Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationFri, 16 Dec 2016 11:57:48 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481885949rfpfavntu1ghgu8.htm/, Retrieved Fri, 01 Nov 2024 03:38:00 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300173, Retrieved Fri, 01 Nov 2024 03:38:00 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact85
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical Decompo...] [2016-12-16 10:57:48] [27c26e37291399ddf43c115158039444] [Current]
Feedback Forum

Post a new message
Dataseries X:
6600
6800
7500
7500
7400
7600
7300
7900
7100
7700
6500
5000
6200
7000
7400
7200
6900
7400
6400
5500
6600
7000
6200
5100
5600
6400
7200
7100
7000
7300
7600
7600
6700
6800
5900
5000
5600
5600
7100
7000
6600
7200
7200
7200
6200
6500
5800
4900
5800
6800
7100
6900
6800
7200
7200
7400
6400
6700
6200
5000
5600
6700
7000
6800
6900
7100
7300
7300
6600
6800
5900
4900
5500
6300
7100
6700
6700
7100
7300
7300
6200
6500
5800
4700
5500
6500
6800
6600
6300
6700
7200
7200
5900
6100
5500
4700
5400
6400
7500
6900
6400
6700
7100
7100
4000
6300
5400
4600
5400
6000
7200
6800
6400
7100
7500
7400
6400
6600
5600
4800
5400
6600




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300173&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300173&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300173&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
16600NANA-870.031NA
26800NANA-79.7531NA
37500NANA670.247NA
47500NANA411.914NA
57400NANA198.951NA
67600NANA626.265NA
773007750.067058.33691.728-450.062
879007727.567050677.562172.438
971006729.977054.17-324.198370.031
1077007240.157037.5202.654459.846
1165006414.697004.17-589.47585.3086
1250005359.146975-1615.86-359.136
1362006059.146929.17-870.031140.864
1470006711.916791.67-79.7531288.086
1574007341.086670.83670.24758.9198
1672007032.756620.83411.914167.253
1769006778.126579.17198.951121.883
1874007197.16570.83626.265202.901
1964007241.736550691.728-841.728
2055007177.566500677.562-1677.56
2166006142.476466.67-324.198457.531
2270006656.826454.17202.654343.179
2362005864.696454.17-589.475335.309
2451004838.36454.17-1615.86261.698
2556005629.976500-870.031-29.9691
2664006557.756637.5-79.7531-157.747
2772007399.416729.17670.247-199.414
2871007136.916725411.914-36.9136
2970006903.126704.17198.95196.8827
3073007313.776687.5626.265-13.7654
3176007375.066683.33691.728224.938
3276007327.566650677.562272.438
3367006288.36612.5-324.198411.698
3468006806.826604.17202.654-6.82099
3559005993.866583.33-589.475-93.858
3650004946.646562.5-1615.8653.3642
3756005671.646541.67-870.031-71.6358
3856006428.586508.33-79.7531-828.58
3971007141.086470.83670.247-41.0802
4070006849.416437.5411.914150.586
4166006619.786420.83198.951-19.784
4272007038.776412.5626.265161.235
4372007108.46416.67691.72891.6049
4472007152.566475677.56247.4383
4562006200.86525-324.198-0.802469
4665006723.496520.83202.654-223.488
4758005935.526525-589.475-135.525
4849004917.476533.33-1615.86-17.4691
4958005663.36533.33-870.031136.698
5068006461.916541.67-79.7531338.086
5171007228.586558.33670.247-128.58
5269006986.916575411.914-86.9136
5368006798.956600198.9511.04938
5472007247.16620.83626.265-47.0988
5572007308.46616.67691.728-108.395
5674007281.736604.17677.562118.272
5764006271.646595.83-324.198128.364
5867006790.156587.5202.654-90.1543
5962005998.026587.5-589.475201.975
6050004971.646587.5-1615.8628.3642
6156005717.476587.5-870.031-117.469
6267006507.756587.5-79.7531192.253
6370007261.916591.67670.247-261.914
6468007016.086604.17411.914-216.08
6569006794.786595.83198.951105.216
