Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 16 Dec 2016 13:26:28 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t14818912117ktun0zwnerja9v.htm/, Retrieved Fri, 01 Nov 2024 04:39:39 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:39:39 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
4	9
2	11
3	13
2	11
2	12
3	11
3	12
2	12
2	13
4	12
2	12
2	11
3	12
2	10
3	12
2	12
2	12
5	12
3	13
2	11
2	11
3	11
1	11
2	13
3	11
2	12
2	11
3	12
5	12
2	10
5	11
2	12
2	11
4	9
1	12
2	11
2	11
3	12
2	13
3	11
2	12
3	9
4	12
4	11
3	12
2	12
2	11
4	10
4	9
3	12
2	13
2	13
2	9
2	11
3	11
2	11
2	12
3	12
3	11
2	12
2	11
4	12
4	11
3	11
4	8
4	12
4	11
4	12
5	11
3	11
4	11
4	10
2	10
2	13
3	11
4	11
2	11
5	13
1	12
3	12
3	9
2	12
2	12
1	13
2	15
1	13
2	13
2	11
2	12
2	9
3	11
2	13
1	12
1	13
3	11
2	12
3	14
1	13
2	11
2	12
3	13
2	11
2	11
3	11
1	13
4	12
3	12
2	11
3	12
3	12
3	10
4	11
3	9
2	14
3	12
2	11
1	13
1	11
2	11
4	11
3	11
2	12
2	11
3	13
3	11
3	11
2	12
2	11
2	11
3	9
4	12
2	14
2	10
1	9
3	12
3	14
4	9
3	11
1	14
1	13
2	10
1	11
5	12
3	10
2	13
2	12
4	14
2	10
4	12
4	9
3	12
4	11
3	11
4	10
3	11
4	12
2	10
4	11
1	13
4	11
3	13
2	12
2	11
2	12
4	10
3	12
3	10
2	13




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center
R Engine error message
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time6 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Engine error message & 
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]6 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Engine error message[/C][C]
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center
R Engine error message
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted







Multiple Linear Regression - Estimated Regression Equation
TVDCSUM[t] = + 12.2345 -0.283388EP3[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDCSUM[t] =  +  12.2345 -0.283388EP3[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDCSUM[t] =  +  12.2345 -0.283388EP3[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDCSUM[t] = + 12.2345 -0.283388EP3[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.23 0.2627+4.6570e+01 3.226e-97 1.613e-97
EP3-0.2834 0.09267-3.0580e+00 0.002598 0.001299

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +12.23 &  0.2627 & +4.6570e+01 &  3.226e-97 &  1.613e-97 \tabularnewline
EP3 & -0.2834 &  0.09267 & -3.0580e+00 &  0.002598 &  0.001299 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+12.23[/C][C] 0.2627[/C][C]+4.6570e+01[/C][C] 3.226e-97[/C][C] 1.613e-97[/C][/ROW]
[ROW][C]EP3[/C][C]-0.2834[/C][C] 0.09267[/C][C]-3.0580e+00[/C][C] 0.002598[/C][C] 0.001299[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.23 0.2627+4.6570e+01 3.226e-97 1.613e-97
EP3-0.2834 0.09267-3.0580e+00 0.002598 0.001299







Multiple Linear Regression - Regression Statistics
Multiple R 0.2309
R-squared 0.05333
Adjusted R-squared 0.04763
F-TEST (value) 9.351
F-TEST (DF numerator)1
F-TEST (DF denominator)166
p-value 0.002598
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.194
Sum Squared Residuals 236.6

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2309 \tabularnewline
R-squared &  0.05333 \tabularnewline
Adjusted R-squared &  0.04763 \tabularnewline
F-TEST (value) &  9.351 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 166 \tabularnewline
p-value &  0.002598 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.194 \tabularnewline
Sum Squared Residuals &  236.6 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2309[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.05333[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.04763[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 9.351[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]166[/C][/ROW]
[ROW][C]p-value[/C][C] 0.002598[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.194[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 236.6[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2309
R-squared 0.05333
Adjusted R-squared 0.04763
F-TEST (value) 9.351
F-TEST (DF numerator)1
F-TEST (DF denominator)166
p-value 0.002598
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.194
Sum Squared Residuals 236.6







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 9 11.1-2.101
2 11 11.67-0.6677
3 13 11.38 1.616
4 11 11.67-0.6677
5 12 11.67 0.3323
6 11 11.38-0.3843
7 12 11.38 0.6157
8 12 11.67 0.3323
9 13 11.67 1.332
10 12 11.1 0.8991
11 12 11.67 0.3323
12 11 11.67-0.6677
13 12 11.38 0.6157
14 10 11.67-1.668
15 12 11.38 0.6157
16 12 11.67 0.3323
17 12 11.67 0.3323
18 12 10.82 1.182
19 13 11.38 1.616
20 11 11.67-0.6677
21 11 11.67-0.6677
22 11 11.38-0.3843
23 11 11.95-0.9511
24 13 11.67 1.332
25 11 11.38-0.3843
26 12 11.67 0.3323
27 11 11.67-0.6677
28 12 11.38 0.6157
29 12 10.82 1.182
30 10 11.67-1.668
31 11 10.82 0.1825
32 12 11.67 0.3323
33 11 11.67-0.6677
34 9 11.1-2.101
35 12 11.95 0.04892
36 11 11.67-0.6677
37 11 11.67-0.6677
38 12 11.38 0.6157
39 13 11.67 1.332
40 11 11.38-0.3843
41 12 11.67 0.3323
42 9 11.38-2.384
43 12 11.1 0.8991
44 11 11.1-0.1009
45 12 11.38 0.6157
46 12 11.67 0.3323
47 11 11.67-0.6677
48 10 11.1-1.101
49 9 11.1-2.101
50 12 11.38 0.6157
51 13 11.67 1.332
52 13 11.67 1.332
53 9 11.67-2.668
54 11 11.67-0.6677
55 11 11.38-0.3843
56 11 11.67-0.6677
57 12 11.67 0.3323
58 12 11.38 0.6157
59 11 11.38-0.3843
60 12 11.67 0.3323
61 11 11.67-0.6677
62 12 11.1 0.8991
63 11 11.1-0.1009
64 11 11.38-0.3843
65 8 11.1-3.101
66 12 11.1 0.8991
67 11 11.1-0.1009
68 12 11.1 0.8991
69 11 10.82 0.1825
70 11 11.38-0.3843
71 11 11.1-0.1009
72 10 11.1-1.101
73 10 11.67-1.668
74 13 11.67 1.332
75 11 11.38-0.3843
76 11 11.1-0.1009
77 11 11.67-0.6677
78 13 10.82 2.182
79 12 11.95 0.04892
80 12 11.38 0.6157
81 9 11.38-2.384
82 12 11.67 0.3323
83 12 11.67 0.3323
84 13 11.95 1.049
85 15 11.67 3.332
86 13 11.95 1.049
87 13 11.67 1.332
88 11 11.67-0.6677
89 12 11.67 0.3323
90 9 11.67-2.668
91 11 11.38-0.3843
92 13 11.67 1.332
93 12 11.95 0.04892
94 13 11.95 1.049
95 11 11.38-0.3843
96 12 11.67 0.3323
97 14 11.38 2.616
98 13 11.95 1.049
99 11 11.67-0.6677
100 12 11.67 0.3323
101 13 11.38 1.616
102 11 11.67-0.6677
103 11 11.67-0.6677
104 11 11.38-0.3843
105 13 11.95 1.049
106 12 11.1 0.8991
107 12 11.38 0.6157
108 11 11.67-0.6677
109 12 11.38 0.6157
110 12 11.38 0.6157
111 10 11.38-1.384
112 11 11.1-0.1009
113 9 11.38-2.384
114 14 11.67 2.332
115 12 11.38 0.6157
116 11 11.67-0.6677
117 13 11.95 1.049
118 11 11.95-0.9511
119 11 11.67-0.6677
120 11 11.1-0.1009
121 11 11.38-0.3843
122 12 11.67 0.3323
123 11 11.67-0.6677
124 13 11.38 1.616
125 11 11.38-0.3843
126 11 11.38-0.3843
127 12 11.67 0.3323
128 11 11.67-0.6677
129 11 11.67-0.6677
130 9 11.38-2.384
131 12 11.1 0.8991
132 14 11.67 2.332
133 10 11.67-1.668
134 9 11.95-2.951
135 12 11.38 0.6157
136 14 11.38 2.616
137 9 11.1-2.101
138 11 11.38-0.3843
139 14 11.95 2.049
140 13 11.95 1.049
141 10 11.67-1.668
142 11 11.95-0.9511
