Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationThu, 15 Dec 2016 10:45:16 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t148179524013euiwpks7cmxt0.htm/, Retrieved Fri, 01 Nov 2024 03:47:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299796, Retrieved Fri, 01 Nov 2024 03:47:56 +0000
QR Codes:

Original text written by user:2e keer classical decomposition maar nu met sezonaliteit 6
IsPrivate?No (this computation is public)
User-defined keywordsf1competitie sezonaliteit6
Estimated Impact133
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical decompo...] [2016-12-15 09:45:16] [d92250bd36540c2281a4ec15b45df1dd] [Current]
Feedback Forum

Post a new message
Dataseries X:
649
655
618
640
707
730
768
753
773
797
810
794
809
828
828
849
865
879
908
961




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299796&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299796&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299796&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
1649NANA10.0972NA
2655NANA-3.19444NA
3618NANA-5.98611NA
4640667.278676.417-9.13889-27.2778
5707701.667694.57.166675.33333
6730716.639715.5831.0555613.3611
7768751.681741.58310.097216.3194
8753760.056763.25-3.19444-7.05556
9773771.181777.167-5.986111.81944
10797776.778785.917-9.1388920.2222
11810802.75795.5837.166677.25
12794807.472806.4171.05556-13.4722
13809825.431815.33310.0972-16.4306
14828821.056824.25-3.194446.94444
15828829.931835.917-5.98611-1.93056
16849842.111851.25-9.138896.88889
17865877.75870.5837.16667-12.75
18879NANA1.05556NA
19908NANA10.0972NA
20961NANA-3.19444NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 649 & NA & NA & 10.0972 & NA \tabularnewline
2 & 655 & NA & NA & -3.19444 & NA \tabularnewline
3 & 618 & NA & NA & -5.98611 & NA \tabularnewline
4 & 640 & 667.278 & 676.417 & -9.13889 & -27.2778 \tabularnewline
5 & 707 & 701.667 & 694.5 & 7.16667 & 5.33333 \tabularnewline
6 & 730 & 716.639 & 715.583 & 1.05556 & 13.3611 \tabularnewline
7 & 768 & 751.681 & 741.583 & 10.0972 & 16.3194 \tabularnewline
8 & 753 & 760.056 & 763.25 & -3.19444 & -7.05556 \tabularnewline
9 & 773 & 771.181 & 777.167 & -5.98611 & 1.81944 \tabularnewline
10 & 797 & 776.778 & 785.917 & -9.13889 & 20.2222 \tabularnewline
11 & 810 & 802.75 & 795.583 & 7.16667 & 7.25 \tabularnewline
12 & 794 & 807.472 & 806.417 & 1.05556 & -13.4722 \tabularnewline
13 & 809 & 825.431 & 815.333 & 10.0972 & -16.4306 \tabularnewline
14 & 828 & 821.056 & 824.25 & -3.19444 & 6.94444 \tabularnewline
15 & 828 & 829.931 & 835.917 & -5.98611 & -1.93056 \tabularnewline
16 & 849 & 842.111 & 851.25 & -9.13889 & 6.88889 \tabularnewline
17 & 865 & 877.75 & 870.583 & 7.16667 & -12.75 \tabularnewline
18 & 879 & NA & NA & 1.05556 & NA \tabularnewline
19 & 908 & NA & NA & 10.0972 & NA \tabularnewline
20 & 961 & NA & NA & -3.19444 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299796&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]649[/C][C]NA[/C][C]NA[/C][C]10.0972[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]655[/C][C]NA[/C][C]NA[/C][C]-3.19444[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]618[/C][C]NA[/C][C]NA[/C][C]-5.98611[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]640[/C][C]667.278[/C][C]676.417[/C][C]-9.13889[/C][C]-27.2778[/C][/ROW]
[ROW][C]5[/C][C]707[/C][C]701.667[/C][C]694.5[/C][C]7.16667[/C][C]5.33333[/C][/ROW]
[ROW][C]6[/C][C]730[/C][C]716.639[/C][C]715.583[/C][C]1.05556[/C][C]13.3611[/C][/ROW]
[ROW][C]7[/C][C]768[/C][C]751.681[/C][C]741.583[/C][C]10.0972[/C][C]16.3194[/C][/ROW]
[ROW][C]8[/C][C]753[/C][C]760.056[/C][C]763.25[/C][C]-3.19444[/C][C]-7.05556[/C][/ROW]
[ROW][C]9[/C][C]773[/C][C]771.181[/C][C]777.167[/C][C]-5.98611[/C][C]1.81944[/C][/ROW]
[ROW][C]10[/C][C]797[/C][C]776.778[/C][C]785.917[/C][C]-9.13889[/C][C]20.2222[/C][/ROW]
[ROW][C]11[/C][C]810[/C][C]802.75[/C][C]795.583[/C][C]7.16667[/C][C]7.25[/C][/ROW]
[ROW][C]12[/C][C]794[/C][C]807.472[/C][C]806.417[/C][C]1.05556[/C][C]-13.4722[/C][/ROW]
[ROW][C]13[/C][C]809[/C][C]825.431[/C][C]815.333[/C][C]10.0972[/C][C]-16.4306[/C][/ROW]
[ROW][C]14[/C][C]828[/C][C]821.056[/C][C]824.25[/C][C]-3.19444[/C][C]6.94444[/C][/ROW]
[ROW][C]15[/C][C]828[/C][C]829.931[/C][C]835.917[/C][C]-5.98611[/C][C]-1.93056[/C][/ROW]
[ROW][C]16[/C][C]849[/C][C]842.111[/C][C]851.25[/C][C]-9.13889[/C][C]6.88889[/C][/ROW]
[ROW][C]17[/C][C]865[/C][C]877.75[/C][C]870.583[/C][C]7.16667[/C][C]-12.75[/C][/ROW]
[ROW][C]18[/C][C]879[/C][C]NA[/C][C]NA[/C][C]1.05556[/C][C]NA[/C][/ROW]
[ROW][C]19[/C][C]908[/C][C]NA[/C][C]NA[/C][C]10.0972[/C][C]NA[/C][/ROW]
[ROW][C]20[/C][C]961[/C][C]NA[/C][C]NA[/C][C]-3.19444[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299796&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299796&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
1649NANA10.0972NA
2655NANA-3.19444NA
3618NANA-5.98611NA
4640667.278676.417-9.13889-27.2778
5707701.667694.57.166675.33333
6730716.639715.5831.0555613.3611
7768751.681741.58310.097216.3194
8753760.056763.25-3.19444-7.05556
9773771.181777.167-5.986111.81944
10797776.778785.917-9.1388920.2222
11810802.75795.5837.166677.25
12794807.472806.4171.05556-13.4722
13809825.431815.33310.0972-16.4306
14828821.056824.25-3.194446.94444
15828829.931835.917-5.98611-1.93056
16849842.111851.25-9.138896.88889
17865877.75870.5837.16667-12.75
18879NANA1.05556NA
19908NANA10.0972NA
20961NANA-3.19444NA



Parameters (Session):
par4 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 6 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')