Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_Simple Regression Y ~ X.wasp
Title produced by softwareSimple Linear Regression
Date of computationThu, 15 Dec 2016 19:43:25 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t1481827434lh2k55dig4p76rt.htm/, Retrieved Fri, 01 Nov 2024 03:35:36 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299953, Retrieved Fri, 01 Nov 2024 03:35:36 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact109
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Simple Linear Regression] [] [2016-12-15 18:43:25] [462f83e9ca944f1b841aaa868aea0854] [Current]
Feedback Forum

Post a new message
Dataseries X:
15	13
13	16
14	17
13	NA
12	NA
17	16
12	NA
13	NA
13	NA
16	17
12	17
12	15
13	16
16	14
15	16
12	17
NA	NA
NA	NA
15	NA
12	NA
15	16
11	NA
13	16
13	NA
14	NA
14	NA
14	16
15	15
16	16
16	16
16	13
13	15
13	17
14	NA
13	13
14	17
12	NA
17	14
14	14
15	18
13	NA
14	17
15	13
19	16
14	15
13	15
12	NA
NA	15
14	13
15	NA
15	17
12	NA
14	NA
11	11
12	14
10	13
NA	NA
14	17
14	16
15	NA
15	17
13	16
15	16
16	16
12	15
17	12
15	17
NA	14
12	14
16	16
15	NA
15	NA
12	NA
13	NA
10	NA
14	15
11	16
12	14
14	15
12	17
14	NA
12	10
13	NA
13	17
14	NA
12	20
15	17
13	18
13	NA
11	17
12	14
16	NA
11	17
13	NA
12	17
17	NA
14	16
15	18
8	18
13	16
13	NA
15	NA
14	15
13	13
14	NA
12	NA
19	NA
15	NA
14	NA
14	16
15	NA
13	NA
15	NA
14	12
11	NA
17	16
13	16
9	NA
12	16
13	14
17	15
14	14
13	NA
16	15
14	NA
14	15
14	16
10	NA
12	NA
13	NA
14	11
18	NA
14	18
14	NA
13	11
13	NA
16	18
NA	NA
13	15
14	19
8	17
13	NA
13	14
16	NA
14	13
13	17
14	14
12	19
16	14
18	NA
16	NA
15	16
18	16
15	15
14	12
14	NA
15	17
9	NA
17	NA
11	18
15	15
NA	18
15	15
13	NA
NA	NA
15	NA
15	16
14	NA
13	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time6 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299953&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]6 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299953&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299953&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center







Linear Regression Model
Y ~ X
coefficients:
EstimateStd. Errort valuePr(>|t|)
(Intercept)16.2811.40711.5690
X-0.0590.101-0.5820.562
- - -
Residual Std. Err. 1.884 on 98 df
Multiple R-sq. 0.003
95% CI Multiple R-sq. [0, 0.037]
Adjusted R-sq. -0.007

\begin{tabular}{lllllllll}
\hline
Linear Regression Model \tabularnewline
Y ~ X \tabularnewline
coefficients: &   \tabularnewline
  & Estimate & Std. Error & t value & Pr(>|t|) \tabularnewline
(Intercept) & 16.281 & 1.407 & 11.569 & 0 \tabularnewline
X & -0.059 & 0.101 & -0.582 & 0.562 \tabularnewline
- - -  &   \tabularnewline
Residual Std. Err.  & 1.884  on  98 df \tabularnewline
Multiple R-sq.  & 0.003 \tabularnewline
95% CI Multiple R-sq.  & [0, 0.037] \tabularnewline
Adjusted R-sq.  & -0.007 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299953&T=1

[TABLE]
[ROW][C]Linear Regression Model[/C][/ROW]
[ROW][C]Y ~ X[/C][/ROW]
[ROW][C]coefficients:[/C][C] [/C][/ROW]
[ROW][C] [/C][C]Estimate[/C][C]Std. Error[/C][C]t value[/C][C]Pr(>|t|)[/C][/ROW]
[C](Intercept)[/C][C]16.281[/C][C]1.407[/C][C]11.569[/C][C]0[/C][/ROW]
[C]X[/C][C]-0.059[/C][C]0.101[/C][C]-0.582[/C][C]0.562[/C][/ROW]
[ROW][C]- - - [/C][C] [/C][/ROW]
[ROW][C]Residual Std. Err. [/C][C]1.884  on  98 df[/C][/ROW]
[ROW][C]Multiple R-sq. [/C][C]0.003[/C][/ROW]
[ROW][C]95% CI Multiple R-sq. [/C][C][0, 0.037][/C][/ROW]
[ROW][C]Adjusted R-sq. [/C][C]-0.007[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299953&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299953&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Linear Regression Model
Y ~ X
coefficients:
EstimateStd. Errort valuePr(>|t|)
(Intercept)16.2811.40711.5690
X-0.0590.101-0.5820.562
- - -
Residual Std. Err. 1.884 on 98 df
Multiple R-sq. 0.003
95% CI Multiple R-sq. [0, 0.037]
Adjusted R-sq. -0.007