143 12 10.82 1.182
144 10 11.38-1.384
145 13 11.67 1.332
146 12 11.67 0.3323
147 14 11.1 2.899
148 10 11.67-1.668
149 12 11.1 0.8991
150 9 11.1-2.101
151 12 11.38 0.6157
152 11 11.1-0.1009
153 11 11.38-0.3843
154 10 11.1-1.101
155 11 11.38-0.3843
156 12 11.1 0.8991
157 10 11.67-1.668
158 11 11.1-0.1009
159 13 11.95 1.049
160 11 11.1-0.1009
161 13 11.38 1.616
162 12 11.67 0.3323
163 11 11.67-0.6677
164 12 11.67 0.3323
165 10 11.1-1.101
166 12 11.38 0.6157
167 10 11.38-1.384
168 13 11.67 1.332

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  9 &  11.1 & -2.101 \tabularnewline
2 &  11 &  11.67 & -0.6677 \tabularnewline
3 &  13 &  11.38 &  1.616 \tabularnewline
4 &  11 &  11.67 & -0.6677 \tabularnewline
5 &  12 &  11.67 &  0.3323 \tabularnewline
6 &  11 &  11.38 & -0.3843 \tabularnewline
7 &  12 &  11.38 &  0.6157 \tabularnewline
8 &  12 &  11.67 &  0.3323 \tabularnewline
9 &  13 &  11.67 &  1.332 \tabularnewline
10 &  12 &  11.1 &  0.8991 \tabularnewline
11 &  12 &  11.67 &  0.3323 \tabularnewline
12 &  11 &  11.67 & -0.6677 \tabularnewline
13 &  12 &  11.38 &  0.6157 \tabularnewline
14 &  10 &  11.67 & -1.668 \tabularnewline
15 &  12 &  11.38 &  0.6157 \tabularnewline
16 &  12 &  11.67 &  0.3323 \tabularnewline
17 &  12 &  11.67 &  0.3323 \tabularnewline
18 &  12 &  10.82 &  1.182 \tabularnewline
19 &  13 &  11.38 &  1.616 \tabularnewline
20 &  11 &  11.67 & -0.6677 \tabularnewline
21 &  11 &  11.67 & -0.6677 \tabularnewline
22 &  11 &  11.38 & -0.3843 \tabularnewline
23 &  11 &  11.95 & -0.9511 \tabularnewline
24 &  13 &  11.67 &  1.332 \tabularnewline
25 &  11 &  11.38 & -0.3843 \tabularnewline
26 &  12 &  11.67 &  0.3323 \tabularnewline
27 &  11 &  11.67 & -0.6677 \tabularnewline
28 &  12 &  11.38 &  0.6157 \tabularnewline
29 &  12 &  10.82 &  1.182 \tabularnewline
30 &  10 &  11.67 & -1.668 \tabularnewline
31 &  11 &  10.82 &  0.1825 \tabularnewline
32 &  12 &  11.67 &  0.3323 \tabularnewline
33 &  11 &  11.67 & -0.6677 \tabularnewline
34 &  9 &  11.1 & -2.101 \tabularnewline
35 &  12 &  11.95 &  0.04892 \tabularnewline
36 &  11 &  11.67 & -0.6677 \tabularnewline
37 &  11 &  11.67 & -0.6677 \tabularnewline
38 &  12 &  11.38 &  0.6157 \tabularnewline
39 &  13 &  11.67 &  1.332 \tabularnewline
40 &  11 &  11.38 & -0.3843 \tabularnewline
41 &  12 &  11.67 &  0.3323 \tabularnewline
42 &  9 &  11.38 & -2.384 \tabularnewline
43 &  12 &  11.1 &  0.8991 \tabularnewline
44 &  11 &  11.1 & -0.1009 \tabularnewline
45 &  12 &  11.38 &  0.6157 \tabularnewline
46 &  12 &  11.67 &  0.3323 \tabularnewline
47 &  11 &  11.67 & -0.6677 \tabularnewline
48 &  10 &  11.1 & -1.101 \tabularnewline
49 &  9 &  11.1 & -2.101 \tabularnewline
50 &  12 &  11.38 &  0.6157 \tabularnewline
51 &  13 &  11.67 &  1.332 \tabularnewline
52 &  13 &  11.67 &  1.332 \tabularnewline
53 &  9 &  11.67 & -2.668 \tabularnewline
54 &  11 &  11.67 & -0.6677 \tabularnewline
55 &  11 &  11.38 & -0.3843 \tabularnewline
56 &  11 &  11.67 & -0.6677 \tabularnewline
57 &  12 &  11.67 &  0.3323 \tabularnewline
58 &  12 &  11.38 &  0.6157 \tabularnewline
59 &  11 &  11.38 & -0.3843 \tabularnewline
60 &  12 &  11.67 &  0.3323 \tabularnewline
61 &  11 &  11.67 & -0.6677 \tabularnewline
62 &  12 &  11.1 &  0.8991 \tabularnewline
63 &  11 &  11.1 & -0.1009 \tabularnewline
64 &  11 &  11.38 & -0.3843 \tabularnewline
65 &  8 &  11.1 & -3.101 \tabularnewline
66 &  12 &  11.1 &  0.8991 \tabularnewline
67 &  11 &  11.1 & -0.1009 \tabularnewline
68 &  12 &  11.1 &  0.8991 \tabularnewline
69 &  11 &  10.82 &  0.1825 \tabularnewline
70 &  11 &  11.38 & -0.3843 \tabularnewline
71 &  11 &  11.1 & -0.1009 \tabularnewline
72 &  10 &  11.1 & -1.101 \tabularnewline
73 &  10 &  11.67 & -1.668 \tabularnewline
74 &  13 &  11.67 &  1.332 \tabularnewline
75 &  11 &  11.38 & -0.3843 \tabularnewline
76 &  11 &  11.1 & -0.1009 \tabularnewline
77 &  11 &  11.67 & -0.6677 \tabularnewline
78 &  13 &  10.82 &  2.182 \tabularnewline
79 &  12 &  11.95 &  0.04892 \tabularnewline
80 &  12 &  11.38 &  0.6157 \tabularnewline
81 &  9 &  11.38 & -2.384 \tabularnewline
82 &  12 &  11.67 &  0.3323 \tabularnewline
83 &  12 &  11.67 &  0.3323 \tabularnewline
84 &  13 &  11.95 &  1.049 \tabularnewline
85 &  15 &  11.67 &  3.332 \tabularnewline
86 &  13 &  11.95 &  1.049 \tabularnewline
87 &  13 &  11.67 &  1.332 \tabularnewline
88 &  11 &  11.67 & -0.6677 \tabularnewline
89 &  12 &  11.67 &  0.3323 \tabularnewline
90 &  9 &  11.67 & -2.668 \tabularnewline
91 &  11 &  11.38 & -0.3843 \tabularnewline
92 &  13 &  11.67 &  1.332 \tabularnewline
93 &  12 &  11.95 &  0.04892 \tabularnewline
94 &  13 &  11.95 &  1.049 \tabularnewline
95 &  11 &  11.38 & -0.3843 \tabularnewline
96 &  12 &  11.67 &  0.3323 \tabularnewline
97 &  14 &  11.38 &  2.616 \tabularnewline
98 &  13 &  11.95 &  1.049 \tabularnewline
99 &  11 &  11.67 & -0.6677 \tabularnewline
100 &  12 &  11.67 &  0.3323 \tabularnewline
101 &  13 &  11.38 &  1.616 \tabularnewline
102 &  11 &  11.67 & -0.6677 \tabularnewline
103 &  11 &  11.67 & -0.6677 \tabularnewline
104 &  11 &  11.38 & -0.3843 \tabularnewline
105 &  13 &  11.95 &  1.049 \tabularnewline
106 &  12 &  11.1 &  0.8991 \tabularnewline
107 &  12 &  11.38 &  0.6157 \tabularnewline
108 &  11 &  11.67 & -0.6677 \tabularnewline
109 &  12 &  11.38 &  0.6157 \tabularnewline
110 &  12 &  11.38 &  0.6157 \tabularnewline
111 &  10 &  11.38 & -1.384 \tabularnewline
112 &  11 &  11.1 & -0.1009 \tabularnewline
113 &  9 &  11.38 & -2.384 \tabularnewline
114 &  14 &  11.67 &  2.332 \tabularnewline
115 &  12 &  11.38 &  0.6157 \tabularnewline
116 &  11 &  11.67 & -0.6677 \tabularnewline
117 &  13 &  11.95 &  1.049 \tabularnewline
118 &  11 &  11.95 & -0.9511 \tabularnewline
119 &  11 &  11.67 & -0.6677 \tabularnewline
120 &  11 &  11.1 & -0.1009 \tabularnewline
121 &  11 &  11.38 & -0.3843 \tabularnewline
122 &  12 &  11.67 &  0.3323 \tabularnewline
123 &  11 &  11.67 & -0.6677 \tabularnewline
124 &  13 &  11.38 &  1.616 \tabularnewline
125 &  11 &  11.38 & -0.3843 \tabularnewline
126 &  11 &  11.38 & -0.3843 \tabularnewline
127 &  12 &  11.67 &  0.3323 \tabularnewline
128 &  11 &  11.67 & -0.6677 \tabularnewline
129 &  11 &  11.67 & -0.6677 \tabularnewline
130 &  9 &  11.38 & -2.384 \tabularnewline
131 &  12 &  11.1 &  0.8991 \tabularnewline
132 &  14 &  11.67 &  2.332 \tabularnewline
133 &  10 &  11.67 & -1.668 \tabularnewline
134 &  9 &  11.95 & -2.951 \tabularnewline
135 &  12 &  11.38 &  0.6157 \tabularnewline
136 &  14 &  11.38 &  2.616 \tabularnewline
137 &  9 &  11.1 & -2.101 \tabularnewline
138 &  11 &  11.38 & -0.3843 \tabularnewline
139 &  14 &  11.95 &  2.049 \tabularnewline
140 &  13 &  11.95 &  1.049 \tabularnewline
141 &  10 &  11.67 & -1.668 \tabularnewline
142 &  11 &  11.95 & -0.9511 \tabularnewline
143 &  12 &  10.82 &  1.182 \tabularnewline
144 &  10 &  11.38 & -1.384 \tabularnewline
