Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 16 Dec 2016 09:57:24 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481878699dgr27tfgh8ynpwt.htm/, Retrieved Fri, 01 Nov 2024 04:29:39 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:29:39 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
16	6
17	10
16	10
17	9
16	9
16	10
15	10
13	9
14	10
17	10
13	10
16	10
15	10
15	10
13	9
17	10
11	7
13	6
16	10
17	10
16	10
16	10
16	10
12	10
16	7
15	9
14	9
17	10
20	8
17	10
18	10
14	8
16	8
18	10
16	10
13	10
16	10
16	10
15	10
15	10
16	9
11	10
15	8
17	8
14	9
19	6
14	10
15	10
12	9
17	10
15	10
16	10




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center
R Engine error message
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Engine error message & 
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Engine error message[/C][C]
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center
R Engine error message
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted







Multiple Linear Regression - Estimated Regression Equation
Tevredenheid[t] = + 15.0829 + 0.0324839privacy[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Tevredenheid[t] =  +  15.0829 +  0.0324839privacy[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Tevredenheid[t] =  +  15.0829 +  0.0324839privacy[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Tevredenheid[t] = + 15.0829 + 0.0324839privacy[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15.08 2.132+7.0730e+00 4.608e-09 2.304e-09
privacy+0.03248 0.2278+1.4260e-01 0.8872 0.4436

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +15.08 &  2.132 & +7.0730e+00 &  4.608e-09 &  2.304e-09 \tabularnewline
privacy & +0.03248 &  0.2278 & +1.4260e-01 &  0.8872 &  0.4436 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+15.08[/C][C] 2.132[/C][C]+7.0730e+00[/C][C] 4.608e-09[/C][C] 2.304e-09[/C][/ROW]
[ROW][C]privacy[/C][C]+0.03248[/C][C] 0.2278[/C][C]+1.4260e-01[/C][C] 0.8872[/C][C] 0.4436[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15.08 2.132+7.0730e+00 4.608e-09 2.304e-09
privacy+0.03248 0.2278+1.4260e-01 0.8872 0.4436







Multiple Linear Regression - Regression Statistics
Multiple R 0.02016
R-squared 0.0004064
Adjusted R-squared-0.01959
F-TEST (value) 0.02033
F-TEST (DF numerator)1
F-TEST (DF denominator)50
p-value 0.8872
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.888
Sum Squared Residuals 178.2

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.02016 \tabularnewline
R-squared &  0.0004064 \tabularnewline
Adjusted R-squared & -0.01959 \tabularnewline
F-TEST (value) &  0.02033 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 50 \tabularnewline
