
[ROW][C]17[/C][C]8000[/C][C]8302.02836506208[/C][C]1288.60478850797[/C][C]6409.36684642995[/C][C]302.028365062084[/C][/ROW]
[ROW][C]18[/C][C]9760[/C][C]10999.8937113616[/C][C]2082.29201484154[/C][C]6437.8142737969[/C][C]1239.89371136156[/C][/ROW]
[ROW][C]19[/C][C]9800[/C][C]10004.1906387481[/C][C]3129.54766008803[/C][C]6466.26170116386[/C][C]204.190638748112[/C][/ROW]
[ROW][C]20[/C][C]9280[/C][C]9023.92676829621[/C][C]3050.19328516434[/C][C]6485.87994653946[/C][C]-256.073231703795[/C][/ROW]
[ROW][C]21[/C][C]7680[/C][C]6943.6629078051[/C][C]1910.83890027984[/C][C]6505.49819191506[/C][C]-736.337092194904[/C][/ROW]
[ROW][C]22[/C][C]7760[/C][C]8363.96818610931[/C][C]652.944480638379[/C][C]6503.08733325231[/C][C]603.968186109314[/C][/ROW]
[ROW][C]23[/C][C]5680[/C][C]6704.27331002154[/C][C]-1844.9497846111[/C][C]6500.67647458955[/C][C]1024.27331002154[/C][/ROW]
[ROW][C]24[/C][C]4560[/C][C]5000.25508872275[/C][C]-2360.51426535213[/C][C]6480.25917662938[/C][C]440.255088722746[/C][/ROW]
[ROW][C]25[/C][C]1560[/C][C]-171.836755940313[/C][C]-3168.0051227289[/C][C]6459.84187866922[/C][C]-1731.83675594031[/C][/ROW]
[ROW][C]26[/C][C]3680[/C][C]3797.8450508816[/C][C]-2906.45810116494[/C][C]6468.61305028333[/C][C]117.845050881605[/C][/ROW]
[ROW][C]27[/C][C]4200[/C][C]3316.09919371035[/C][C]-1393.48341560779[/C][C]6477.38422189745[/C][C]-883.900806289652[/C][/ROW]
[ROW][C]28[/C][C]7400[/C][C]8737.94852046468[/C][C]-441.01075483001[/C][C]6503.06223436532[/C][C]1337.94852046469[/C][/ROW]
[ROW][C]29[/C][C]7040[/C][C]6262.65496465883[/C][C]1288.60478850797[/C][C]6528.7402468332[/C][C]-777.345035341174[/C][/ROW]
[ROW][C]30[/C][C]8480[/C][C]8286.0390450088[/C][C]2082.29201484154[/C][C]6591.66894014966[/C][C]-193.960954991198[/C][/ROW]
[ROW][C]31[/C][C]9720[/C][C]9655.85470644586[/C][C]3129.54766008803[/C][C]6654.59763346611[/C][C]-64.145293554142[/C][/ROW]
[ROW][C]32[/C][C]9760[/C][C]9726.28965066916[/C][C]3050.19328516434[/C][C]6743.5170641665[/C][C]-33.7103493308377[/C][/ROW]
[ROW][C]33[/C][C]9440[/C][C]10136.7246048533[/C][C]1910.83890027984[/C][C]6832.43649486689[/C][C]696.724604853265[/C][/ROW]
[ROW][C]34[/C][C]7240[/C][C]6939.61189797384[/C][C]652.944480638379[/C][C]6887.44362138778[/C][C]-300.388102026163[/C][/ROW]
[ROW][C]35[/C][C]5080[/C][C]5062.49903670242[/C][C]-1844.9497846111[/C][C]6942.45074790868[/C][C]-17.5009632975816[/C][/ROW]
[ROW][C]36[/C][C]4080[/C][C]3558.73745640581[/C][C]-2360.51426535213[/C][C]6961.77680894632[/C][C]-521.262543594188[/C][/ROW]
[ROW][C]37[/C][C]5120[/C][C]6426.90225274494[/C][C]-3168.0051227289[/C][C]6981.10286998396[/C][C]1306.90225274494[/C][/ROW]
[ROW][C]38[/C][C]4400[/C][C]4741.84833798811[/C][C]-2906.45810116494[/C][C]6964.60976317683[/C][C]341.848337988105[/C][/ROW]
[ROW][C]39[/C][C]5160[/C][C]4765.36675923809[/C][C]-1393.48341560779[/C][C]6948.1166563697[/C][C]-394.633240761907[/C][/ROW]
[ROW][C]40[/C][C]6680[/C][C]6880.08404154436[/C][C]-441.01075483001[/C][C]6920.92671328565[/C][C]200.084041544362[/C][/ROW]
[ROW][C]41[/C][C]8240[/C][C]8297.65844129043[/C][C]1288.60478850797[/C][C]6893.73677020159[/C][C]57.6584412904349[/C][/ROW]
[ROW][C]42[/C][C]8960[/C][C]8950.36712957902[/C][C]2082.29201484154[/C][C]6887.34085557944[/C][C]-9.63287042097727[/C][/ROW]
[ROW][C]43[/C][C]9280[/C][C]8549.50739895469[/C][C]3129.54766008803[/C][C]6880.94494095728[/C][C]-730.492601045308[/C][/ROW]