6671007205.436579.17626.265-105.432
6773007262.566570.83691.72837.4383
6873007227.566550677.56272.4383
6966006213.36537.5-324.198386.698
7068006740.156537.5202.65459.8457
7159005935.526525-589.475-35.5247
7249004900.86516.67-1615.86-0.802469
7355005646.646516.67-870.031-146.636
7463006436.916516.67-79.7531-136.914
7571007170.256500670.247-70.2469
7667006882.756470.83411.914-182.747
7767006653.126454.17198.95146.8827
7871007067.936441.67626.26532.0679
7973007125.066433.33691.728174.938
8073007119.236441.67677.562180.772
8162006113.36437.5-324.19886.6975
8265006623.496420.83202.654-123.488
8358005810.526400-589.475-10.5247
8447004750.86366.67-1615.86-50.8025
8555005475.86345.83-870.03124.1975
8665006257.756337.5-79.7531242.253
8768006991.086320.83670.247-191.08
8866006703.586291.67411.914-103.58
8963006461.456262.5198.951-161.451
9067006876.276250626.265-176.265
9172006937.566245.83691.728262.438
9272006915.066237.5677.562284.938
9359005938.36262.5-324.198-38.3025
9461006506.826304.17202.654-406.821
9555005731.366320.83-589.475-231.358
9647004709.146325-1615.86-9.1358
9754005450.86320.83-870.031-50.8025
9864006232.756312.5-79.7531167.253
9975006899.416229.17670.247600.586
10069006570.256158.33411.914329.753
10164006361.456162.5198.95138.5494
10267006780.436154.17626.265-80.4321
10371006841.736150691.728258.272
10471006810.96133.33677.562289.105
10540005779.976104.17-324.198-1779.97
10663006290.156087.5202.6549.84568
10754005493.866083.33-589.475-93.858
10846004484.146100-1615.86115.864
10954005263.36133.33-870.031136.698
11060006082.756162.5-79.7531-82.7469
11172006945.256275670.247254.753
11268006799.416387.5411.9140.58642
11364006607.286408.33198.951-207.284
11471007051.276425626.26548.7346
11575007125.066433.33691.728374.938
11674007135.96458.33677.562264.105
1176400NANA-324.198NA
1186600NANA202.654NA
1195600NANA-589.475NA
1204800NANA-1615.86NA
1215400NANA-870.031NA
1226600NANA-79.7531NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 6600 & NA & NA & -870.031 & NA \tabularnewline
2 & 6800 & NA & NA & -79.7531 & NA \tabularnewline
3 & 7500 & NA & NA & 670.247 & NA \tabularnewline
4 & 7500 & NA & NA & 411.914 & NA \tabularnewline
5 & 7400 & NA & NA & 198.951 & NA \tabularnewline
6 & 7600 & NA & NA & 626.265 & NA \tabularnewline
7 & 7300 & 7750.06 & 7058.33 & 691.728 & -450.062 \tabularnewline
8 & 7900 & 7727.56 & 7050 & 677.562 & 172.438 \tabularnewline
9 & 7100 & 6729.97 & 7054.17 & -324.198 & 370.031 \tabularnewline
10 & 7700 & 7240.15 & 7037.5 & 202.654 & 459.846 \tabularnewline
11 & 6500 & 6414.69 & 7004.17 & -589.475 & 85.3086 \tabularnewline
12 & 5000 & 5359.14 & 6975 & -1615.86 & -359.136 \tabularnewline
13 & 6200 & 6059.14 & 6929.17 & -870.031 & 140.864 \tabularnewline
14 & 7000 & 6711.91 & 6791.67 & -79.7531 & 288.086 \tabularnewline
15 & 7400 & 7341.08 & 6670.83 & 670.247 & 58.9198 \tabularnewline
16 & 7200 & 7032.75 & 6620.83 & 411.914 & 167.253 \tabularnewline
17 & 6900 & 6778.12 & 6579.17 & 198.951 & 121.883 \tabularnewline
18 & 7400 & 7197.1 & 6570.83 & 626.265 & 202.901 \tabularnewline
19 & 6400 & 7241.73 & 6550 & 691.728 & -841.728 \tabularnewline
20 & 5500 & 7177.56 & 6500 & 677.562 & -1677.56 \tabularnewline
21 & 6600 & 6142.47 & 6466.67 & -324.198 & 457.531 \tabularnewline
22 & 7000 & 6656.82 & 6454.17 & 202.654 & 343.179 \tabularnewline
23 & 6200 & 5864.69 & 6454.17 & -589.475 & 335.309 \tabularnewline
24 & 5100 & 4838.3 & 6454.17 & -1615.86 & 261.698 \tabularnewline
25 & 5600 & 5629.97 & 6500 & -870.031 & -29.9691 \tabularnewline
26 & 6400 & 6557.75 & 6637.5 & -79.7531 & -157.747 \tabularnewline