145 &  13 &  11.67 &  1.332 \tabularnewline
146 &  12 &  11.67 &  0.3323 \tabularnewline
147 &  14 &  11.1 &  2.899 \tabularnewline
148 &  10 &  11.67 & -1.668 \tabularnewline
149 &  12 &  11.1 &  0.8991 \tabularnewline
150 &  9 &  11.1 & -2.101 \tabularnewline
151 &  12 &  11.38 &  0.6157 \tabularnewline
152 &  11 &  11.1 & -0.1009 \tabularnewline
153 &  11 &  11.38 & -0.3843 \tabularnewline
154 &  10 &  11.1 & -1.101 \tabularnewline
155 &  11 &  11.38 & -0.3843 \tabularnewline
156 &  12 &  11.1 &  0.8991 \tabularnewline
157 &  10 &  11.67 & -1.668 \tabularnewline
158 &  11 &  11.1 & -0.1009 \tabularnewline
159 &  13 &  11.95 &  1.049 \tabularnewline
160 &  11 &  11.1 & -0.1009 \tabularnewline
161 &  13 &  11.38 &  1.616 \tabularnewline
162 &  12 &  11.67 &  0.3323 \tabularnewline
163 &  11 &  11.67 & -0.6677 \tabularnewline
164 &  12 &  11.67 &  0.3323 \tabularnewline
165 &  10 &  11.1 & -1.101 \tabularnewline
166 &  12 &  11.38 &  0.6157 \tabularnewline
167 &  10 &  11.38 & -1.384 \tabularnewline
168 &  13 &  11.67 &  1.332 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 9[/C][C] 11.1[/C][C]-2.101[/C][/ROW]
[ROW][C]2[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]3[/C][C] 13[/C][C] 11.38[/C][C] 1.616[/C][/ROW]
[ROW][C]4[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]5[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]6[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]7[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]8[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]9[/C][C] 13[/C][C] 11.67[/C][C] 1.332[/C][/ROW]
[ROW][C]10[/C][C] 12[/C][C] 11.1[/C][C] 0.8991[/C][/ROW]
[ROW][C]11[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]12[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]13[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]14[/C][C] 10[/C][C] 11.67[/C][C]-1.668[/C][/ROW]
[ROW][C]15[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]16[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]17[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]18[/C][C] 12[/C][C] 10.82[/C][C] 1.182[/C][/ROW]
[ROW][C]19[/C][C] 13[/C][C] 11.38[/C][C] 1.616[/C][/ROW]
[ROW][C]20[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]21[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]22[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]23[/C][C] 11[/C][C] 11.95[/C][C]-0.9511[/C][/ROW]
[ROW][C]24[/C][C] 13[/C][C] 11.67[/C][C] 1.332[/C][/ROW]
[ROW][C]25[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]26[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]27[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]28[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]29[/C][C] 12[/C][C] 10.82[/C][C] 1.182[/C][/ROW]
[ROW][C]30[/C][C] 10[/C][C] 11.67[/C][C]-1.668[/C][/ROW]
[ROW][C]31[/C][C] 11[/C][C] 10.82[/C][C] 0.1825[/C][/ROW]
[ROW][C]32[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]33[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]34[/C][C] 9[/C][C] 11.1[/C][C]-2.101[/C][/ROW]
[ROW][C]35[/C][C] 12[/C][C] 11.95[/C][C] 0.04892[/C][/ROW]
[ROW][C]36[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]37[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]38[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]39[/C][C] 13[/C][C] 11.67[/C][C] 1.332[/C][/ROW]
[ROW][C]40[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]41[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]42[/C][C] 9[/C][C] 11.38[/C][C]-2.384[/C][/ROW]
[ROW][C]43[/C][C] 12[/C][C] 11.1[/C][C] 0.8991[/C][/ROW]
[ROW][C]44[/C][C] 11[/C][C] 11.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]46[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]47[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]48[/C][C] 10[/C][C] 11.1[/C][C]-1.101[/C][/ROW]
[ROW][C]49[/C][C] 9[/C][C] 11.1[/C][C]-2.101[/C][/ROW]
[ROW][C]50[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]51[/C][C] 13[/C][C] 11.67[/C][C] 1.332[/C][/ROW]
[ROW][C]52[/C][C] 13[/C][C] 11.67[/C][C] 1.332[/C][/ROW]
[ROW][C]53[/C][C] 9[/C][C] 11.67[/C][C]-2.668[/C][/ROW]
[ROW][C]54[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]55[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]56[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]57[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]58[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]59[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]60[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]61[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]62[/C][C] 12[/C][C] 11.1[/C][C] 0.8991[/C][/ROW]
[ROW][C]63[/C][C] 11[/C][C] 11.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]64[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]65[/C][C] 8[/C][C] 11.1[/C][C]-3.101[/C][/ROW]
[ROW][C]66[/C][C] 12[/C][C] 11.1[/C][C] 0.8991[/C][/ROW]
[ROW][C]67[/C][C] 11[/C][C] 11.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]68[/C][C] 12[/C][C] 11.1[/C][C] 0.8991[/C][/ROW]
[ROW][C]69[/C][C] 11[/C][C] 10.82[/C][C] 0.1825[/C][/ROW]
[ROW][C]70[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]71[/C][C] 11[/C][C] 11.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]72[/C][C] 10[/C][C] 11.1[/C][C]-1.101[/C][/ROW]
[ROW][C]73[/C][C] 10[/C][C] 11.67[/C][C]-1.668[/C][/ROW]
[ROW][C]74[/C][C] 13[/C][C] 11.67[/C][C] 1.332[/C][/ROW]
[ROW][C]75[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]76[/C][C] 11[/C][C] 11.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]77[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]78[/C][C] 13[/C][C] 10.82[/C][C] 2.182[/C][/ROW]
[ROW][C]79[/C][C] 12[/C][C] 11.95[/C][C] 0.04892[/C][/ROW]
[ROW][C]80[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]81[/C][C] 9[/C][C] 11.38[/C][C]-2.384[/C][/ROW]
[ROW][C]82[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]83[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]84[/C][C] 13[/C][C] 11.95[/C][C] 1.049[/C][/ROW]
[ROW][C]85[/C][C] 15[/C][C] 11.67[/C][C] 3.332[/C][/ROW]
[ROW][C]86[/C][C] 13[/C][C] 11.95[/C][C] 1.049[/C][/ROW]
[ROW][C]87[/C][C] 13[/C][C] 11.67[/C][C] 1.332[/C][/ROW]
[ROW][C]88[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]89[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]90[/C][C] 9[/C][C] 11.67[/C][C]-2.668[/C][/ROW]
[ROW][C]91[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]92[/C][C] 13[/C][C] 11.67[/C][C] 1.332[/C][/ROW]
[ROW][C]93[/C][C] 12[/C][C] 11.95[/C][C] 0.04892[/C][/ROW]
[ROW][C]94[/C][C] 13[/C][C] 11.95[/C][C] 1.049[/C][/ROW]
[ROW][C]95[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]96[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]97[/C][C] 14[/C][C] 11.38[/C][C] 2.616[/C][/ROW]
[ROW][C]98[/C][C] 13[/C][C] 11.95[/C][C] 1.049[/C][/ROW]
[ROW][C]99[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]100[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]101[/C][C] 13[/C][C] 11.38[/C][C] 1.616[/C][/ROW]