p-value &  0.8872 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.888 \tabularnewline
Sum Squared Residuals &  178.2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.02016[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.0004064[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.01959[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.02033[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]50[/C][/ROW]
[ROW][C]p-value[/C][C] 0.8872[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.888[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 178.2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.02016
R-squared 0.0004064
Adjusted R-squared-0.01959
F-TEST (value) 0.02033
F-TEST (DF numerator)1
F-TEST (DF denominator)50
p-value 0.8872
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.888
Sum Squared Residuals 178.2







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 16 15.28 0.7222
2 17 15.41 1.592
3 16 15.41 0.5923
4 17 15.38 1.625
5 16 15.38 0.6248
6 16 15.41 0.5923
7 15 15.41-0.4077
8 13 15.38-2.375
9 14 15.41-1.408
10 17 15.41 1.592
11 13 15.41-2.408
12 16 15.41 0.5923
13 15 15.41-0.4077
14 15 15.41-0.4077
15 13 15.38-2.375
16 17 15.41 1.592
17 11 15.31-4.31
18 13 15.28-2.278
19 16 15.41 0.5923
20 17 15.41 1.592
21 16 15.41 0.5923
22 16 15.41 0.5923
23 16 15.41 0.5923
24 12 15.41-3.408
25 16 15.31 0.6897
26 15 15.38-0.3752
27 14 15.38-1.375
28 17 15.41 1.592
29 20 15.34 4.657
30 17 15.41 1.592
31 18 15.41 2.592
32 14 15.34-1.343
33 16 15.34 0.6572
34 18 15.41 2.592
35 16 15.41 0.5923
36 13 15.41-2.408
37 16 15.41 0.5923
38 16 15.41 0.5923
39 15 15.41-0.4077
40 15 15.41-0.4077
41 16 15.38 0.6248
42 11 15.41-4.408
43 15 15.34-0.3428
44 17 15.34 1.657
45 14 15.38-1.375
46 19 15.28 3.722
47 14 15.41-1.408
48 15 15.41-0.4077
49 12 15.38-3.375
50 17 15.41 1.592
51 15 15.41-0.4077
52 16 15.41 0.5923

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  16 &  15.28 &  0.7222 \tabularnewline
2 &  17 &  15.41 &  1.592 \tabularnewline
3 &  16 &  15.41 &  0.5923 \tabularnewline
4 &  17 &  15.38 &  1.625 \tabularnewline
5 &  16 &  15.38 &  0.6248 \tabularnewline
6 &  16 &  15.41 &  0.5923 \tabularnewline
7 &  15 &  15.41 & -0.4077 \tabularnewline
8 &  13 &  15.38 & -2.375 \tabularnewline
9 &  14 &  15.41 & -1.408 \tabularnewline
10 &  17 &  15.41 &  1.592 \tabularnewline
11 &  13 &  15.41 & -2.408 \tabularnewline
12 &  16 &  15.41 &  0.5923 \tabularnewline
13 &  15 &  15.41 & -0.4077 \tabularnewline
14 &  15 &  15.41 & -0.4077 \tabularnewline
15 &  13 &  15.38 & -2.375 \tabularnewline
16 &  17 &  15.41 &  1.592 \tabularnewline