27 & 7200 & 7399.41 & 6729.17 & 670.247 & -199.414 \tabularnewline
28 & 7100 & 7136.91 & 6725 & 411.914 & -36.9136 \tabularnewline
29 & 7000 & 6903.12 & 6704.17 & 198.951 & 96.8827 \tabularnewline
30 & 7300 & 7313.77 & 6687.5 & 626.265 & -13.7654 \tabularnewline
31 & 7600 & 7375.06 & 6683.33 & 691.728 & 224.938 \tabularnewline
32 & 7600 & 7327.56 & 6650 & 677.562 & 272.438 \tabularnewline
33 & 6700 & 6288.3 & 6612.5 & -324.198 & 411.698 \tabularnewline
34 & 6800 & 6806.82 & 6604.17 & 202.654 & -6.82099 \tabularnewline
35 & 5900 & 5993.86 & 6583.33 & -589.475 & -93.858 \tabularnewline
36 & 5000 & 4946.64 & 6562.5 & -1615.86 & 53.3642 \tabularnewline
37 & 5600 & 5671.64 & 6541.67 & -870.031 & -71.6358 \tabularnewline
38 & 5600 & 6428.58 & 6508.33 & -79.7531 & -828.58 \tabularnewline
39 & 7100 & 7141.08 & 6470.83 & 670.247 & -41.0802 \tabularnewline
40 & 7000 & 6849.41 & 6437.5 & 411.914 & 150.586 \tabularnewline
41 & 6600 & 6619.78 & 6420.83 & 198.951 & -19.784 \tabularnewline
42 & 7200 & 7038.77 & 6412.5 & 626.265 & 161.235 \tabularnewline
43 & 7200 & 7108.4 & 6416.67 & 691.728 & 91.6049 \tabularnewline
44 & 7200 & 7152.56 & 6475 & 677.562 & 47.4383 \tabularnewline
45 & 6200 & 6200.8 & 6525 & -324.198 & -0.802469 \tabularnewline
46 & 6500 & 6723.49 & 6520.83 & 202.654 & -223.488 \tabularnewline
47 & 5800 & 5935.52 & 6525 & -589.475 & -135.525 \tabularnewline
48 & 4900 & 4917.47 & 6533.33 & -1615.86 & -17.4691 \tabularnewline
49 & 5800 & 5663.3 & 6533.33 & -870.031 & 136.698 \tabularnewline
50 & 6800 & 6461.91 & 6541.67 & -79.7531 & 338.086 \tabularnewline
51 & 7100 & 7228.58 & 6558.33 & 670.247 & -128.58 \tabularnewline
52 & 6900 & 6986.91 & 6575 & 411.914 & -86.9136 \tabularnewline
53 & 6800 & 6798.95 & 6600 & 198.951 & 1.04938 \tabularnewline
54 & 7200 & 7247.1 & 6620.83 & 626.265 & -47.0988 \tabularnewline
55 & 7200 & 7308.4 & 6616.67 & 691.728 & -108.395 \tabularnewline
56 & 7400 & 7281.73 & 6604.17 & 677.562 & 118.272 \tabularnewline
57 & 6400 & 6271.64 & 6595.83 & -324.198 & 128.364 \tabularnewline
58 & 6700 & 6790.15 & 6587.5 & 202.654 & -90.1543 \tabularnewline
59 & 6200 & 5998.02 & 6587.5 & -589.475 & 201.975 \tabularnewline
60 & 5000 & 4971.64 & 6587.5 & -1615.86 & 28.3642 \tabularnewline
61 & 5600 & 5717.47 & 6587.5 & -870.031 & -117.469 \tabularnewline
62 & 6700 & 6507.75 & 6587.5 & -79.7531 & 192.253 \tabularnewline
63 & 7000 & 7261.91 & 6591.67 & 670.247 & -261.914 \tabularnewline
64 & 6800 & 7016.08 & 6604.17 & 411.914 & -216.08 \tabularnewline
65 & 6900 & 6794.78 & 6595.83 & 198.951 & 105.216 \tabularnewline
66 & 7100 & 7205.43 & 6579.17 & 626.265 & -105.432 \tabularnewline
67 & 7300 & 7262.56 & 6570.83 & 691.728 & 37.4383 \tabularnewline
68 & 7300 & 7227.56 & 6550 & 677.562 & 72.4383 \tabularnewline
69 & 6600 & 6213.3 & 6537.5 & -324.198 & 386.698 \tabularnewline
70 & 6800 & 6740.15 & 6537.5 & 202.654 & 59.8457 \tabularnewline
71 & 5900 & 5935.52 & 6525 & -589.475 & -35.5247 \tabularnewline
72 & 4900 & 4900.8 & 6516.67 & -1615.86 & -0.802469 \tabularnewline
73 & 5500 & 5646.64 & 6516.67 & -870.031 & -146.636 \tabularnewline
74 & 6300 & 6436.91 & 6516.67 & -79.7531 & -136.914 \tabularnewline
75 & 7100 & 7170.25 & 6500 & 670.247 & -70.2469 \tabularnewline
76 & 6700 & 6882.75 & 6470.83 & 411.914 & -182.747 \tabularnewline
77 & 6700 & 6653.12 & 6454.17 & 198.951 & 46.8827 \tabularnewline
78 & 7100 & 7067.93 & 6441.67 & 626.265 & 32.0679 \tabularnewline
79 & 7300 & 7125.06 & 6433.33 & 691.728 & 174.938 \tabularnewline
80 & 7300 & 7119.23 & 6441.67 & 677.562 & 180.772 \tabularnewline