[ROW][C]44[/C][C]9880[/C][C]9812.25688236955[/C][C]3050.19328516434[/C][C]6897.54983246611[/C][C]-67.7431176304481[/C][/ROW]
[ROW][C]45[/C][C]8480[/C][C]8135.00637574521[/C][C]1910.83890027984[/C][C]6914.15472397495[/C][C]-344.993624254788[/C][/ROW]
[ROW][C]46[/C][C]7320[/C][C]7033.6833557712[/C][C]652.944480638379[/C][C]6953.37216359043[/C][C]-286.316644228805[/C][/ROW]
[ROW][C]47[/C][C]4880[/C][C]4612.36018140519[/C][C]-1844.9497846111[/C][C]6992.58960320591[/C][C]-267.639818594812[/C][/ROW]
[ROW][C]48[/C][C]5280[/C][C]5878.57868273721[/C][C]-2360.51426535213[/C][C]7041.93558261492[/C][C]598.578682737212[/C][/ROW]
[ROW][C]49[/C][C]4080[/C][C]4236.72356070497[/C][C]-3168.0051227289[/C][C]7091.28156202393[/C][C]156.723560704972[/C][/ROW]
[ROW][C]50[/C][C]4720[/C][C]5205.36246252842[/C][C]-2906.45810116494[/C][C]7141.09563863652[/C][C]485.362462528419[/C][/ROW]
[ROW][C]51[/C][C]6360[/C][C]6922.57370035869[/C][C]-1393.48341560779[/C][C]7190.9097152491[/C][C]562.573700358692[/C][/ROW]
[ROW][C]52[/C][C]5760[/C][C]4752.64998380627[/C][C]-441.01075483001[/C][C]7208.36077102374[/C][C]-1007.35001619373[/C][/ROW]
[ROW][C]53[/C][C]9000[/C][C]9485.58338469366[/C][C]1288.60478850797[/C][C]7225.81182679837[/C][C]485.583384693658[/C][/ROW]
[ROW][C]54[/C][C]9160[/C][C]9013.13370011491[/C][C]2082.29201484154[/C][C]7224.57428504354[/C][C]-146.866299885085[/C][/ROW]
[ROW][C]55[/C][C]10480[/C][C]10607.1155966233[/C][C]3129.54766008803[/C][C]7223.33674328872[/C][C]127.115596623252[/C][/ROW]
[ROW][C]56[/C][C]10160[/C][C]10023.8048451974[/C][C]3050.19328516434[/C][C]7246.00186963827[/C][C]-136.195154802605[/C][/ROW]
[ROW][C]57[/C][C]9120[/C][C]9060.49410373234[/C][C]1910.83890027984[/C][C]7268.66699598782[/C][C]-59.505896267663[/C][/ROW]
[ROW][C]58[/C][C]7880[/C][C]7813.11534974127[/C][C]652.944480638379[/C][C]7293.94016962035[/C][C]-66.8846502587321[/C][/ROW]
[ROW][C]59[/C][C]5080[/C][C]4685.73644135821[/C][C]-1844.9497846111[/C][C]7319.21334325289[/C][C]-394.26355864179[/C][/ROW]
[ROW][C]60[/C][C]4360[/C][C]3758.43219510131[/C][C]-2360.51426535213[/C][C]7322.08207025082[/C][C]-601.567804898689[/C][/ROW]
[ROW][C]61[/C][C]4480[/C][C]4803.05432548015[/C][C]-3168.0051227289[/C][C]7324.95079724875[/C][C]323.054325480148[/C][/ROW]
[ROW][C]62[/C][C]6000[/C][C]7584.23163843456[/C][C]-2906.45810116494[/C][C]7322.22646273037[/C][C]1584.23163843456[/C][/ROW]
[ROW][C]63[/C][C]6120[/C][C]6313.9812873958[/C][C]-1393.48341560779[/C][C]7319.502128212[/C][C]193.981287395798[/C][/ROW]
[ROW][C]64[/C][C]6200[/C][C]5537.15847359936[/C][C]-441.01075483001[/C][C]7303.85228123065[/C][C]-662.841526400642[/C][/ROW]
[ROW][C]65[/C][C]8960[/C][C]9343.19277724272[/C][C]1288.60478850797[/C][C]7288.20243424931[/C][C]383.192777242723[/C][/ROW]
[ROW][C]66[/C][C]8680[/C][C]8045.2949248686[/C][C]2082.29201484154[/C][C]7232.41306028986[/C][C]-634.7050751314[/C][/ROW]
[ROW][C]67[/C][C]10240[/C][C]10173.8286535816[/C][C]3129.54766008803[/C][C]7176.62368633041[/C][C]-66.1713464184413[/C][/ROW]
[ROW][C]68[/C][C]10920[/C][C]11690.267100782[/C][C]3050.19328516434[/C][C]7099.5396140537[/C][C]770.267100781965[/C][/ROW]
[ROW][C]69[/C][C]8440[/C][C]7946.70555794317[/C][C]1910.83890027984[/C][C]7022.45554177698[/C][C]-493.294442056827[/C][/ROW]
[ROW][C]70[/C][C]7760[/C][C]7913.73713558171[/C][C]652.944480638379[/C][C]6953.31838377991[/C][C]153.737135581709[/C][/ROW]