[ROW][C]102[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]103[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]104[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]105[/C][C] 13[/C][C] 11.95[/C][C] 1.049[/C][/ROW]
[ROW][C]106[/C][C] 12[/C][C] 11.1[/C][C] 0.8991[/C][/ROW]
[ROW][C]107[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]108[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]109[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]110[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]111[/C][C] 10[/C][C] 11.38[/C][C]-1.384[/C][/ROW]
[ROW][C]112[/C][C] 11[/C][C] 11.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]113[/C][C] 9[/C][C] 11.38[/C][C]-2.384[/C][/ROW]
[ROW][C]114[/C][C] 14[/C][C] 11.67[/C][C] 2.332[/C][/ROW]
[ROW][C]115[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]116[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]117[/C][C] 13[/C][C] 11.95[/C][C] 1.049[/C][/ROW]
[ROW][C]118[/C][C] 11[/C][C] 11.95[/C][C]-0.9511[/C][/ROW]
[ROW][C]119[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]120[/C][C] 11[/C][C] 11.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]121[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]122[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]123[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]124[/C][C] 13[/C][C] 11.38[/C][C] 1.616[/C][/ROW]
[ROW][C]125[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]126[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]127[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]128[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]129[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]130[/C][C] 9[/C][C] 11.38[/C][C]-2.384[/C][/ROW]
[ROW][C]131[/C][C] 12[/C][C] 11.1[/C][C] 0.8991[/C][/ROW]
[ROW][C]132[/C][C] 14[/C][C] 11.67[/C][C] 2.332[/C][/ROW]
[ROW][C]133[/C][C] 10[/C][C] 11.67[/C][C]-1.668[/C][/ROW]
[ROW][C]134[/C][C] 9[/C][C] 11.95[/C][C]-2.951[/C][/ROW]
[ROW][C]135[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]136[/C][C] 14[/C][C] 11.38[/C][C] 2.616[/C][/ROW]
[ROW][C]137[/C][C] 9[/C][C] 11.1[/C][C]-2.101[/C][/ROW]
[ROW][C]138[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]139[/C][C] 14[/C][C] 11.95[/C][C] 2.049[/C][/ROW]
[ROW][C]140[/C][C] 13[/C][C] 11.95[/C][C] 1.049[/C][/ROW]
[ROW][C]141[/C][C] 10[/C][C] 11.67[/C][C]-1.668[/C][/ROW]
[ROW][C]142[/C][C] 11[/C][C] 11.95[/C][C]-0.9511[/C][/ROW]
[ROW][C]143[/C][C] 12[/C][C] 10.82[/C][C] 1.182[/C][/ROW]
[ROW][C]144[/C][C] 10[/C][C] 11.38[/C][C]-1.384[/C][/ROW]
[ROW][C]145[/C][C] 13[/C][C] 11.67[/C][C] 1.332[/C][/ROW]
[ROW][C]146[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]147[/C][C] 14[/C][C] 11.1[/C][C] 2.899[/C][/ROW]
[ROW][C]148[/C][C] 10[/C][C] 11.67[/C][C]-1.668[/C][/ROW]
[ROW][C]149[/C][C] 12[/C][C] 11.1[/C][C] 0.8991[/C][/ROW]
[ROW][C]150[/C][C] 9[/C][C] 11.1[/C][C]-2.101[/C][/ROW]
[ROW][C]151[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]152[/C][C] 11[/C][C] 11.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]153[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]154[/C][C] 10[/C][C] 11.1[/C][C]-1.101[/C][/ROW]
[ROW][C]155[/C][C] 11[/C][C] 11.38[/C][C]-0.3843[/C][/ROW]
[ROW][C]156[/C][C] 12[/C][C] 11.1[/C][C] 0.8991[/C][/ROW]
[ROW][C]157[/C][C] 10[/C][C] 11.67[/C][C]-1.668[/C][/ROW]
[ROW][C]158[/C][C] 11[/C][C] 11.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]159[/C][C] 13[/C][C] 11.95[/C][C] 1.049[/C][/ROW]
[ROW][C]160[/C][C] 11[/C][C] 11.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]161[/C][C] 13[/C][C] 11.38[/C][C] 1.616[/C][/ROW]
[ROW][C]162[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]163[/C][C] 11[/C][C] 11.67[/C][C]-0.6677[/C][/ROW]
[ROW][C]164[/C][C] 12[/C][C] 11.67[/C][C] 0.3323[/C][/ROW]
[ROW][C]165[/C][C] 10[/C][C] 11.1[/C][C]-1.101[/C][/ROW]
[ROW][C]166[/C][C] 12[/C][C] 11.38[/C][C] 0.6157[/C][/ROW]
[ROW][C]167[/C][C] 10[/C][C] 11.38[/C][C]-1.384[/C][/ROW]
[ROW][C]168[/C][C] 13[/C][C] 11.67[/C][C] 1.332[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 9 11.1-2.101
2 11 11.67-0.6677
3 13 11.38 1.616
4 11 11.67-0.6677
5 12 11.67 0.3323
6 11 11.38-0.3843
7 12 11.38 0.6157
8 12 11.67 0.3323
9 13 11.67 1.332
10 12 11.1 0.8991
11 12 11.67 0.3323
12 11 11.67-0.6677
13 12 11.38 0.6157
14 10 11.67-1.668
15 12 11.38 0.6157
16 12 11.67 0.3323
17 12 11.67 0.3323
18 12 10.82 1.182
19 13 11.38 1.616
20 11 11.67-0.6677
21 11 11.67-0.6677
22 11 11.38-0.3843
23 11 11.95-0.9511
24 13 11.67 1.332
25 11 11.38-0.3843
26 12 11.67 0.3323
27 11 11.67-0.6677
28 12 11.38 0.6157
29 12 10.82 1.182
30 10 11.67-1.668
31 11 10.82 0.1825
32 12 11.67 0.3323
33 11 11.67-0.6677
34 9 11.1-2.101
35 12 11.95 0.04892
36 11 11.67-0.6677
37 11 11.67-0.6677
38 12 11.38 0.6157
39 13 11.67 1.332
40 11 11.38-0.3843
41 12 11.67 0.3323
42 9 11.38-2.384
43 12 11.1 0.8991
44 11 11.1-0.1009
45 12 11.38 0.6157
46 12 11.67 0.3323
47 11 11.67-0.6677
48 10 11.1-1.101
49 9 11.1-2.101
50 12 11.38 0.6157
51 13 11.67 1.332
52 13 11.67 1.332
53 9 11.67-2.668
54 11 11.67-0.6677
55 11 11.38-0.3843
56 11 11.67-0.6677
57 12 11.67 0.3323
58 12 11.38 0.6157
59 11 11.38-0.3843
60 12 11.67 0.3323
61 11 11.67-0.6677
62 12 11.1 0.8991
63 11 11.1-0.1009
64 11 11.38-0.3843
65 8 11.1-3.101
66 12 11.1 0.8991
67 11 11.1-0.1009
68 12 11.1 0.8991
69 11 10.82 0.1825
70 11 11.38-0.3843
71 11 11.1-0.1009
72 10 11.1-1.101
73 10 11.67-1.668
74 13 11.67 1.332
75 11 11.38-0.3843
76 11 11.1-0.1009
77 11 11.67-0.6677
78 13 10.82 2.182
79 12 11.95 0.04892
80 12 11.38 0.6157
81 9 11.38-2.384
82 12 11.67 0.3323
83 12 11.67 0.3323
84 13 11.95 1.049
85 15 11.67 3.332
86 13 11.95 1.049
87 13 11.67 1.332
88 11 11.67-0.6677
89 12 11.67 0.3323
90 9 11.67-2.668
91 11 11.38-0.3843
92 13 11.67 1.332
93 12 11.95 0.04892
94 13 11.95 1.049
95 11 11.38-0.3843
96 12 11.67 0.3323
97 14 11.38 2.616
98 13 11.95 1.049
99 11 11.67-0.6677
100 12 11.67 0.3323
101 13 11.38 1.616
102 11 11.67-0.6677
103 11 11.67-0.6677
104 11 11.38-0.3843
105 13 11.95 1.049
106 12 11.1 0.8991
107 12 11.38 0.6157
108 11 11.67-0.6677
109 12 11.38 0.6157
110 12 11.38 0.6157
111 10 11.38-1.384
112 11 11.1-0.1009
113 9 11.38-2.384
114 14 11.67 2.332
115 12 11.38 0.6157
116 11 11.67-0.6677
117 13 11.95 1.049
118 11 11.95-0.9511
119 11 11.67-0.6677
120 11 11.1-0.1009
121 11 11.38-0.3843
122 12 11.67 0.3323
123 11 11.67-0.6677
124 13 11.38 1.616
125 11 11.38-0.3843
126 11 11.38-0.3843
127 12 11.67 0.3323
128 11 11.67-0.6677
129 11 11.67-0.6677
130 9 11.38-2.384
131 12 11.1 0.8991
132 14 11.67 2.332
133 10 11.67-1.668
134 9 11.95-2.951
135 12 11.38 0.6157
136 14 11.38 2.616
137 9 11.1-2.101
138 11 11.38-0.3843
139 14 11.95 2.049
140 13 11.95 1.049
141 10 11.67-1.668
142 11 11.95-0.9511
143 12 10.82 1.182
144 10 11.38-1.384
145 13 11.67 1.332
146 12 11.67 0.3323