81 & 6200 & 6113.3 & 6437.5 & -324.198 & 86.6975 \tabularnewline
82 & 6500 & 6623.49 & 6420.83 & 202.654 & -123.488 \tabularnewline
83 & 5800 & 5810.52 & 6400 & -589.475 & -10.5247 \tabularnewline
84 & 4700 & 4750.8 & 6366.67 & -1615.86 & -50.8025 \tabularnewline
85 & 5500 & 5475.8 & 6345.83 & -870.031 & 24.1975 \tabularnewline
86 & 6500 & 6257.75 & 6337.5 & -79.7531 & 242.253 \tabularnewline
87 & 6800 & 6991.08 & 6320.83 & 670.247 & -191.08 \tabularnewline
88 & 6600 & 6703.58 & 6291.67 & 411.914 & -103.58 \tabularnewline
89 & 6300 & 6461.45 & 6262.5 & 198.951 & -161.451 \tabularnewline
90 & 6700 & 6876.27 & 6250 & 626.265 & -176.265 \tabularnewline
91 & 7200 & 6937.56 & 6245.83 & 691.728 & 262.438 \tabularnewline
92 & 7200 & 6915.06 & 6237.5 & 677.562 & 284.938 \tabularnewline
93 & 5900 & 5938.3 & 6262.5 & -324.198 & -38.3025 \tabularnewline
94 & 6100 & 6506.82 & 6304.17 & 202.654 & -406.821 \tabularnewline
95 & 5500 & 5731.36 & 6320.83 & -589.475 & -231.358 \tabularnewline
96 & 4700 & 4709.14 & 6325 & -1615.86 & -9.1358 \tabularnewline
97 & 5400 & 5450.8 & 6320.83 & -870.031 & -50.8025 \tabularnewline
98 & 6400 & 6232.75 & 6312.5 & -79.7531 & 167.253 \tabularnewline
99 & 7500 & 6899.41 & 6229.17 & 670.247 & 600.586 \tabularnewline
100 & 6900 & 6570.25 & 6158.33 & 411.914 & 329.753 \tabularnewline
101 & 6400 & 6361.45 & 6162.5 & 198.951 & 38.5494 \tabularnewline
102 & 6700 & 6780.43 & 6154.17 & 626.265 & -80.4321 \tabularnewline
103 & 7100 & 6841.73 & 6150 & 691.728 & 258.272 \tabularnewline
104 & 7100 & 6810.9 & 6133.33 & 677.562 & 289.105 \tabularnewline
105 & 4000 & 5779.97 & 6104.17 & -324.198 & -1779.97 \tabularnewline
106 & 6300 & 6290.15 & 6087.5 & 202.654 & 9.84568 \tabularnewline
107 & 5400 & 5493.86 & 6083.33 & -589.475 & -93.858 \tabularnewline
108 & 4600 & 4484.14 & 6100 & -1615.86 & 115.864 \tabularnewline
109 & 5400 & 5263.3 & 6133.33 & -870.031 & 136.698 \tabularnewline
110 & 6000 & 6082.75 & 6162.5 & -79.7531 & -82.7469 \tabularnewline
111 & 7200 & 6945.25 & 6275 & 670.247 & 254.753 \tabularnewline
112 & 6800 & 6799.41 & 6387.5 & 411.914 & 0.58642 \tabularnewline
113 & 6400 & 6607.28 & 6408.33 & 198.951 & -207.284 \tabularnewline
114 & 7100 & 7051.27 & 6425 & 626.265 & 48.7346 \tabularnewline
115 & 7500 & 7125.06 & 6433.33 & 691.728 & 374.938 \tabularnewline
116 & 7400 & 7135.9 & 6458.33 & 677.562 & 264.105 \tabularnewline
117 & 6400 & NA & NA & -324.198 & NA \tabularnewline
118 & 6600 & NA & NA & 202.654 & NA \tabularnewline
119 & 5600 & NA & NA & -589.475 & NA \tabularnewline
120 & 4800 & NA & NA & -1615.86 & NA \tabularnewline
121 & 5400 & NA & NA & -870.031 & NA \tabularnewline
122 & 6600 & NA & NA & -79.7531 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300173&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]6600[/C][C]NA[/C][C]NA[/C][C]-870.031[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]6800[/C][C]NA[/C][C]NA[/C][C]-79.7531[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]7500[/C][C]NA[/C][C]NA[/C][C]670.247[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]7500[/C][C]NA[/C][C]NA[/C][C]411.914[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]7400[/C][C]NA[/C][C]NA[/C][C]198.951[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]7600[/C][C]NA[/C][C]NA[/C][C]626.265[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]7300[/C][C]7750.06[/C][C]7058.33[/C][C]691.728[/C][C]-450.062[/C][/ROW]
[ROW][C]8[/C][C]7900[/C][C]7727.56[/C][C]7050[/C][C]677.562[/C][C]172.438[/C][/ROW]