17 &  11 &  15.31 & -4.31 \tabularnewline
18 &  13 &  15.28 & -2.278 \tabularnewline
19 &  16 &  15.41 &  0.5923 \tabularnewline
20 &  17 &  15.41 &  1.592 \tabularnewline
21 &  16 &  15.41 &  0.5923 \tabularnewline
22 &  16 &  15.41 &  0.5923 \tabularnewline
23 &  16 &  15.41 &  0.5923 \tabularnewline
24 &  12 &  15.41 & -3.408 \tabularnewline
25 &  16 &  15.31 &  0.6897 \tabularnewline
26 &  15 &  15.38 & -0.3752 \tabularnewline
27 &  14 &  15.38 & -1.375 \tabularnewline
28 &  17 &  15.41 &  1.592 \tabularnewline
29 &  20 &  15.34 &  4.657 \tabularnewline
30 &  17 &  15.41 &  1.592 \tabularnewline
31 &  18 &  15.41 &  2.592 \tabularnewline
32 &  14 &  15.34 & -1.343 \tabularnewline
33 &  16 &  15.34 &  0.6572 \tabularnewline
34 &  18 &  15.41 &  2.592 \tabularnewline
35 &  16 &  15.41 &  0.5923 \tabularnewline
36 &  13 &  15.41 & -2.408 \tabularnewline
37 &  16 &  15.41 &  0.5923 \tabularnewline
38 &  16 &  15.41 &  0.5923 \tabularnewline
39 &  15 &  15.41 & -0.4077 \tabularnewline
40 &  15 &  15.41 & -0.4077 \tabularnewline
41 &  16 &  15.38 &  0.6248 \tabularnewline
42 &  11 &  15.41 & -4.408 \tabularnewline
43 &  15 &  15.34 & -0.3428 \tabularnewline
44 &  17 &  15.34 &  1.657 \tabularnewline
45 &  14 &  15.38 & -1.375 \tabularnewline
46 &  19 &  15.28 &  3.722 \tabularnewline
47 &  14 &  15.41 & -1.408 \tabularnewline
48 &  15 &  15.41 & -0.4077 \tabularnewline
49 &  12 &  15.38 & -3.375 \tabularnewline
50 &  17 &  15.41 &  1.592 \tabularnewline
51 &  15 &  15.41 & -0.4077 \tabularnewline
52 &  16 &  15.41 &  0.5923 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 16[/C][C] 15.28[/C][C] 0.7222[/C][/ROW]
[ROW][C]2[/C][C] 17[/C][C] 15.41[/C][C] 1.592[/C][/ROW]
[ROW][C]3[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[ROW][C]4[/C][C] 17[/C][C] 15.38[/C][C] 1.625[/C][/ROW]
[ROW][C]5[/C][C] 16[/C][C] 15.38[/C][C] 0.6248[/C][/ROW]
[ROW][C]6[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 15.41[/C][C]-0.4077[/C][/ROW]
[ROW][C]8[/C][C] 13[/C][C] 15.38[/C][C]-2.375[/C][/ROW]
[ROW][C]9[/C][C] 14[/C][C] 15.41[/C][C]-1.408[/C][/ROW]
[ROW][C]10[/C][C] 17[/C][C] 15.41[/C][C] 1.592[/C][/ROW]
[ROW][C]11[/C][C] 13[/C][C] 15.41[/C][C]-2.408[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[ROW][C]13[/C][C] 15[/C][C] 15.41[/C][C]-0.4077[/C][/ROW]
[ROW][C]14[/C][C] 15[/C][C] 15.41[/C][C]-0.4077[/C][/ROW]
[ROW][C]15[/C][C] 13[/C][C] 15.38[/C][C]-2.375[/C][/ROW]
[ROW][C]16[/C][C] 17[/C][C] 15.41[/C][C] 1.592[/C][/ROW]
[ROW][C]17[/C][C] 11[/C][C] 15.31[/C][C]-4.31[/C][/ROW]
[ROW][C]18[/C][C] 13[/C][C] 15.28[/C][C]-2.278[/C][/ROW]
[ROW][C]19[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[ROW][C]20[/C][C] 17[/C][C] 15.41[/C][C] 1.592[/C][/ROW]