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
EPSUM11.21.20.3380.562
Residuals98347.713.548

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
EPSUM & 1 & 1.2 & 1.2 & 0.338 & 0.562 \tabularnewline
Residuals & 98 & 347.71 & 3.548 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299953&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]EPSUM[/C][C]1[/C][C]1.2[/C][C]1.2[/C][C]0.338[/C][C]0.562[/C][/ROW]
[ROW][C]Residuals[/C][C]98[/C][C]347.71[/C][C]3.548[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299953&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299953&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
EPSUM11.21.20.3380.562
Residuals98347.713.548



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0.0 ;
Parameters (R input):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
R code (references can be found in the software module):
library(boot)
cat1 <- as.numeric(par1)
cat2<- as.numeric(par2)
intercept<-as.logical(par3)
x <- na.omit(t(x))
rsq <- function(formula, data, indices) {
d <- data[indices,] # allows boot to select sample
fit <- lm(formula, data=d)
return(summary(fit)$r.square)
}
xdf<-data.frame(na.omit(t(y)))
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
xdf <- data.frame(xdf[[cat1]], xdf[[cat2]])
names(xdf)<-c('Y', 'X')
if(intercept == FALSE) (lmxdf<-lm(Y~ X - 1, data = xdf) ) else (lmxdf<-lm(Y~ X, data = xdf) )
(results <- boot(data=xdf, statistic=rsq, R=1000, formula=Y~X))
sumlmxdf<-summary(lmxdf)
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
nc <- ncol(sumlmxdf$'coefficients')
nr <- nrow(sumlmxdf$'coefficients')
a<-table.row.start(a)
a<-table.element(a,'Linear Regression Model', nc+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, lmxdf$call['formula'],nc+1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'coefficients:',1,TRUE)
a<-table.element(a, ' ',nc,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',1,TRUE)
for(i in 1 : nc){
a<-table.element(a, dimnames(sumlmxdf$'coefficients')[[2]][i],1,TRUE)
}#end header
a<-table.row.end(a)
for(i in 1: nr){
a<-table.element(a,dimnames(sumlmxdf$'coefficients')[[1]][i] ,1,TRUE)
for(j in 1 : nc){
a<-table.element(a, round(sumlmxdf$coefficients[i, j], digits=3), 1 ,FALSE)
}
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a, '- - - ',1,TRUE)
a<-table.element(a, ' ',nc,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Std. Err. ',1,TRUE)
a<-table.element(a, paste(round(sumlmxdf$'sigma', digits=3), ' on ', sumlmxdf$'df'[2], 'df') ,nc, FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R-sq. ',1,TRUE)
a<-table.element(a, round(sumlmxdf$'r.squared', digits=3) ,nc, FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, '95% CI Multiple R-sq. ',1,TRUE)
a<-table.element(a, paste('[',round(boot.ci(results,type='bca')$bca[1,4], digits=3),', ', round(boot.ci(results,type='bca')$bca[1,5], digits=3), ']',sep='') ,nc, FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-sq. ',1,TRUE)
a<-table.element(a, round(sumlmxdf$'adj.r.squared', digits=3) ,nc, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',1,TRUE)
a<-table.element(a, 'Df',1,TRUE)
a<-table.element(a, 'Sum Sq',1,TRUE)
a<-table.element(a, 'Mean Sq',1,TRUE)
a<-table.element(a, 'F value',1,TRUE)
a<-table.element(a, 'Pr(>F)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,1,TRUE)
a<-table.element(a, anova.xdf$Df[1])
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3))
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3))
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3))
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',1,TRUE)
a<-table.element(a, anova.xdf$Df[2])
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3))
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3))
a<-table.element(a, ' ')
a<-table.element(a, ' ')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='regressionplot.png')
plot(Y~ X, data=xdf, xlab=V2, ylab=V1, main='Regression Solution')
if(intercept == TRUE) abline(coef(lmxdf), col='red')
if(intercept == FALSE) abline(0.0, coef(lmxdf), col='red')
dev.off()
library(car)
bitmap(file='residualsQQplot.png')
qqPlot(resid(lmxdf), main='QQplot of Residuals of Fit')
dev.off()
bitmap(file='residualsplot.png')
plot(xdf$X, resid(lmxdf), main='Scatterplot of Residuals of Model Fit')
dev.off()
bitmap(file='cooksDistanceLmplot.png')
plot(lmxdf, which=4)
dev.off()