[ROW][C]9[/C][C]7100[/C][C]6729.97[/C][C]7054.17[/C][C]-324.198[/C][C]370.031[/C][/ROW]
[ROW][C]10[/C][C]7700[/C][C]7240.15[/C][C]7037.5[/C][C]202.654[/C][C]459.846[/C][/ROW]
[ROW][C]11[/C][C]6500[/C][C]6414.69[/C][C]7004.17[/C][C]-589.475[/C][C]85.3086[/C][/ROW]
[ROW][C]12[/C][C]5000[/C][C]5359.14[/C][C]6975[/C][C]-1615.86[/C][C]-359.136[/C][/ROW]
[ROW][C]13[/C][C]6200[/C][C]6059.14[/C][C]6929.17[/C][C]-870.031[/C][C]140.864[/C][/ROW]
[ROW][C]14[/C][C]7000[/C][C]6711.91[/C][C]6791.67[/C][C]-79.7531[/C][C]288.086[/C][/ROW]
[ROW][C]15[/C][C]7400[/C][C]7341.08[/C][C]6670.83[/C][C]670.247[/C][C]58.9198[/C][/ROW]
[ROW][C]16[/C][C]7200[/C][C]7032.75[/C][C]6620.83[/C][C]411.914[/C][C]167.253[/C][/ROW]
[ROW][C]17[/C][C]6900[/C][C]6778.12[/C][C]6579.17[/C][C]198.951[/C][C]121.883[/C][/ROW]
[ROW][C]18[/C][C]7400[/C][C]7197.1[/C][C]6570.83[/C][C]626.265[/C][C]202.901[/C][/ROW]
[ROW][C]19[/C][C]6400[/C][C]7241.73[/C][C]6550[/C][C]691.728[/C][C]-841.728[/C][/ROW]
[ROW][C]20[/C][C]5500[/C][C]7177.56[/C][C]6500[/C][C]677.562[/C][C]-1677.56[/C][/ROW]
[ROW][C]21[/C][C]6600[/C][C]6142.47[/C][C]6466.67[/C][C]-324.198[/C][C]457.531[/C][/ROW]
[ROW][C]22[/C][C]7000[/C][C]6656.82[/C][C]6454.17[/C][C]202.654[/C][C]343.179[/C][/ROW]
[ROW][C]23[/C][C]6200[/C][C]5864.69[/C][C]6454.17[/C][C]-589.475[/C][C]335.309[/C][/ROW]
[ROW][C]24[/C][C]5100[/C][C]4838.3[/C][C]6454.17[/C][C]-1615.86[/C][C]261.698[/C][/ROW]
[ROW][C]25[/C][C]5600[/C][C]5629.97[/C][C]6500[/C][C]-870.031[/C][C]-29.9691[/C][/ROW]
[ROW][C]26[/C][C]6400[/C][C]6557.75[/C][C]6637.5[/C][C]-79.7531[/C][C]-157.747[/C][/ROW]
[ROW][C]27[/C][C]7200[/C][C]7399.41[/C][C]6729.17[/C][C]670.247[/C][C]-199.414[/C][/ROW]
[ROW][C]28[/C][C]7100[/C][C]7136.91[/C][C]6725[/C][C]411.914[/C][C]-36.9136[/C][/ROW]
[ROW][C]29[/C][C]7000[/C][C]6903.12[/C][C]6704.17[/C][C]198.951[/C][C]96.8827[/C][/ROW]
[ROW][C]30[/C][C]7300[/C][C]7313.77[/C][C]6687.5[/C][C]626.265[/C][C]-13.7654[/C][/ROW]
[ROW][C]31[/C][C]7600[/C][C]7375.06[/C][C]6683.33[/C][C]691.728[/C][C]224.938[/C][/ROW]
[ROW][C]32[/C][C]7600[/C][C]7327.56[/C][C]6650[/C][C]677.562[/C][C]272.438[/C][/ROW]
[ROW][C]33[/C][C]6700[/C][C]6288.3[/C][C]6612.5[/C][C]-324.198[/C][C]411.698[/C][/ROW]
[ROW][C]34[/C][C]6800[/C][C]6806.82[/C][C]6604.17[/C][C]202.654[/C][C]-6.82099[/C][/ROW]
[ROW][C]35[/C][C]5900[/C][C]5993.86[/C][C]6583.33[/C][C]-589.475[/C][C]-93.858[/C][/ROW]
[ROW][C]36[/C][C]5000[/C][C]4946.64[/C][C]6562.5[/C][C]-1615.86[/C][C]53.3642[/C][/ROW]
[ROW][C]37[/C][C]5600[/C][C]5671.64[/C][C]6541.67[/C][C]-870.031[/C][C]-71.6358[/C][/ROW]
[ROW][C]38[/C][C]5600[/C][C]6428.58[/C][C]6508.33[/C][C]-79.7531[/C][C]-828.58[/C][/ROW]
[ROW][C]39[/C][C]7100[/C][C]7141.08[/C][C]6470.83[/C][C]670.247[/C][C]-41.0802[/C][/ROW]
[ROW][C]40[/C][C]7000[/C][C]6849.41[/C][C]6437.5[/C][C]411.914[/C][C]150.586[/C][/ROW]
[ROW][C]41[/C][C]6600[/C][C]6619.78[/C][C]6420.83[/C][C]198.951[/C][C]-19.784[/C][/ROW]
[ROW][C]42[/C][C]7200[/C][C]7038.77[/C][C]6412.5[/C][C]626.265[/C][C]161.235[/C][/ROW]
[ROW][C]43[/C][C]7200[/C][C]7108.4[/C][C]6416.67[/C][C]691.728[/C][C]91.6049[/C][/ROW]
[ROW][C]44[/C][C]7200[/C][C]7152.56[/C][C]6475[/C][C]677.562[/C][C]47.4383[/C][/ROW]
[ROW][C]45[/C][C]6200[/C][C]6200.8[/C][C]6525[/C][C]-324.198[/C][C]-0.802469[/C][/ROW]
[ROW][C]46[/C][C]6500[/C][C]6723.49[/C][C]6520.83[/C][C]202.654[/C][C]-223.488[/C][/ROW]
[ROW][C]47[/C][C]5800[/C][C]5935.52[/C][C]6525[/C][C]-589.475[/C][C]-135.525[/C][/ROW]
[ROW][C]48[/C][C]4900[/C][C]4917.47[/C][C]6533.33[/C][C]-1615.86[/C][C]-17.4691[/C][/ROW]
[ROW][C]49[/C][C]5800[/C][C]5663.3[/C][C]6533.33[/C][C]-870.031[/C][C]136.698[/C][/ROW]