[ROW][C]71[/C][C]5320[/C][C]5600.76855882825[/C][C]-1844.9497846111[/C][C]6884.18122578284[/C][C]280.768558828255[/C][/ROW]
[ROW][C]72[/C][C]3920[/C][C]3396.50068150376[/C][C]-2360.51426535213[/C][C]6804.01358384837[/C][C]-523.499318496244[/C][/ROW]
[ROW][C]73[/C][C]4040[/C][C]4524.15918081499[/C][C]-3168.0051227289[/C][C]6723.84594191391[/C][C]484.159180814994[/C][/ROW]
[ROW][C]74[/C][C]2960[/C][C]2183.91737620984[/C][C]-2906.45810116494[/C][C]6642.54072495509[/C][C]-776.082623790158[/C][/ROW]
[ROW][C]75[/C][C]6280[/C][C]7392.24790761151[/C][C]-1393.48341560779[/C][C]6561.23550799628[/C][C]1112.24790761151[/C][/ROW]
[ROW][C]76[/C][C]6320[/C][C]6601.28166159077[/C][C]-441.01075483001[/C][C]6479.72909323924[/C][C]281.281661590769[/C][/ROW]
[ROW][C]77[/C][C]7160[/C][C]6633.17253300983[/C][C]1288.60478850797[/C][C]6398.2226784822[/C][C]-526.827466990171[/C][/ROW]
[ROW][C]78[/C][C]8160[/C][C]7922.85541923833[/C][C]2082.29201484154[/C][C]6314.85256592013[/C][C]-237.144580761673[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300377&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300377&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
11880738.503444020201-3168.00512272896189.5016787087-1141.4965559798
236003870.17840869851-2906.458101164946236.27969246643270.178408698506
346004310.42570938364-1393.483415607796283.05770622416-289.574290616362
465607241.50435783856-441.010754830016319.50639699145681.504357838559
578408035.440123733291288.604788507976355.95508775874195.440123733286
685608652.389064309642082.292014841546385.3189208488292.3890643096402
71012010695.76958597313129.547660088036414.68275393889575.769585973077
892408994.672252420913050.193285164346435.13446241476-245.327747579094
9932010273.57492882951910.838900279846455.58617089062953.574928829535
1070006915.37234590106652.9444806383796431.68317346056-84.6276540989356
1139603357.1696085806-1844.94978461116407.78017603049-602.830391419396
1246805325.32782399843-2360.514265352136395.1864413537645.327823998428
1339204625.41241605199-3168.00512272896382.59270667691705.412416051989
141560-350.87392507706-2906.458101164946377.33202624199-1910.87392507706
1548004621.41206980072-1393.483415607796372.07134580708-178.587930199283
1652404530.2916587115-441.010754830016390.71909611851-709.708341288501
1780008302.028365062081288.604788507976409.36684642995302.028365062084
18976010999.89371136162082.292014841546437.81427379691239.89371136156
19980010004.19063874813129.547660088036466.26170116386204.190638748112
2092809023.926768296213050.193285164346485.87994653946-256.073231703795
2176806943.66290780511910.838900279846505.49819191506-736.337092194904
2277608363.96818610931652.9444806383796503.08733325231603.968186109314
2356806704.27331002154-1844.94978461116500.676474589551024.27331002154
2445605000.25508872275-2360.514265352136480.25917662938440.255088722746
251560-171.836755940313-3168.00512272896459.84187866922-1731.83675594031
2636803797.8450508816-2906.458101164946468.61305028333117.845050881605
2742003316.09919371035-1393.483415607796477.38422189745-883.900806289652
2874008737.94852046468-441.010754830016503.062234365321337.94852046469
2970406262.654964658831288.604788507976528.7402468332-777.345035341174
3084808286.03904500882082.292014841546591.66894014966-193.960954991198
3197209655.854706445863129.547660088036654.59763346611-64.145293554142
3297609726.289650669163050.193285164346743.5170641665-33.7103493308377