[ROW][C]21[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[ROW][C]22[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[ROW][C]23[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[ROW][C]24[/C][C] 12[/C][C] 15.41[/C][C]-3.408[/C][/ROW]
[ROW][C]25[/C][C] 16[/C][C] 15.31[/C][C] 0.6897[/C][/ROW]
[ROW][C]26[/C][C] 15[/C][C] 15.38[/C][C]-0.3752[/C][/ROW]
[ROW][C]27[/C][C] 14[/C][C] 15.38[/C][C]-1.375[/C][/ROW]
[ROW][C]28[/C][C] 17[/C][C] 15.41[/C][C] 1.592[/C][/ROW]
[ROW][C]29[/C][C] 20[/C][C] 15.34[/C][C] 4.657[/C][/ROW]
[ROW][C]30[/C][C] 17[/C][C] 15.41[/C][C] 1.592[/C][/ROW]
[ROW][C]31[/C][C] 18[/C][C] 15.41[/C][C] 2.592[/C][/ROW]
[ROW][C]32[/C][C] 14[/C][C] 15.34[/C][C]-1.343[/C][/ROW]
[ROW][C]33[/C][C] 16[/C][C] 15.34[/C][C] 0.6572[/C][/ROW]
[ROW][C]34[/C][C] 18[/C][C] 15.41[/C][C] 2.592[/C][/ROW]
[ROW][C]35[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[ROW][C]36[/C][C] 13[/C][C] 15.41[/C][C]-2.408[/C][/ROW]
[ROW][C]37[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[ROW][C]38[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[ROW][C]39[/C][C] 15[/C][C] 15.41[/C][C]-0.4077[/C][/ROW]
[ROW][C]40[/C][C] 15[/C][C] 15.41[/C][C]-0.4077[/C][/ROW]
[ROW][C]41[/C][C] 16[/C][C] 15.38[/C][C] 0.6248[/C][/ROW]
[ROW][C]42[/C][C] 11[/C][C] 15.41[/C][C]-4.408[/C][/ROW]
[ROW][C]43[/C][C] 15[/C][C] 15.34[/C][C]-0.3428[/C][/ROW]
[ROW][C]44[/C][C] 17[/C][C] 15.34[/C][C] 1.657[/C][/ROW]
[ROW][C]45[/C][C] 14[/C][C] 15.38[/C][C]-1.375[/C][/ROW]
[ROW][C]46[/C][C] 19[/C][C] 15.28[/C][C] 3.722[/C][/ROW]
[ROW][C]47[/C][C] 14[/C][C] 15.41[/C][C]-1.408[/C][/ROW]
[ROW][C]48[/C][C] 15[/C][C] 15.41[/C][C]-0.4077[/C][/ROW]
[ROW][C]49[/C][C] 12[/C][C] 15.38[/C][C]-3.375[/C][/ROW]
[ROW][C]50[/C][C] 17[/C][C] 15.41[/C][C] 1.592[/C][/ROW]
[ROW][C]51[/C][C] 15[/C][C] 15.41[/C][C]-0.4077[/C][/ROW]
[ROW][C]52[/C][C] 16[/C][C] 15.41[/C][C] 0.5923[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 16 15.28 0.7222
2 17 15.41 1.592
3 16 15.41 0.5923
4 17 15.38 1.625
5 16 15.38 0.6248
6 16 15.41 0.5923
7 15 15.41-0.4077
8 13 15.38-2.375
9 14 15.41-1.408
10 17 15.41 1.592
11 13 15.41-2.408
12 16 15.41 0.5923
13 15 15.41-0.4077
14 15 15.41-0.4077
15 13 15.38-2.375
16 17 15.41 1.592
17 11 15.31-4.31
18 13 15.28-2.278
19 16 15.41 0.5923
20 17 15.41 1.592
21 16 15.41 0.5923
22 16 15.41 0.5923
23 16 15.41 0.5923
24 12 15.41-3.408
25 16 15.31 0.6897
26 15 15.38-0.3752
27 14 15.38-1.375
28 17 15.41 1.592
29 20 15.34 4.657
30 17 15.41 1.592
31 18 15.41 2.592
32 14 15.34-1.343
33 16 15.34 0.6572
34 18 15.41 2.592
35 16 15.41 0.5923
36 13 15.41-2.408