[ROW][C]50[/C][C]6800[/C][C]6461.91[/C][C]6541.67[/C][C]-79.7531[/C][C]338.086[/C][/ROW]
[ROW][C]51[/C][C]7100[/C][C]7228.58[/C][C]6558.33[/C][C]670.247[/C][C]-128.58[/C][/ROW]
[ROW][C]52[/C][C]6900[/C][C]6986.91[/C][C]6575[/C][C]411.914[/C][C]-86.9136[/C][/ROW]
[ROW][C]53[/C][C]6800[/C][C]6798.95[/C][C]6600[/C][C]198.951[/C][C]1.04938[/C][/ROW]
[ROW][C]54[/C][C]7200[/C][C]7247.1[/C][C]6620.83[/C][C]626.265[/C][C]-47.0988[/C][/ROW]
[ROW][C]55[/C][C]7200[/C][C]7308.4[/C][C]6616.67[/C][C]691.728[/C][C]-108.395[/C][/ROW]
[ROW][C]56[/C][C]7400[/C][C]7281.73[/C][C]6604.17[/C][C]677.562[/C][C]118.272[/C][/ROW]
[ROW][C]57[/C][C]6400[/C][C]6271.64[/C][C]6595.83[/C][C]-324.198[/C][C]128.364[/C][/ROW]
[ROW][C]58[/C][C]6700[/C][C]6790.15[/C][C]6587.5[/C][C]202.654[/C][C]-90.1543[/C][/ROW]
[ROW][C]59[/C][C]6200[/C][C]5998.02[/C][C]6587.5[/C][C]-589.475[/C][C]201.975[/C][/ROW]
[ROW][C]60[/C][C]5000[/C][C]4971.64[/C][C]6587.5[/C][C]-1615.86[/C][C]28.3642[/C][/ROW]
[ROW][C]61[/C][C]5600[/C][C]5717.47[/C][C]6587.5[/C][C]-870.031[/C][C]-117.469[/C][/ROW]
[ROW][C]62[/C][C]6700[/C][C]6507.75[/C][C]6587.5[/C][C]-79.7531[/C][C]192.253[/C][/ROW]
[ROW][C]63[/C][C]7000[/C][C]7261.91[/C][C]6591.67[/C][C]670.247[/C][C]-261.914[/C][/ROW]
[ROW][C]64[/C][C]6800[/C][C]7016.08[/C][C]6604.17[/C][C]411.914[/C][C]-216.08[/C][/ROW]
[ROW][C]65[/C][C]6900[/C][C]6794.78[/C][C]6595.83[/C][C]198.951[/C][C]105.216[/C][/ROW]
[ROW][C]66[/C][C]7100[/C][C]7205.43[/C][C]6579.17[/C][C]626.265[/C][C]-105.432[/C][/ROW]
[ROW][C]67[/C][C]7300[/C][C]7262.56[/C][C]6570.83[/C][C]691.728[/C][C]37.4383[/C][/ROW]
[ROW][C]68[/C][C]7300[/C][C]7227.56[/C][C]6550[/C][C]677.562[/C][C]72.4383[/C][/ROW]
[ROW][C]69[/C][C]6600[/C][C]6213.3[/C][C]6537.5[/C][C]-324.198[/C][C]386.698[/C][/ROW]
[ROW][C]70[/C][C]6800[/C][C]6740.15[/C][C]6537.5[/C][C]202.654[/C][C]59.8457[/C][/ROW]
[ROW][C]71[/C][C]5900[/C][C]5935.52[/C][C]6525[/C][C]-589.475[/C][C]-35.5247[/C][/ROW]
[ROW][C]72[/C][C]4900[/C][C]4900.8[/C][C]6516.67[/C][C]-1615.86[/C][C]-0.802469[/C][/ROW]
[ROW][C]73[/C][C]5500[/C][C]5646.64[/C][C]6516.67[/C][C]-870.031[/C][C]-146.636[/C][/ROW]
[ROW][C]74[/C][C]6300[/C][C]6436.91[/C][C]6516.67[/C][C]-79.7531[/C][C]-136.914[/C][/ROW]
[ROW][C]75[/C][C]7100[/C][C]7170.25[/C][C]6500[/C][C]670.247[/C][C]-70.2469[/C][/ROW]
[ROW][C]76[/C][C]6700[/C][C]6882.75[/C][C]6470.83[/C][C]411.914[/C][C]-182.747[/C][/ROW]
[ROW][C]77[/C][C]6700[/C][C]6653.12[/C][C]6454.17[/C][C]198.951[/C][C]46.8827[/C][/ROW]
[ROW][C]78[/C][C]7100[/C][C]7067.93[/C][C]6441.67[/C][C]626.265[/C][C]32.0679[/C][/ROW]
[ROW][C]79[/C][C]7300[/C][C]7125.06[/C][C]6433.33[/C][C]691.728[/C][C]174.938[/C][/ROW]
[ROW][C]80[/C][C]7300[/C][C]7119.23[/C][C]6441.67[/C][C]677.562[/C][C]180.772[/C][/ROW]
[ROW][C]81[/C][C]6200[/C][C]6113.3[/C][C]6437.5[/C][C]-324.198[/C][C]86.6975[/C][/ROW]
[ROW][C]82[/C][C]6500[/C][C]6623.49[/C][C]6420.83[/C][C]202.654[/C][C]-123.488[/C][/ROW]
[ROW][C]83[/C][C]5800[/C][C]5810.52[/C][C]6400[/C][C]-589.475[/C][C]-10.5247[/C][/ROW]
[ROW][C]84[/C][C]4700[/C][C]4750.8[/C][C]6366.67[/C][C]-1615.86[/C][C]-50.8025[/C][/ROW]
[ROW][C]85[/C][C]5500[/C][C]5475.8[/C][C]6345.83[/C][C]-870.031[/C][C]24.1975[/C][/ROW]
[ROW][C]86[/C][C]6500[/C][C]6257.75[/C][C]6337.5[/C][C]-79.7531[/C][C]242.253[/C][/ROW]
[ROW][C]87[/C][C]6800[/C][C]6991.08[/C][C]6320.83[/C][C]670.247[/C][C]-191.08[/C][/ROW]
[ROW][C]88[/C][C]6600[/C][C]6703.58[/C][C]6291.67[/C][C]411.914[/C][C]-103.58[/C][/ROW]
[ROW][C]89[/C][C]6300[/C][C]6461.45[/C][C]6262.5[/C][C]198.951[/C][C]-161.451[/C][/ROW]