147 14 11.1 2.899
148 10 11.67-1.668
149 12 11.1 0.8991
150 9 11.1-2.101
151 12 11.38 0.6157
152 11 11.1-0.1009
153 11 11.38-0.3843
154 10 11.1-1.101
155 11 11.38-0.3843
156 12 11.1 0.8991
157 10 11.67-1.668
158 11 11.1-0.1009
159 13 11.95 1.049
160 11 11.1-0.1009
161 13 11.38 1.616
162 12 11.67 0.3323
163 11 11.67-0.6677
164 12 11.67 0.3323
165 10 11.1-1.101
166 12 11.38 0.6157
167 10 11.38-1.384
168 13 11.67 1.332







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5 0.8013 0.3973 0.1987
6 0.6754 0.6492 0.3246
7 0.6237 0.7527 0.3763
8 0.4995 0.999 0.5005
9 0.4738 0.9477 0.5262
10 0.5047 0.9906 0.4953
11 0.4013 0.8027 0.5987
12 0.3623 0.7245 0.6377
13 0.297 0.5941 0.703
14 0.406 0.8121 0.594
15 0.3443 0.6886 0.6557
16 0.2749 0.5499 0.7251
17 0.214 0.4281 0.786
18 0.1901 0.3802 0.8099
19 0.2209 0.4418 0.7791
20 0.1877 0.3753 0.8123
21 0.1562 0.3124 0.8438
22 0.1268 0.2535 0.8732
23 0.1027 0.2055 0.8973
24 0.1239 0.2478 0.8761
25 0.1005 0.201 0.8995
26 0.07664 0.1533 0.9234
27 0.06177 0.1235 0.9382
28 0.04668 0.09336 0.9533
29 0.03585 0.07169 0.9642
30 0.0527 0.1054 0.9473
31 0.0425 0.08499 0.9575
32 0.03206 0.06411 0.9679
33 0.0249 0.0498 0.9751
34 0.08282 0.1656 0.9172
35 0.06439 0.1288 0.9356
36 0.05195 0.1039 0.948
37 0.04145 0.08289 0.9586
38 0.03306 0.06612 0.9669
39 0.0408 0.08159 0.9592
40 0.03162 0.06323 0.9684
41 0.02406 0.04812 0.9759
42 0.0705 0.141 0.9295
43 0.0612 0.1224 0.9388
44 0.04746 0.09492 0.9525
45 0.03873 0.07745 0.9613
46 0.03018 0.06036 0.9698
47 0.02426 0.04851 0.9757
48 0.02585 0.0517 0.9741
49 0.05356 0.1071 0.9464
50 0.04496 0.08993 0.955
51 0.05135 0.1027 0.9487
52 0.05724 0.1145 0.9428
53 0.1421 0.2842 0.8579
54 0.1229 0.2457 0.8771
55 0.1019 0.2037 0.8981
56 0.0868 0.1736 0.9132
57 0.07146 0.1429 0.9285
58 0.06088 0.1218 0.9391
59 0.04891 0.09781 0.9511
60 0.03925 0.07849 0.9608
61 0.03246 0.06493 0.9675
62 0.02897 0.05794 0.971
63 0.0221 0.0442 0.9779
64 0.01709 0.03419 0.9829
65 0.0802 0.1604 0.9198
66 0.07413 0.1483 0.9259
67 0.05934 0.1187 0.9407
68 0.05421 0.1084 0.9458
69 0.04289 0.08578 0.9571
70 0.03423 0.06846 0.9658
71 0.02647 0.05294 0.9735
72 0.02565 0.05129 0.9744
73 0.03225 0.0645 0.9678
74 0.03609 0.07218 0.9639
75 0.02868 0.05737 0.9713
76 0.02209 0.04418 0.9779
77 0.01814 0.03628 0.9819
78 0.03366 0.06732 0.9663
79 0.02645 0.0529 0.9736
80 0.02199 0.04399 0.978
81 0.04673 0.09346 0.9533
82 0.03794 0.07588 0.9621
83 0.03052 0.06105 0.9695
84 0.02986 0.05972 0.9701
85 0.1325 0.265 0.8675
86 0.1274 0.2548 0.8726
87 0.1329 0.2658 0.8671
88 0.1171 0.2341 0.8829
89 0.09812 0.1962 0.9019
90 0.1952 0.3904 0.8048
91 0.1689 0.3379 0.8311
92 0.1751 0.3502 0.8249
93 0.148 0.296 0.852
94 0.1417 0.2835 0.8583
95 0.1205 0.241 0.8795
96 0.101 0.2021 0.899
97 0.1929 0.3858 0.8071
98 0.1859 0.3718 0.8141
99 0.1655 0.331 0.8345
100 0.1411 0.2822 0.8589
101 0.1617 0.3234 0.8383
102 0.1428 0.2857 0.8572
103 0.1255 0.2511 0.8745
104 0.1056 0.2113 0.8944
105 0.1012 0.2023 0.8988
106 0.09218 0.1844 0.9078
107 0.07912 0.1582 0.9209
108 0.06765 0.1353 0.9323
109 0.05735 0.1147 0.9427
110 0.04834 0.09669 0.9517
111 0.05109 0.1022 0.9489
112 0.04011 0.08022 0.9599
113 0.0759 0.1518 0.9241
114 0.1316 0.2631 0.8684
115 0.114 0.228 0.886
116 0.09799 0.196 0.902
117 0.09512 0.1902 0.9049
118 0.0852 0.1704 0.9148
119 0.07206 0.1441 0.9279
120 0.05705 0.1141 0.9429
121 0.0455 0.091 0.9545
122 0.03592 0.07183 0.9641
123 0.02926 0.05851 0.9707
124 0.03546 0.07092 0.9645
125 0.02745 0.05491 0.9725
126 0.02099 0.04198 0.979
127 0.01591 0.03183 0.9841
128 0.01246 0.02492 0.9875
129 0.009678 0.01936 0.9903
130 0.02174 0.04348 0.9783
131 0.01834 0.03667 0.9817
132 0.03852 0.07703 0.9615
133 0.04579 0.09157 0.9542
134 0.1446 0.2893 0.8554
135 0.1214 0.2428 0.8786
136 0.2428 0.4856 0.7572
137 0.3267 0.6534 0.6733
138 0.2818 0.5636 0.7182
139 0.3748 0.7497 0.6252
140 0.3751 0.7503 0.6249
141 0.413 0.8259 0.587
142 0.3841 0.7681 0.6159
143 0.3816 0.7633 0.6184
144 0.4018 0.8035 0.5982
145 0.4061 0.8122 0.5939
146 0.347 0.6939 0.653
147 0.7086 0.5828 0.2914
148 0.7896 0.4208 0.2104
149 0.8035 0.393 0.1965
150 0.8787 0.2425 0.1213
151 0.8503 0.2994 0.1497
152 0.7979 0.4041 0.2021
153 0.7379 0.5243 0.2621
154 0.7097 0.5805 0.2903
155 0.638 0.724 0.362
156 0.63 0.7401 0.37
157 0.814 0.372 0.186
158 0.7373 0.5253 0.2627
159 0.6403 0.7195 0.3597
160 0.5337 0.9325 0.4663
161 0.737 0.5261 0.263
162 0.5975 0.8049 0.4025
163 0.6179 0.7642 0.3821

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 &  0.8013 &  0.3973 &  0.1987 \tabularnewline
6 &  0.6754 &  0.6492 &  0.3246 \tabularnewline
7 &  0.6237 &  0.7527 &  0.3763 \tabularnewline
8 &  0.4995 &  0.999 &  0.5005 \tabularnewline
9 &  0.4738 &  0.9477 &  0.5262 \tabularnewline
10 &  0.5047 &  0.9906 &  0.4953 \tabularnewline
11 &  0.4013 &  0.8027 &  0.5987 \tabularnewline
12 &  0.3623 &  0.7245 &  0.6377 \tabularnewline
13 &  0.297 &  0.5941 &  0.703 \tabularnewline
14 &  0.406 &  0.8121 &  0.594 \tabularnewline
15 &  0.3443 &  0.6886 &  0.6557 \tabularnewline
16 &  0.2749 &  0.5499 &  0.7251 \tabularnewline
17 &  0.214 &  0.4281 &  0.786 \tabularnewline
18 &  0.1901 &  0.3802 &  0.8099 \tabularnewline
19 &  0.2209 &  0.4418 &  0.7791 \tabularnewline
20 &  0.1877 &  0.3753 &  0.8123 \tabularnewline
21 &  0.1562 &  0.3124 &  0.8438 \tabularnewline
22 &  0.1268 &  0.2535 &  0.8732 \tabularnewline
23 &  0.1027 &  0.2055 &  0.8973 \tabularnewline
24 &  0.1239 &  0.2478 &  0.8761 \tabularnewline
25 &  0.1005 &  0.201 &  0.8995 \tabularnewline
26 &  0.07664 &  0.1533 &  0.9234 \tabularnewline
27 &  0.06177 &  0.1235 &  0.9382 \tabularnewline
28 &  0.04668 &  0.09336 &  0.9533 \tabularnewline
29 &  0.03585 &  0.07169 &  0.9642 \tabularnewline
30 &  0.0527 &  0.1054 &  0.9473 \tabularnewline
31 &  0.0425 &  0.08499 &  0.9575 \tabularnewline
32 &  0.03206 &  0.06411 &  0.9679 \tabularnewline
33 &  0.0249 &  0.0498 &  0.9751 \tabularnewline
34 &  0.08282 &  0.1656 &  0.9172 \tabularnewline
35 &  0.06439 &  0.1288 &  0.9356 \tabularnewline
36 &  0.05195 &  0.1039 &  0.948 \tabularnewline
37 &  0.04145 &  0.08289 &  0.9586 \tabularnewline
38 &  0.03306 &  0.06612 &  0.9669 \tabularnewline
39 &  0.0408 &  0.08159 &  0.9592 \tabularnewline
40 &  0.03162 &  0.06323 &  0.9684 \tabularnewline
41 &  0.02406 &  0.04812 &  0.9759 \tabularnewline
42 &  0.0705 &  0.141 &  0.9295 \tabularnewline
43 &  0.0612 &  0.1224 &  0.9388 \tabularnewline
44 &  0.04746 &  0.09492 &  0.9525 \tabularnewline
45 &  0.03873 &  0.07745 &  0.9613 \tabularnewline
46 &  0.03018 &  0.06036 &  0.9698 \tabularnewline
47 &  0.02426 &  0.04851 &  0.9757 \tabularnewline
48 &  0.02585 &  0.0517 &  0.9741 \tabularnewline
49 &  0.05356 &  0.1071 &  0.9464 \tabularnewline
50 &  0.04496 &  0.08993 &  0.955 \tabularnewline
51 &  0.05135 &  0.1027 &  0.9487 \tabularnewline
52 &  0.05724 &  0.1145 &  0.9428 \tabularnewline