33944010136.72460485331910.838900279846832.43649486689696.724604853265
3472406939.61189797384652.9444806383796887.44362138778-300.388102026163
3550805062.49903670242-1844.94978461116942.45074790868-17.5009632975816
3640803558.73745640581-2360.514265352136961.77680894632-521.262543594188
3751206426.90225274494-3168.00512272896981.102869983961306.90225274494
3844004741.84833798811-2906.458101164946964.60976317683341.848337988105
3951604765.36675923809-1393.483415607796948.1166563697-394.633240761907
4066806880.08404154436-441.010754830016920.92671328565200.084041544362
4182408297.658441290431288.604788507976893.7367702015957.6584412904349
4289608950.367129579022082.292014841546887.34085557944-9.63287042097727
4392808549.507398954693129.547660088036880.94494095728-730.492601045308
4498809812.256882369553050.193285164346897.54983246611-67.7431176304481
4584808135.006375745211910.838900279846914.15472397495-344.993624254788
4673207033.6833557712652.9444806383796953.37216359043-286.316644228805
4748804612.36018140519-1844.94978461116992.58960320591-267.639818594812
4852805878.57868273721-2360.514265352137041.93558261492598.578682737212
4940804236.72356070497-3168.00512272897091.28156202393156.723560704972
5047205205.36246252842-2906.458101164947141.09563863652485.362462528419
5163606922.57370035869-1393.483415607797190.9097152491562.573700358692
5257604752.64998380627-441.010754830017208.36077102374-1007.35001619373
5390009485.583384693661288.604788507977225.81182679837485.583384693658
5491609013.133700114912082.292014841547224.57428504354-146.866299885085
551048010607.11559662333129.547660088037223.33674328872127.115596623252
561016010023.80484519743050.193285164347246.00186963827-136.195154802605
5791209060.494103732341910.838900279847268.66699598782-59.505896267663
5878807813.11534974127652.9444806383797293.94016962035-66.8846502587321
5950804685.73644135821-1844.94978461117319.21334325289-394.26355864179
6043603758.43219510131-2360.514265352137322.08207025082-601.567804898689
6144804803.05432548015-3168.00512272897324.95079724875323.054325480148
6260007584.23163843456-2906.458101164947322.226462730371584.23163843456
6361206313.9812873958-1393.483415607797319.502128212193.981287395798
6462005537.15847359936-441.010754830017303.85228123065-662.841526400642
6589609343.192777242721288.604788507977288.20243424931383.192777242723
6686808045.29492486862082.292014841547232.41306028986-634.7050751314
671024010173.82865358163129.547660088037176.62368633041-66.1713464184413
681092011690.2671007823050.193285164347099.5396140537770.267100781965
6984407946.705557943171910.838900279847022.45554177698-493.294442056827
7077607913.73713558171652.9444806383796953.31838377991153.737135581709
7153205600.76855882825-1844.94978461116884.18122578284280.768558828255
7239203396.50068150376-2360.514265352136804.01358384837-523.499318496244
7340404524.15918081499-3168.00512272896723.84594191391484.159180814994
7429602183.91737620984-2906.458101164946642.54072495509-776.082623790158
7562807392.24790761151-1393.483415607796561.235507996281112.24790761151
7663206601.28166159077-441.010754830016479.72909323924281.281661590769
7771606633.172533009831288.604788507976398.2226784822-526.827466990171
7881607922.855419238332082.292014841546314.85256592013-237.144580761673



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 0 ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')