[ROW][C]90[/C][C]6700[/C][C]6876.27[/C][C]6250[/C][C]626.265[/C][C]-176.265[/C][/ROW]
[ROW][C]91[/C][C]7200[/C][C]6937.56[/C][C]6245.83[/C][C]691.728[/C][C]262.438[/C][/ROW]
[ROW][C]92[/C][C]7200[/C][C]6915.06[/C][C]6237.5[/C][C]677.562[/C][C]284.938[/C][/ROW]
[ROW][C]93[/C][C]5900[/C][C]5938.3[/C][C]6262.5[/C][C]-324.198[/C][C]-38.3025[/C][/ROW]
[ROW][C]94[/C][C]6100[/C][C]6506.82[/C][C]6304.17[/C][C]202.654[/C][C]-406.821[/C][/ROW]
[ROW][C]95[/C][C]5500[/C][C]5731.36[/C][C]6320.83[/C][C]-589.475[/C][C]-231.358[/C][/ROW]
[ROW][C]96[/C][C]4700[/C][C]4709.14[/C][C]6325[/C][C]-1615.86[/C][C]-9.1358[/C][/ROW]
[ROW][C]97[/C][C]5400[/C][C]5450.8[/C][C]6320.83[/C][C]-870.031[/C][C]-50.8025[/C][/ROW]
[ROW][C]98[/C][C]6400[/C][C]6232.75[/C][C]6312.5[/C][C]-79.7531[/C][C]167.253[/C][/ROW]
[ROW][C]99[/C][C]7500[/C][C]6899.41[/C][C]6229.17[/C][C]670.247[/C][C]600.586[/C][/ROW]
[ROW][C]100[/C][C]6900[/C][C]6570.25[/C][C]6158.33[/C][C]411.914[/C][C]329.753[/C][/ROW]
[ROW][C]101[/C][C]6400[/C][C]6361.45[/C][C]6162.5[/C][C]198.951[/C][C]38.5494[/C][/ROW]
[ROW][C]102[/C][C]6700[/C][C]6780.43[/C][C]6154.17[/C][C]626.265[/C][C]-80.4321[/C][/ROW]
[ROW][C]103[/C][C]7100[/C][C]6841.73[/C][C]6150[/C][C]691.728[/C][C]258.272[/C][/ROW]
[ROW][C]104[/C][C]7100[/C][C]6810.9[/C][C]6133.33[/C][C]677.562[/C][C]289.105[/C][/ROW]
[ROW][C]105[/C][C]4000[/C][C]5779.97[/C][C]6104.17[/C][C]-324.198[/C][C]-1779.97[/C][/ROW]
[ROW][C]106[/C][C]6300[/C][C]6290.15[/C][C]6087.5[/C][C]202.654[/C][C]9.84568[/C][/ROW]
[ROW][C]107[/C][C]5400[/C][C]5493.86[/C][C]6083.33[/C][C]-589.475[/C][C]-93.858[/C][/ROW]
[ROW][C]108[/C][C]4600[/C][C]4484.14[/C][C]6100[/C][C]-1615.86[/C][C]115.864[/C][/ROW]
[ROW][C]109[/C][C]5400[/C][C]5263.3[/C][C]6133.33[/C][C]-870.031[/C][C]136.698[/C][/ROW]
[ROW][C]110[/C][C]6000[/C][C]6082.75[/C][C]6162.5[/C][C]-79.7531[/C][C]-82.7469[/C][/ROW]
[ROW][C]111[/C][C]7200[/C][C]6945.25[/C][C]6275[/C][C]670.247[/C][C]254.753[/C][/ROW]
[ROW][C]112[/C][C]6800[/C][C]6799.41[/C][C]6387.5[/C][C]411.914[/C][C]0.58642[/C][/ROW]
[ROW][C]113[/C][C]6400[/C][C]6607.28[/C][C]6408.33[/C][C]198.951[/C][C]-207.284[/C][/ROW]
[ROW][C]114[/C][C]7100[/C][C]7051.27[/C][C]6425[/C][C]626.265[/C][C]48.7346[/C][/ROW]
[ROW][C]115[/C][C]7500[/C][C]7125.06[/C][C]6433.33[/C][C]691.728[/C][C]374.938[/C][/ROW]
[ROW][C]116[/C][C]7400[/C][C]7135.9[/C][C]6458.33[/C][C]677.562[/C][C]264.105[/C][/ROW]
[ROW][C]117[/C][C]6400[/C][C]NA[/C][C]NA[/C][C]-324.198[/C][C]NA[/C][/ROW]
[ROW][C]118[/C][C]6600[/C][C]NA[/C][C]NA[/C][C]202.654[/C][C]NA[/C][/ROW]
[ROW][C]119[/C][C]5600[/C][C]NA[/C][C]NA[/C][C]-589.475[/C][C]NA[/C][/ROW]
[ROW][C]120[/C][C]4800[/C][C]NA[/C][C]NA[/C][C]-1615.86[/C][C]NA[/C][/ROW]
[ROW][C]121[/C][C]5400[/C][C]NA[/C][C]NA[/C][C]-870.031[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]6600[/C][C]NA[/C][C]NA[/C][C]-79.7531[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300173&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300173&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
16600NANA-870.031NA
26800NANA-79.7531NA
37500NANA670.247NA
47500NANA411.914NA
57400NANA198.951NA
67600NANA626.265NA
773007750.067058.33691.728-450.062
879007727.567050677.562172.438
971006729.977054.17-324.198370.031
1077007240.157037.5202.654459.846
1165006414.697004.17-589.47585.3086
1250005359.146975-1615.86-359.136
1362006059.146929.17-870.031140.864
1470006711.916791.67-79.7531288.086
1574007341.086670.83670.24758.9198
1672007032.756620.83411.914167.253
1769006778.126579.17198.951121.883
1874007197.16570.83626.265202.901
1964007241.736550691.728-841.728
2055007177.566500677.562-1677.56