53 &  0.1421 &  0.2842 &  0.8579 \tabularnewline
54 &  0.1229 &  0.2457 &  0.8771 \tabularnewline
55 &  0.1019 &  0.2037 &  0.8981 \tabularnewline
56 &  0.0868 &  0.1736 &  0.9132 \tabularnewline
57 &  0.07146 &  0.1429 &  0.9285 \tabularnewline
58 &  0.06088 &  0.1218 &  0.9391 \tabularnewline
59 &  0.04891 &  0.09781 &  0.9511 \tabularnewline
60 &  0.03925 &  0.07849 &  0.9608 \tabularnewline
61 &  0.03246 &  0.06493 &  0.9675 \tabularnewline
62 &  0.02897 &  0.05794 &  0.971 \tabularnewline
63 &  0.0221 &  0.0442 &  0.9779 \tabularnewline
64 &  0.01709 &  0.03419 &  0.9829 \tabularnewline
65 &  0.0802 &  0.1604 &  0.9198 \tabularnewline
66 &  0.07413 &  0.1483 &  0.9259 \tabularnewline
67 &  0.05934 &  0.1187 &  0.9407 \tabularnewline
68 &  0.05421 &  0.1084 &  0.9458 \tabularnewline
69 &  0.04289 &  0.08578 &  0.9571 \tabularnewline
70 &  0.03423 &  0.06846 &  0.9658 \tabularnewline
71 &  0.02647 &  0.05294 &  0.9735 \tabularnewline
72 &  0.02565 &  0.05129 &  0.9744 \tabularnewline
73 &  0.03225 &  0.0645 &  0.9678 \tabularnewline
74 &  0.03609 &  0.07218 &  0.9639 \tabularnewline
75 &  0.02868 &  0.05737 &  0.9713 \tabularnewline
76 &  0.02209 &  0.04418 &  0.9779 \tabularnewline
77 &  0.01814 &  0.03628 &  0.9819 \tabularnewline
78 &  0.03366 &  0.06732 &  0.9663 \tabularnewline
79 &  0.02645 &  0.0529 &  0.9736 \tabularnewline
80 &  0.02199 &  0.04399 &  0.978 \tabularnewline
81 &  0.04673 &  0.09346 &  0.9533 \tabularnewline
82 &  0.03794 &  0.07588 &  0.9621 \tabularnewline
83 &  0.03052 &  0.06105 &  0.9695 \tabularnewline
84 &  0.02986 &  0.05972 &  0.9701 \tabularnewline
85 &  0.1325 &  0.265 &  0.8675 \tabularnewline
86 &  0.1274 &  0.2548 &  0.8726 \tabularnewline
87 &  0.1329 &  0.2658 &  0.8671 \tabularnewline
88 &  0.1171 &  0.2341 &  0.8829 \tabularnewline
89 &  0.09812 &  0.1962 &  0.9019 \tabularnewline
90 &  0.1952 &  0.3904 &  0.8048 \tabularnewline
91 &  0.1689 &  0.3379 &  0.8311 \tabularnewline
92 &  0.1751 &  0.3502 &  0.8249 \tabularnewline
93 &  0.148 &  0.296 &  0.852 \tabularnewline
94 &  0.1417 &  0.2835 &  0.8583 \tabularnewline
95 &  0.1205 &  0.241 &  0.8795 \tabularnewline
96 &  0.101 &  0.2021 &  0.899 \tabularnewline
97 &  0.1929 &  0.3858 &  0.8071 \tabularnewline
98 &  0.1859 &  0.3718 &  0.8141 \tabularnewline
99 &  0.1655 &  0.331 &  0.8345 \tabularnewline
100 &  0.1411 &  0.2822 &  0.8589 \tabularnewline
101 &  0.1617 &  0.3234 &  0.8383 \tabularnewline
102 &  0.1428 &  0.2857 &  0.8572 \tabularnewline
103 &  0.1255 &  0.2511 &  0.8745 \tabularnewline
104 &  0.1056 &  0.2113 &  0.8944 \tabularnewline
105 &  0.1012 &  0.2023 &  0.8988 \tabularnewline
106 &  0.09218 &  0.1844 &  0.9078 \tabularnewline
107 &  0.07912 &  0.1582 &  0.9209 \tabularnewline
108 &  0.06765 &  0.1353 &  0.9323 \tabularnewline
109 &  0.05735 &  0.1147 &  0.9427 \tabularnewline
110 &  0.04834 &  0.09669 &  0.9517 \tabularnewline
111 &  0.05109 &  0.1022 &  0.9489 \tabularnewline
112 &  0.04011 &  0.08022 &  0.9599 \tabularnewline
113 &  0.0759 &  0.1518 &  0.9241 \tabularnewline
114 &  0.1316 &  0.2631 &  0.8684 \tabularnewline
115 &  0.114 &  0.228 &  0.886 \tabularnewline
116 &  0.09799 &  0.196 &  0.902 \tabularnewline
117 &  0.09512 &  0.1902 &  0.9049 \tabularnewline
118 &  0.0852 &  0.1704 &  0.9148 \tabularnewline
119 &  0.07206 &  0.1441 &  0.9279 \tabularnewline
120 &  0.05705 &  0.1141 &  0.9429 \tabularnewline
121 &  0.0455 &  0.091 &  0.9545 \tabularnewline
122 &  0.03592 &  0.07183 &  0.9641 \tabularnewline
123 &  0.02926 &  0.05851 &  0.9707 \tabularnewline
124 &  0.03546 &  0.07092 &  0.9645 \tabularnewline
125 &  0.02745 &  0.05491 &  0.9725 \tabularnewline
126 &  0.02099 &  0.04198 &  0.979 \tabularnewline
127 &  0.01591 &  0.03183 &  0.9841 \tabularnewline
128 &  0.01246 &  0.02492 &  0.9875 \tabularnewline
129 &  0.009678 &  0.01936 &  0.9903 \tabularnewline
130 &  0.02174 &  0.04348 &  0.9783 \tabularnewline
131 &  0.01834 &  0.03667 &  0.9817 \tabularnewline
132 &  0.03852 &  0.07703 &  0.9615 \tabularnewline
133 &  0.04579 &  0.09157 &  0.9542 \tabularnewline
134 &  0.1446 &  0.2893 &  0.8554 \tabularnewline
135 &  0.1214 &  0.2428 &  0.8786 \tabularnewline
136 &  0.2428 &  0.4856 &  0.7572 \tabularnewline
137 &  0.3267 &  0.6534 &  0.6733 \tabularnewline
138 &  0.2818 &  0.5636 &  0.7182 \tabularnewline
139 &  0.3748 &  0.7497 &  0.6252 \tabularnewline
140 &  0.3751 &  0.7503 &  0.6249 \tabularnewline
141 &  0.413 &  0.8259 &  0.587 \tabularnewline
142 &  0.3841 &  0.7681 &  0.6159 \tabularnewline
143 &  0.3816 &  0.7633 &  0.6184 \tabularnewline
144 &  0.4018 &  0.8035 &  0.5982 \tabularnewline
145 &  0.4061 &  0.8122 &  0.5939 \tabularnewline
146 &  0.347 &  0.6939 &  0.653 \tabularnewline
147 &  0.7086 &  0.5828 &  0.2914 \tabularnewline
148 &  0.7896 &  0.4208 &  0.2104 \tabularnewline
149 &  0.8035 &  0.393 &  0.1965 \tabularnewline
150 &  0.8787 &  0.2425 &  0.1213 \tabularnewline
151 &  0.8503 &  0.2994 &  0.1497 \tabularnewline
152 &  0.7979 &  0.4041 &  0.2021 \tabularnewline
153 &  0.7379 &  0.5243 &  0.2621 \tabularnewline
154 &  0.7097 &  0.5805 &  0.2903 \tabularnewline
155 &  0.638 &  0.724 &  0.362 \tabularnewline
156 &  0.63 &  0.7401 &  0.37 \tabularnewline
157 &  0.814 &  0.372 &  0.186 \tabularnewline
158 &  0.7373 &  0.5253 &  0.2627 \tabularnewline
159 &  0.6403 &  0.7195 &  0.3597 \tabularnewline
160 &  0.5337 &  0.9325 &  0.4663 \tabularnewline
161 &  0.737 &  0.5261 &  0.263 \tabularnewline
162 &  0.5975 &  0.8049 &  0.4025 \tabularnewline
163 &  0.6179 &  0.7642 &  0.3821 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C] 0.8013[/C][C] 0.3973[/C][C] 0.1987[/C][/ROW]
[ROW][C]6[/C][C] 0.6754[/C][C] 0.6492[/C][C] 0.3246[/C][/ROW]
[ROW][C]7[/C][C] 0.6237[/C][C] 0.7527[/C][C] 0.3763[/C][/ROW]
[ROW][C]8[/C][C] 0.4995[/C][C] 0.999[/C][C] 0.5005[/C][/ROW]
[ROW][C]9[/C][C] 0.4738[/C][C] 0.9477[/C][C] 0.5262[/C][/ROW]
[ROW][C]10[/C][C] 0.5047[/C][C] 0.9906[/C][C] 0.4953[/C][/ROW]
[ROW][C]11[/C][C] 0.4013[/C][C] 0.8027[/C][C] 0.5987[/C][/ROW]
[ROW][C]12[/C][C] 0.3623[/C][C] 0.7245[/C][C] 0.6377[/C][/ROW]
[ROW][C]13[/C][C] 0.297[/C][C] 0.5941[/C][C] 0.703[/C][/ROW]
[ROW][C]14[/C][C] 0.406[/C][C] 0.8121[/C][C] 0.594[/C][/ROW]
[ROW][C]15[/C][C] 0.3443[/C][C] 0.6886[/C][C] 0.6557[/C][/ROW]
[ROW][C]16[/C][C] 0.2749[/C][C] 0.5499[/C][C] 0.7251[/C][/ROW]
[ROW][C]17[/C][C] 0.214[/C][C] 0.4281[/C][C] 0.786[/C][/ROW]
[ROW][C]18[/C][C] 0.1901[/C][C] 0.3802[/C][C] 0.8099[/C][/ROW]
[ROW][C]19[/C][C] 0.2209[/C][C] 0.4418[/C][C] 0.7791[/C][/ROW]
[ROW][C]20[/C][C] 0.1877[/C][C] 0.3753[/C][C] 0.8123[/C][/ROW]
[ROW][C]21[/C][C] 0.1562[/C][C] 0.3124[/C][C] 0.8438[/C][/ROW]
[ROW][C]22[/C][C] 0.1268[/C][C] 0.2535[/C][C] 0.8732[/C][/ROW]
[ROW][C]23[/C][C] 0.1027[/C][C] 0.2055[/C][C] 0.8973[/C][/ROW]
[ROW][C]24[/C][C] 0.1239[/C][C] 0.2478[/C][C] 0.8761[/C][/ROW]