37 16 15.41 0.5923
38 16 15.41 0.5923
39 15 15.41-0.4077
40 15 15.41-0.4077
41 16 15.38 0.6248
42 11 15.41-4.408
43 15 15.34-0.3428
44 17 15.34 1.657
45 14 15.38-1.375
46 19 15.28 3.722
47 14 15.41-1.408
48 15 15.41-0.4077
49 12 15.38-3.375
50 17 15.41 1.592
51 15 15.41-0.4077
52 16 15.41 0.5923







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5 0.03441 0.06883 0.9656
6 0.01208 0.02416 0.9879
7 0.0192 0.0384 0.9808
8 0.1853 0.3706 0.8147
9 0.1755 0.3509 0.8245
10 0.1514 0.3028 0.8486
11 0.2341 0.4682 0.7659
12 0.165 0.3301 0.835
13 0.1095 0.219 0.8905
14 0.06956 0.1391 0.9304
15 0.1051 0.2103 0.8949
16 0.1 0.2 0.9
17 0.3182 0.6364 0.6818
18 0.3229 0.6458 0.6771
19 0.2554 0.5109 0.7446
20 0.2394 0.4788 0.7606
21 0.1832 0.3665 0.8168
22 0.1367 0.2734 0.8633
23 0.09939 0.1988 0.9006
24 0.2355 0.471 0.7645
25 0.2201 0.4403 0.7799
26 0.1671 0.3342 0.8329
27 0.1467 0.2934 0.8533
28 0.1375 0.2751 0.8625
29 0.4739 0.9479 0.5261
30 0.4566 0.9133 0.5434
31 0.5552 0.8896 0.4448
32 0.5456 0.9088 0.4544
33 0.4692 0.9384 0.5308
34 0.605 0.7901 0.395
35 0.5553 0.8895 0.4447
36 0.5737 0.8526 0.4263
37 0.5216 0.9568 0.4784
38 0.4772 0.9545 0.5228
39 0.3941 0.7881 0.6059
40 0.3152 0.6304 0.6848
41 0.2449 0.4898 0.7551
42 0.52 0.9599 0.48
43 0.4473 0.8946 0.5527
44 0.3583 0.7166 0.6417
45 0.3083 0.6167 0.6917
46 0.8395 0.3209 0.1605
47 0.8593 0.2815 0.1407

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 &  0.03441 &  0.06883 &  0.9656 \tabularnewline
6 &  0.01208 &  0.02416 &  0.9879 \tabularnewline
7 &  0.0192 &  0.0384 &  0.9808 \tabularnewline
8 &  0.1853 &  0.3706 &  0.8147 \tabularnewline
9 &  0.1755 &  0.3509 &  0.8245 \tabularnewline
10 &  0.1514 &  0.3028 &  0.8486 \tabularnewline
11 &  0.2341 &  0.4682 &  0.7659 \tabularnewline
12 &  0.165 &  0.3301 &  0.835 \tabularnewline
13 &  0.1095 &  0.219 &  0.8905 \tabularnewline
14 &  0.06956 &  0.1391 &  0.9304 \tabularnewline
15 &  0.1051 &  0.2103 &  0.8949 \tabularnewline
16 &  0.1 &  0.2 &  0.9 \tabularnewline
17 &  0.3182 &  0.6364 &  0.6818 \tabularnewline
18 &  0.3229 &  0.6458 &  0.6771 \tabularnewline
19 &  0.2554 &  0.5109 &  0.7446 \tabularnewline
20 &  0.2394 &  0.4788 &  0.7606 \tabularnewline
21 &  0.1832 &  0.3665 &  0.8168 \tabularnewline
22 &  0.1367 &  0.2734 &  0.8633 \tabularnewline
23 &  0.09939 &  0.1988 &  0.9006 \tabularnewline
24 &  0.2355 &  0.471 &  0.7645 \tabularnewline
25 &  0.2201 &  0.4403 &  0.7799 \tabularnewline
26 &  0.1671 &  0.3342 &  0.8329 \tabularnewline
27 &  0.1467 &  0.2934 &  0.8533 \tabularnewline
28 &  0.1375 &  0.2751 &  0.8625 \tabularnewline
29 &  0.4739 &  0.9479 &  0.5261 \tabularnewline