2166006142.476466.67-324.198457.531
2270006656.826454.17202.654343.179
2362005864.696454.17-589.475335.309
2451004838.36454.17-1615.86261.698
2556005629.976500-870.031-29.9691
2664006557.756637.5-79.7531-157.747
2772007399.416729.17670.247-199.414
2871007136.916725411.914-36.9136
2970006903.126704.17198.95196.8827
3073007313.776687.5626.265-13.7654
3176007375.066683.33691.728224.938
3276007327.566650677.562272.438
3367006288.36612.5-324.198411.698
3468006806.826604.17202.654-6.82099
3559005993.866583.33-589.475-93.858
3650004946.646562.5-1615.8653.3642
3756005671.646541.67-870.031-71.6358
3856006428.586508.33-79.7531-828.58
3971007141.086470.83670.247-41.0802
4070006849.416437.5411.914150.586
4166006619.786420.83198.951-19.784
4272007038.776412.5626.265161.235
4372007108.46416.67691.72891.6049
4472007152.566475677.56247.4383
4562006200.86525-324.198-0.802469
4665006723.496520.83202.654-223.488
4758005935.526525-589.475-135.525
4849004917.476533.33-1615.86-17.4691
4958005663.36533.33-870.031136.698
5068006461.916541.67-79.7531338.086
5171007228.586558.33670.247-128.58
5269006986.916575411.914-86.9136
5368006798.956600198.9511.04938
5472007247.16620.83626.265-47.0988
5572007308.46616.67691.728-108.395
5674007281.736604.17677.562118.272
5764006271.646595.83-324.198128.364
5867006790.156587.5202.654-90.1543
5962005998.026587.5-589.475201.975
6050004971.646587.5-1615.8628.3642
6156005717.476587.5-870.031-117.469
6267006507.756587.5-79.7531192.253
6370007261.916591.67670.247-261.914
6468007016.086604.17411.914-216.08
6569006794.786595.83198.951105.216
6671007205.436579.17626.265-105.432
6773007262.566570.83691.72837.4383
6873007227.566550677.56272.4383
6966006213.36537.5-324.198386.698
7068006740.156537.5202.65459.8457
7159005935.526525-589.475-35.5247
7249004900.86516.67-1615.86-0.802469
7355005646.646516.67-870.031-146.636
7463006436.916516.67-79.7531-136.914
7571007170.256500670.247-70.2469
7667006882.756470.83411.914-182.747
7767006653.126454.17198.95146.8827
7871007067.936441.67626.26532.0679
7973007125.066433.33691.728174.938
8073007119.236441.67677.562180.772
8162006113.36437.5-324.19886.6975
8265006623.496420.83202.654-123.488
8358005810.526400-589.475-10.5247
8447004750.86366.67-1615.86-50.8025
8555005475.86345.83-870.03124.1975
8665006257.756337.5-79.7531242.253
8768006991.086320.83670.247-191.08
8866006703.586291.67411.914-103.58
8963006461.456262.5198.951-161.451
9067006876.276250626.265-176.265
9172006937.566245.83691.728262.438
9272006915.066237.5677.562284.938
9359005938.36262.5-324.198-38.3025
9461006506.826304.17202.654-406.821
9555005731.366320.83-589.475-231.358
9647004709.146325-1615.86-9.1358
9754005450.86320.83-870.031-50.8025
9864006232.756312.5-79.7531167.253
9975006899.416229.17670.247600.586
10069006570.256158.33411.914329.753
10164006361.456162.5198.95138.5494
10267006780.436154.17626.265-80.4321
10371006841.736150691.728258.272
10471006810.96133.33677.562289.105
10540005779.976104.17-324.198-1779.97
10663006290.156087.5202.6549.84568
10754005493.866083.33-589.475-93.858
10846004484.146100-1615.86115.864
10954005263.36133.33-870.031136.698
11060006082.756162.5-79.7531-82.7469
11172006945.256275670.247254.753
11268006799.416387.5411.9140.58642
11364006607.286408.33198.951-207.284
11471007051.276425626.26548.7346
11575007125.066433.33691.728374.938
11674007135.96458.33677.562264.105
1176400NANA-324.198NA
1186600NANA202.654NA
1195600NANA-589.475NA
1204800NANA-1615.86NA
1215400NANA-870.031NA
1226600NANA-79.7531NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')