[ROW][C]25[/C][C] 0.1005[/C][C] 0.201[/C][C] 0.8995[/C][/ROW]
[ROW][C]26[/C][C] 0.07664[/C][C] 0.1533[/C][C] 0.9234[/C][/ROW]
[ROW][C]27[/C][C] 0.06177[/C][C] 0.1235[/C][C] 0.9382[/C][/ROW]
[ROW][C]28[/C][C] 0.04668[/C][C] 0.09336[/C][C] 0.9533[/C][/ROW]
[ROW][C]29[/C][C] 0.03585[/C][C] 0.07169[/C][C] 0.9642[/C][/ROW]
[ROW][C]30[/C][C] 0.0527[/C][C] 0.1054[/C][C] 0.9473[/C][/ROW]
[ROW][C]31[/C][C] 0.0425[/C][C] 0.08499[/C][C] 0.9575[/C][/ROW]
[ROW][C]32[/C][C] 0.03206[/C][C] 0.06411[/C][C] 0.9679[/C][/ROW]
[ROW][C]33[/C][C] 0.0249[/C][C] 0.0498[/C][C] 0.9751[/C][/ROW]
[ROW][C]34[/C][C] 0.08282[/C][C] 0.1656[/C][C] 0.9172[/C][/ROW]
[ROW][C]35[/C][C] 0.06439[/C][C] 0.1288[/C][C] 0.9356[/C][/ROW]
[ROW][C]36[/C][C] 0.05195[/C][C] 0.1039[/C][C] 0.948[/C][/ROW]
[ROW][C]37[/C][C] 0.04145[/C][C] 0.08289[/C][C] 0.9586[/C][/ROW]
[ROW][C]38[/C][C] 0.03306[/C][C] 0.06612[/C][C] 0.9669[/C][/ROW]
[ROW][C]39[/C][C] 0.0408[/C][C] 0.08159[/C][C] 0.9592[/C][/ROW]
[ROW][C]40[/C][C] 0.03162[/C][C] 0.06323[/C][C] 0.9684[/C][/ROW]
[ROW][C]41[/C][C] 0.02406[/C][C] 0.04812[/C][C] 0.9759[/C][/ROW]
[ROW][C]42[/C][C] 0.0705[/C][C] 0.141[/C][C] 0.9295[/C][/ROW]
[ROW][C]43[/C][C] 0.0612[/C][C] 0.1224[/C][C] 0.9388[/C][/ROW]
[ROW][C]44[/C][C] 0.04746[/C][C] 0.09492[/C][C] 0.9525[/C][/ROW]
[ROW][C]45[/C][C] 0.03873[/C][C] 0.07745[/C][C] 0.9613[/C][/ROW]
[ROW][C]46[/C][C] 0.03018[/C][C] 0.06036[/C][C] 0.9698[/C][/ROW]
[ROW][C]47[/C][C] 0.02426[/C][C] 0.04851[/C][C] 0.9757[/C][/ROW]
[ROW][C]48[/C][C] 0.02585[/C][C] 0.0517[/C][C] 0.9741[/C][/ROW]
[ROW][C]49[/C][C] 0.05356[/C][C] 0.1071[/C][C] 0.9464[/C][/ROW]
[ROW][C]50[/C][C] 0.04496[/C][C] 0.08993[/C][C] 0.955[/C][/ROW]
[ROW][C]51[/C][C] 0.05135[/C][C] 0.1027[/C][C] 0.9487[/C][/ROW]
[ROW][C]52[/C][C] 0.05724[/C][C] 0.1145[/C][C] 0.9428[/C][/ROW]
[ROW][C]53[/C][C] 0.1421[/C][C] 0.2842[/C][C] 0.8579[/C][/ROW]
[ROW][C]54[/C][C] 0.1229[/C][C] 0.2457[/C][C] 0.8771[/C][/ROW]
[ROW][C]55[/C][C] 0.1019[/C][C] 0.2037[/C][C] 0.8981[/C][/ROW]
[ROW][C]56[/C][C] 0.0868[/C][C] 0.1736[/C][C] 0.9132[/C][/ROW]
[ROW][C]57[/C][C] 0.07146[/C][C] 0.1429[/C][C] 0.9285[/C][/ROW]
[ROW][C]58[/C][C] 0.06088[/C][C] 0.1218[/C][C] 0.9391[/C][/ROW]
[ROW][C]59[/C][C] 0.04891[/C][C] 0.09781[/C][C] 0.9511[/C][/ROW]
[ROW][C]60[/C][C] 0.03925[/C][C] 0.07849[/C][C] 0.9608[/C][/ROW]
[ROW][C]61[/C][C] 0.03246[/C][C] 0.06493[/C][C] 0.9675[/C][/ROW]
[ROW][C]62[/C][C] 0.02897[/C][C] 0.05794[/C][C] 0.971[/C][/ROW]
[ROW][C]63[/C][C] 0.0221[/C][C] 0.0442[/C][C] 0.9779[/C][/ROW]
[ROW][C]64[/C][C] 0.01709[/C][C] 0.03419[/C][C] 0.9829[/C][/ROW]
[ROW][C]65[/C][C] 0.0802[/C][C] 0.1604[/C][C] 0.9198[/C][/ROW]
[ROW][C]66[/C][C] 0.07413[/C][C] 0.1483[/C][C] 0.9259[/C][/ROW]
[ROW][C]67[/C][C] 0.05934[/C][C] 0.1187[/C][C] 0.9407[/C][/ROW]
[ROW][C]68[/C][C] 0.05421[/C][C] 0.1084[/C][C] 0.9458[/C][/ROW]
[ROW][C]69[/C][C] 0.04289[/C][C] 0.08578[/C][C] 0.9571[/C][/ROW]
[ROW][C]70[/C][C] 0.03423[/C][C] 0.06846[/C][C] 0.9658[/C][/ROW]
[ROW][C]71[/C][C] 0.02647[/C][C] 0.05294[/C][C] 0.9735[/C][/ROW]
[ROW][C]72[/C][C] 0.02565[/C][C] 0.05129[/C][C] 0.9744[/C][/ROW]
[ROW][C]73[/C][C] 0.03225[/C][C] 0.0645[/C][C] 0.9678[/C][/ROW]
[ROW][C]74[/C][C] 0.03609[/C][C] 0.07218[/C][C] 0.9639[/C][/ROW]
[ROW][C]75[/C][C] 0.02868[/C][C] 0.05737[/C][C] 0.9713[/C][/ROW]
[ROW][C]76[/C][C] 0.02209[/C][C] 0.04418[/C][C] 0.9779[/C][/ROW]
[ROW][C]77[/C][C] 0.01814[/C][C] 0.03628[/C][C] 0.9819[/C][/ROW]
[ROW][C]78[/C][C] 0.03366[/C][C] 0.06732[/C][C] 0.9663[/C][/ROW]
[ROW][C]79[/C][C] 0.02645[/C][C] 0.0529[/C][C] 0.9736[/C][/ROW]
[ROW][C]80[/C][C] 0.02199[/C][C] 0.04399[/C][C] 0.978[/C][/ROW]
[ROW][C]81[/C][C] 0.04673[/C][C] 0.09346[/C][C] 0.9533[/C][/ROW]
[ROW][C]82[/C][C] 0.03794[/C][C] 0.07588[/C][C] 0.9621[/C][/ROW]
[ROW][C]83[/C][C] 0.03052[/C][C] 0.06105[/C][C] 0.9695[/C][/ROW]
[ROW][C]84[/C][C] 0.02986[/C][C] 0.05972[/C][C] 0.9701[/C][/ROW]
[ROW][C]85[/C][C] 0.1325[/C][C] 0.265[/C][C] 0.8675[/C][/ROW]
[ROW][C]86[/C][C] 0.1274[/C][C] 0.2548[/C][C] 0.8726[/C][/ROW]
[ROW][C]87[/C][C] 0.1329[/C][C] 0.2658[/C][C] 0.8671[/C][/ROW]
[ROW][C]88[/C][C] 0.1171[/C][C] 0.2341[/C][C] 0.8829[/C][/ROW]
[ROW][C]89[/C][C] 0.09812[/C][C] 0.1962[/C][C] 0.9019[/C][/ROW]
[ROW][C]90[/C][C] 0.1952[/C][C] 0.3904[/C][C] 0.8048[/C][/ROW]
[ROW][C]91[/C][C] 0.1689[/C][C] 0.3379[/C][C] 0.8311[/C][/ROW]
[ROW][C]92[/C][C] 0.1751[/C][C] 0.3502[/C][C] 0.8249[/C][/ROW]
[ROW][C]93[/C][C] 0.148[/C][C] 0.296[/C][C] 0.852[/C][/ROW]
[ROW][C]94[/C][C] 0.1417[/C][C] 0.2835[/C][C] 0.8583[/C][/ROW]
[ROW][C]95[/C][C] 0.1205[/C][C] 0.241[/C][C] 0.8795[/C][/ROW]
[ROW][C]96[/C][C] 0.101[/C][C] 0.2021[/C][C] 0.899[/C][/ROW]
[ROW][C]97[/C][C] 0.1929[/C][C] 0.3858[/C][C] 0.8071[/C][/ROW]
[ROW][C]98[/C][C] 0.1859[/C][C] 0.3718[/C][C] 0.8141[/C][/ROW]
[ROW][C]99[/C][C] 0.1655[/C][C] 0.331[/C][C] 0.8345[/C][/ROW]
[ROW][C]100[/C][C] 0.1411[/C][C] 0.2822[/C][C] 0.8589[/C][/ROW]
[ROW][C]101[/C][C] 0.1617[/C][C] 0.3234[/C][C] 0.8383[/C][/ROW]
[ROW][C]102[/C][C] 0.1428[/C][C] 0.2857[/C][C] 0.8572[/C][/ROW]
[ROW][C]103[/C][C] 0.1255[/C][C] 0.2511[/C][C] 0.8745[/C][/ROW]
[ROW][C]104[/C][C] 0.1056[/C][C] 0.2113[/C][C] 0.8944[/C][/ROW]
[ROW][C]105[/C][C] 0.1012[/C][C] 0.2023[/C][C] 0.8988[/C][/ROW]
[ROW][C]106[/C][C] 0.09218[/C][C] 0.1844[/C][C] 0.9078[/C][/ROW]
[ROW][C]107[/C][C] 0.07912[/C][C] 0.1582[/C][C] 0.9209[/C][/ROW]
[ROW][C]108[/C][C] 0.06765[/C][C] 0.1353[/C][C] 0.9323[/C][/ROW]
[ROW][C]109[/C][C] 0.05735[/C][C] 0.1147[/C][C] 0.9427[/C][/ROW]
[ROW][C]110[/C][C] 0.04834[/C][C] 0.09669[/C][C] 0.9517[/C][/ROW]
[ROW][C]111[/C][C] 0.05109[/C][C] 0.1022[/C][C] 0.9489[/C][/ROW]
[ROW][C]112[/C][C] 0.04011[/C][C] 0.08022[/C][C] 0.9599[/C][/ROW]
[ROW][C]113[/C][C] 0.0759[/C][C] 0.1518[/C][C] 0.9241[/C][/ROW]
[ROW][C]114[/C][C] 0.1316[/C][C] 0.2631[/C][C] 0.8684[/C][/ROW]
[ROW][C]115[/C][C] 0.114[/C][C] 0.228[/C][C] 0.886[/C][/ROW]
[ROW][C]116[/C][C] 0.09799[/C][C] 0.196[/C][C] 0.902[/C][/ROW]
[ROW][C]117[/C][C] 0.09512[/C][C] 0.1902[/C][C] 0.9049[/C][/ROW]
[ROW][C]118[/C][C] 0.0852[/C][C] 0.1704[/C][C] 0.9148[/C][/ROW]
[ROW][C]119[/C][C] 0.07206[/C][C] 0.1441[/C][C] 0.9279[/C][/ROW]
[ROW][C]120[/C][C] 0.05705[/C][C] 0.1141[/C][C] 0.9429[/C][/ROW]
[ROW][C]121[/C][C] 0.0455[/C][C] 0.091[/C][C] 0.9545[/C][/ROW]
[ROW][C]122[/C][C] 0.03592[/C][C] 0.07183[/C][C] 0.9641[/C][/ROW]
[ROW][C]123[/C][C] 0.02926[/C][C] 0.05851[/C][C] 0.9707[/C][/ROW]
[ROW][C]124[/C][C] 0.03546[/C][C] 0.07092[/C][C] 0.9645[/C][/ROW]
[ROW][C]125[/C][C] 0.02745[/C][C] 0.05491[/C][C] 0.9725[/C][/ROW]
[ROW][C]126[/C][C] 0.02099[/C][C] 0.04198[/C][C] 0.979[/C][/ROW]
[ROW][C]127[/C][C] 0.01591[/C][C] 0.03183[/C][C] 0.9841[/C][/ROW]
[ROW][C]128[/C][C] 0.01246[/C][C] 0.02492[/C][C] 0.9875[/C][/ROW]
[ROW][C]129[/C][C] 0.009678[/C][C] 0.01936[/C][C] 0.9903[/C][/ROW]
[ROW][C]130[/C][C] 0.02174[/C][C] 0.04348[/C][C] 0.9783[/C][/ROW]