30 &  0.4566 &  0.9133 &  0.5434 \tabularnewline
31 &  0.5552 &  0.8896 &  0.4448 \tabularnewline
32 &  0.5456 &  0.9088 &  0.4544 \tabularnewline
33 &  0.4692 &  0.9384 &  0.5308 \tabularnewline
34 &  0.605 &  0.7901 &  0.395 \tabularnewline
35 &  0.5553 &  0.8895 &  0.4447 \tabularnewline
36 &  0.5737 &  0.8526 &  0.4263 \tabularnewline
37 &  0.5216 &  0.9568 &  0.4784 \tabularnewline
38 &  0.4772 &  0.9545 &  0.5228 \tabularnewline
39 &  0.3941 &  0.7881 &  0.6059 \tabularnewline
40 &  0.3152 &  0.6304 &  0.6848 \tabularnewline
41 &  0.2449 &  0.4898 &  0.7551 \tabularnewline
42 &  0.52 &  0.9599 &  0.48 \tabularnewline
43 &  0.4473 &  0.8946 &  0.5527 \tabularnewline
44 &  0.3583 &  0.7166 &  0.6417 \tabularnewline
45 &  0.3083 &  0.6167 &  0.6917 \tabularnewline
46 &  0.8395 &  0.3209 &  0.1605 \tabularnewline
47 &  0.8593 &  0.2815 &  0.1407 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C] 0.03441[/C][C] 0.06883[/C][C] 0.9656[/C][/ROW]
[ROW][C]6[/C][C] 0.01208[/C][C] 0.02416[/C][C] 0.9879[/C][/ROW]
[ROW][C]7[/C][C] 0.0192[/C][C] 0.0384[/C][C] 0.9808[/C][/ROW]
[ROW][C]8[/C][C] 0.1853[/C][C] 0.3706[/C][C] 0.8147[/C][/ROW]
[ROW][C]9[/C][C] 0.1755[/C][C] 0.3509[/C][C] 0.8245[/C][/ROW]
[ROW][C]10[/C][C] 0.1514[/C][C] 0.3028[/C][C] 0.8486[/C][/ROW]
[ROW][C]11[/C][C] 0.2341[/C][C] 0.4682[/C][C] 0.7659[/C][/ROW]
[ROW][C]12[/C][C] 0.165[/C][C] 0.3301[/C][C] 0.835[/C][/ROW]
[ROW][C]13[/C][C] 0.1095[/C][C] 0.219[/C][C] 0.8905[/C][/ROW]
[ROW][C]14[/C][C] 0.06956[/C][C] 0.1391[/C][C] 0.9304[/C][/ROW]
[ROW][C]15[/C][C] 0.1051[/C][C] 0.2103[/C][C] 0.8949[/C][/ROW]
[ROW][C]16[/C][C] 0.1[/C][C] 0.2[/C][C] 0.9[/C][/ROW]
[ROW][C]17[/C][C] 0.3182[/C][C] 0.6364[/C][C] 0.6818[/C][/ROW]
[ROW][C]18[/C][C] 0.3229[/C][C] 0.6458[/C][C] 0.6771[/C][/ROW]
[ROW][C]19[/C][C] 0.2554[/C][C] 0.5109[/C][C] 0.7446[/C][/ROW]
[ROW][C]20[/C][C] 0.2394[/C][C] 0.4788[/C][C] 0.7606[/C][/ROW]
[ROW][C]21[/C][C] 0.1832[/C][C] 0.3665[/C][C] 0.8168[/C][/ROW]
[ROW][C]22[/C][C] 0.1367[/C][C] 0.2734[/C][C] 0.8633[/C][/ROW]
[ROW][C]23[/C][C] 0.09939[/C][C] 0.1988[/C][C] 0.9006[/C][/ROW]
[ROW][C]24[/C][C] 0.2355[/C][C] 0.471[/C][C] 0.7645[/C][/ROW]
[ROW][C]25[/C][C] 0.2201[/C][C] 0.4403[/C][C] 0.7799[/C][/ROW]
[ROW][C]26[/C][C] 0.1671[/C][C] 0.3342[/C][C] 0.8329[/C][/ROW]
[ROW][C]27[/C][C] 0.1467[/C][C] 0.2934[/C][C] 0.8533[/C][/ROW]
[ROW][C]28[/C][C] 0.1375[/C][C] 0.2751[/C][C] 0.8625[/C][/ROW]
[ROW][C]29[/C][C] 0.4739[/C][C] 0.9479[/C][C] 0.5261[/C][/ROW]
[ROW][C]30[/C][C] 0.4566[/C][C] 0.9133[/C][C] 0.5434[/C][/ROW]
[ROW][C]31[/C][C] 0.5552[/C][C] 0.8896[/C][C] 0.4448[/C][/ROW]
[ROW][C]32[/C][C] 0.5456[/C][C] 0.9088[/C][C] 0.4544[/C][/ROW]