[ROW][C]131[/C][C] 0.01834[/C][C] 0.03667[/C][C] 0.9817[/C][/ROW]
[ROW][C]132[/C][C] 0.03852[/C][C] 0.07703[/C][C] 0.9615[/C][/ROW]
[ROW][C]133[/C][C] 0.04579[/C][C] 0.09157[/C][C] 0.9542[/C][/ROW]
[ROW][C]134[/C][C] 0.1446[/C][C] 0.2893[/C][C] 0.8554[/C][/ROW]
[ROW][C]135[/C][C] 0.1214[/C][C] 0.2428[/C][C] 0.8786[/C][/ROW]
[ROW][C]136[/C][C] 0.2428[/C][C] 0.4856[/C][C] 0.7572[/C][/ROW]
[ROW][C]137[/C][C] 0.3267[/C][C] 0.6534[/C][C] 0.6733[/C][/ROW]
[ROW][C]138[/C][C] 0.2818[/C][C] 0.5636[/C][C] 0.7182[/C][/ROW]
[ROW][C]139[/C][C] 0.3748[/C][C] 0.7497[/C][C] 0.6252[/C][/ROW]
[ROW][C]140[/C][C] 0.3751[/C][C] 0.7503[/C][C] 0.6249[/C][/ROW]
[ROW][C]141[/C][C] 0.413[/C][C] 0.8259[/C][C] 0.587[/C][/ROW]
[ROW][C]142[/C][C] 0.3841[/C][C] 0.7681[/C][C] 0.6159[/C][/ROW]
[ROW][C]143[/C][C] 0.3816[/C][C] 0.7633[/C][C] 0.6184[/C][/ROW]
[ROW][C]144[/C][C] 0.4018[/C][C] 0.8035[/C][C] 0.5982[/C][/ROW]
[ROW][C]145[/C][C] 0.4061[/C][C] 0.8122[/C][C] 0.5939[/C][/ROW]
[ROW][C]146[/C][C] 0.347[/C][C] 0.6939[/C][C] 0.653[/C][/ROW]
[ROW][C]147[/C][C] 0.7086[/C][C] 0.5828[/C][C] 0.2914[/C][/ROW]
[ROW][C]148[/C][C] 0.7896[/C][C] 0.4208[/C][C] 0.2104[/C][/ROW]
[ROW][C]149[/C][C] 0.8035[/C][C] 0.393[/C][C] 0.1965[/C][/ROW]
[ROW][C]150[/C][C] 0.8787[/C][C] 0.2425[/C][C] 0.1213[/C][/ROW]
[ROW][C]151[/C][C] 0.8503[/C][C] 0.2994[/C][C] 0.1497[/C][/ROW]
[ROW][C]152[/C][C] 0.7979[/C][C] 0.4041[/C][C] 0.2021[/C][/ROW]
[ROW][C]153[/C][C] 0.7379[/C][C] 0.5243[/C][C] 0.2621[/C][/ROW]
[ROW][C]154[/C][C] 0.7097[/C][C] 0.5805[/C][C] 0.2903[/C][/ROW]
[ROW][C]155[/C][C] 0.638[/C][C] 0.724[/C][C] 0.362[/C][/ROW]
[ROW][C]156[/C][C] 0.63[/C][C] 0.7401[/C][C] 0.37[/C][/ROW]
[ROW][C]157[/C][C] 0.814[/C][C] 0.372[/C][C] 0.186[/C][/ROW]
[ROW][C]158[/C][C] 0.7373[/C][C] 0.5253[/C][C] 0.2627[/C][/ROW]
[ROW][C]159[/C][C] 0.6403[/C][C] 0.7195[/C][C] 0.3597[/C][/ROW]
[ROW][C]160[/C][C] 0.5337[/C][C] 0.9325[/C][C] 0.4663[/C][/ROW]
[ROW][C]161[/C][C] 0.737[/C][C] 0.5261[/C][C] 0.263[/C][/ROW]
[ROW][C]162[/C][C] 0.5975[/C][C] 0.8049[/C][C] 0.4025[/C][/ROW]
[ROW][C]163[/C][C] 0.6179[/C][C] 0.7642[/C][C] 0.3821[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5 0.8013 0.3973 0.1987
6 0.6754 0.6492 0.3246
7 0.6237 0.7527 0.3763
8 0.4995 0.999 0.5005
9 0.4738 0.9477 0.5262
10 0.5047 0.9906 0.4953
11 0.4013 0.8027 0.5987
12 0.3623 0.7245 0.6377
13 0.297 0.5941 0.703
14 0.406 0.8121 0.594
15 0.3443 0.6886 0.6557
16 0.2749 0.5499 0.7251
17 0.214 0.4281 0.786
18 0.1901 0.3802 0.8099
19 0.2209 0.4418 0.7791
20 0.1877 0.3753 0.8123
21 0.1562 0.3124 0.8438
22 0.1268 0.2535 0.8732
23 0.1027 0.2055 0.8973
24 0.1239 0.2478 0.8761
25 0.1005 0.201 0.8995
26 0.07664 0.1533 0.9234
27 0.06177 0.1235 0.9382
28 0.04668 0.09336 0.9533
29 0.03585 0.07169 0.9642
30 0.0527 0.1054 0.9473
31 0.0425 0.08499 0.9575
32 0.03206 0.06411 0.9679
33 0.0249 0.0498 0.9751
34 0.08282 0.1656 0.9172
35 0.06439 0.1288 0.9356
36 0.05195 0.1039 0.948
37 0.04145 0.08289 0.9586
38 0.03306 0.06612 0.9669
39 0.0408 0.08159 0.9592
40 0.03162 0.06323 0.9684
41 0.02406 0.04812 0.9759
42 0.0705 0.141 0.9295
43 0.0612 0.1224 0.9388
44 0.04746 0.09492 0.9525
45 0.03873 0.07745 0.9613
46 0.03018 0.06036 0.9698
47 0.02426 0.04851 0.9757
48 0.02585 0.0517 0.9741
49 0.05356 0.1071 0.9464
50 0.04496 0.08993 0.955
51 0.05135 0.1027 0.9487
52 0.05724 0.1145 0.9428
53 0.1421 0.2842 0.8579
54 0.1229 0.2457 0.8771
55 0.1019 0.2037 0.8981
56 0.0868 0.1736 0.9132
57 0.07146 0.1429 0.9285
58 0.06088 0.1218 0.9391
59 0.04891 0.09781 0.9511
60 0.03925 0.07849 0.9608
61 0.03246 0.06493 0.9675
62 0.02897 0.05794 0.971
63 0.0221 0.0442 0.9779
64 0.01709 0.03419 0.9829
65 0.0802 0.1604 0.9198
66 0.07413 0.1483 0.9259
67 0.05934 0.1187 0.9407
68 0.05421 0.1084 0.9458
69 0.04289 0.08578 0.9571
70 0.03423 0.06846 0.9658
71 0.02647 0.05294 0.9735
72 0.02565 0.05129 0.9744
73 0.03225 0.0645 0.9678
74 0.03609 0.07218 0.9639
75 0.02868 0.05737 0.9713
76 0.02209 0.04418 0.9779
77 0.01814 0.03628 0.9819
78 0.03366 0.06732 0.9663
79 0.02645 0.0529 0.9736
80 0.02199 0.04399 0.978
81 0.04673 0.09346 0.9533
82 0.03794 0.07588 0.9621
83 0.03052 0.06105 0.9695
84 0.02986 0.05972 0.9701
85 0.1325 0.265 0.8675
86 0.1274 0.2548 0.8726
87 0.1329 0.2658 0.8671
88 0.1171 0.2341 0.8829
89 0.09812 0.1962 0.9019
90 0.1952 0.3904 0.8048
91 0.1689 0.3379 0.8311
92 0.1751 0.3502 0.8249
93 0.148 0.296 0.852
94 0.1417 0.2835 0.8583
95 0.1205 0.241 0.8795
96 0.101 0.2021 0.899
97 0.1929 0.3858 0.8071
98 0.1859 0.3718 0.8141
99 0.1655 0.331 0.8345
100 0.1411 0.2822 0.8589
101 0.1617 0.3234 0.8383
102 0.1428 0.2857 0.8572
103 0.1255 0.2511 0.8745
104 0.1056 0.2113 0.8944
105 0.1012 0.2023 0.8988
106 0.09218 0.1844 0.9078
107 0.07912 0.1582 0.9209
108 0.06765 0.1353 0.9323
109 0.05735 0.1147 0.9427
110 0.04834 0.09669 0.9517
111 0.05109 0.1022 0.9489
112 0.04011 0.08022 0.9599
113 0.0759 0.1518 0.9241
114 0.1316 0.2631 0.8684
115 0.114 0.228 0.886
116 0.09799 0.196 0.902
117 0.09512 0.1902 0.9049
118 0.0852 0.1704 0.9148
119 0.07206 0.1441 0.9279
120 0.05705 0.1141 0.9429
121 0.0455 0.091 0.9545
122 0.03592 0.07183 0.9641
123 0.02926 0.05851 0.9707
124 0.03546 0.07092 0.9645
125 0.02745 0.05491 0.9725
126 0.02099 0.04198 0.979
127 0.01591 0.03183 0.9841
128 0.01246 0.02492 0.9875
129 0.009678 0.01936 0.9903
130 0.02174 0.04348 0.9783
131 0.01834 0.03667 0.9817
132 0.03852 0.07703 0.9615
133 0.04579 0.09157 0.9542
134 0.1446 0.2893 0.8554
135 0.1214 0.2428 0.8786
136 0.2428 0.4856 0.7572
137 0.3267 0.6534 0.6733
138 0.2818 0.5636 0.7182
139 0.3748 0.7497 0.6252
140 0.3751 0.7503 0.6249
141 0.413 0.8259 0.587
142 0.3841 0.7681 0.6159
143 0.3816 0.7633 0.6184
144 0.4018 0.8035 0.5982
145 0.4061 0.8122 0.5939
146 0.347 0.6939 0.653
147 0.7086 0.5828 0.2914
148 0.7896 0.4208 0.2104
149 0.8035 0.393 0.1965
150 0.8787 0.2425 0.1213
151 0.8503 0.2994 0.1497
152 0.7979 0.4041 0.2021
153 0.7379 0.5243 0.2621
154 0.7097 0.5805 0.2903
155 0.638 0.724 0.362
156 0.63 0.7401 0.37
157 0.814 0.372 0.186
158 0.7373 0.5253 0.2627
159 0.6403 0.7195 0.3597
160 0.5337 0.9325 0.4663
161 0.737 0.5261 0.263
162 0.5975 0.8049 0.4025
163 0.6179 0.7642 0.3821







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level140.0880503NOK
10% type I error level530.333333NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 14 & 0.0880503 & NOK \tabularnewline
10% type I error level & 53 & 0.333333 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]14[/C][C]0.0880503[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]53[/C][C]0.333333[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level140.0880503NOK
10% type I error level530.333333NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.8095, df1 = 2, df2 = 164, p-value = 0.167



Parameters (Session):
par1 = 2 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 2 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')