[ROW][C]33[/C][C] 0.4692[/C][C] 0.9384[/C][C] 0.5308[/C][/ROW]
[ROW][C]34[/C][C] 0.605[/C][C] 0.7901[/C][C] 0.395[/C][/ROW]
[ROW][C]35[/C][C] 0.5553[/C][C] 0.8895[/C][C] 0.4447[/C][/ROW]
[ROW][C]36[/C][C] 0.5737[/C][C] 0.8526[/C][C] 0.4263[/C][/ROW]
[ROW][C]37[/C][C] 0.5216[/C][C] 0.9568[/C][C] 0.4784[/C][/ROW]
[ROW][C]38[/C][C] 0.4772[/C][C] 0.9545[/C][C] 0.5228[/C][/ROW]
[ROW][C]39[/C][C] 0.3941[/C][C] 0.7881[/C][C] 0.6059[/C][/ROW]
[ROW][C]40[/C][C] 0.3152[/C][C] 0.6304[/C][C] 0.6848[/C][/ROW]
[ROW][C]41[/C][C] 0.2449[/C][C] 0.4898[/C][C] 0.7551[/C][/ROW]
[ROW][C]42[/C][C] 0.52[/C][C] 0.9599[/C][C] 0.48[/C][/ROW]
[ROW][C]43[/C][C] 0.4473[/C][C] 0.8946[/C][C] 0.5527[/C][/ROW]
[ROW][C]44[/C][C] 0.3583[/C][C] 0.7166[/C][C] 0.6417[/C][/ROW]
[ROW][C]45[/C][C] 0.3083[/C][C] 0.6167[/C][C] 0.6917[/C][/ROW]
[ROW][C]46[/C][C] 0.8395[/C][C] 0.3209[/C][C] 0.1605[/C][/ROW]
[ROW][C]47[/C][C] 0.8593[/C][C] 0.2815[/C][C] 0.1407[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5 0.03441 0.06883 0.9656
6 0.01208 0.02416 0.9879
7 0.0192 0.0384 0.9808
8 0.1853 0.3706 0.8147
9 0.1755 0.3509 0.8245
10 0.1514 0.3028 0.8486
11 0.2341 0.4682 0.7659
12 0.165 0.3301 0.835
13 0.1095 0.219 0.8905
14 0.06956 0.1391 0.9304
15 0.1051 0.2103 0.8949
16 0.1 0.2 0.9
17 0.3182 0.6364 0.6818
18 0.3229 0.6458 0.6771
19 0.2554 0.5109 0.7446
20 0.2394 0.4788 0.7606
21 0.1832 0.3665 0.8168
22 0.1367 0.2734 0.8633
23 0.09939 0.1988 0.9006
24 0.2355 0.471 0.7645
25 0.2201 0.4403 0.7799
26 0.1671 0.3342 0.8329
27 0.1467 0.2934 0.8533
28 0.1375 0.2751 0.8625
29 0.4739 0.9479 0.5261
30 0.4566 0.9133 0.5434
31 0.5552 0.8896 0.4448
32 0.5456 0.9088 0.4544
33 0.4692 0.9384 0.5308
34 0.605 0.7901 0.395
35 0.5553 0.8895 0.4447
36 0.5737 0.8526 0.4263
37 0.5216 0.9568 0.4784
38 0.4772 0.9545 0.5228
39 0.3941 0.7881 0.6059
40 0.3152 0.6304 0.6848
41 0.2449 0.4898 0.7551
42 0.52 0.9599 0.48
43 0.4473 0.8946 0.5527
44 0.3583 0.7166 0.6417
45 0.3083 0.6167 0.6917
46 0.8395 0.3209 0.1605
47 0.8593 0.2815 0.1407







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level20.0465116OK
10% type I error level30.0697674OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 2 & 0.0465116 & OK \tabularnewline
10% type I error level & 3 & 0.0697674 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]2[/C][C]0.0465116[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]3[/C][C]0.0697674[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level20.0465116OK
10% type I error level30.0697674OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.42452, df1 = 2, df2 = 48, p-value = 0.6565



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')