Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationWed, 14 Dec 2016 18:39:24 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481737214z30qu6ft6e6a2el.htm/, Retrieved Fri, 01 Nov 2024 03:34:25 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299658, Retrieved Fri, 01 Nov 2024 03:34:25 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact93
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [ANOVA] [2016-12-14 17:39:24] [462f83e9ca944f1b841aaa868aea0854] [Current]
Feedback Forum

Post a new message
Dataseries X:
15	25
13	23
14	23
13	NA
12	NA
17	29
12	NA
13	NA
13	NA
16	27
12	20
12	22
13	21
16	28
15	25
12	20
NA	NA
NA	NA
15	NA
12	NA
15	26
11	NA
13	21
13	NA
14	NA
14	NA
14	23
15	25
16	27
16	27
16	27
13	21
13	21
14	NA
13	21
14	24
12	NA
17	29
14	23
15	25
13	NA
14	23
15	25
19	33
14	23
13	21
12	NA
NA	1
14	24
15	NA
15	25
12	NA
14	NA
11	19
12	20
10	17
NA	NA
14	23
14	23
15	NA
15	25
13	21
15	25
16	27
12	20
17	29
15	26
NA	9
12	22
16	28
15	NA
15	NA
12	NA
13	NA
10	NA
14	23
11	19
12	20
14	24
12	19
14	NA
12	20
13	NA
13	21
14	NA
12	20
15	25
13	21
13	NA
11	18
12	20
16	NA
11	19
13	NA
12	19
17	NA
14	24
15	25
8	14
13	21
13	NA
15	NA
14	25
13	21
14	NA
12	NA
19	NA
15	NA
14	NA
14	23
15	NA
13	NA
15	NA
14	23
11	NA
17	29
13	21
9	NA
12	19
13	21
17	29
14	23
13	NA
16	27
14	NA
14	23
14	24
10	NA
12	NA
13	NA
14	23
18	NA
14	24
14	NA
13	22
13	NA
16	28
NA	NA
13	22
14	23
8	14
13	NA
13	22
16	NA
14	23
13	22
14	23
12	20
16	27
18	NA
16	NA
15	26
18	31
15	25
14	23
14	NA
15	25
9	NA
17	NA
11	19
15	25
NA	7
15	25
13	NA
NA	NA
15	NA
15	25
14	NA
13	21




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299658&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299658&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299658&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ANOVA Model
TVDCSUM ~ EPSUM
means1718.820.07121.31623.33325.16727.3293133145.667

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
TVDCSUM  ~  EPSUM \tabularnewline
means & 17 & 18.8 & 20.071 & 21.316 & 23.333 & 25.167 & 27.3 & 29 & 31 & 33 & 14 & 5.667 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299658&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]TVDCSUM  ~  EPSUM[/C][/ROW]
[ROW][C]means[/C][C]17[/C][C]18.8[/C][C]20.071[/C][C]21.316[/C][C]23.333[/C][C]25.167[/C][C]27.3[/C][C]29[/C][C]31[/C][C]33[/C][C]14[/C][C]5.667[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299658&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299658&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
TVDCSUM ~ EPSUM
means1718.820.07121.31623.33325.16727.3293133145.667







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
EPSUM1254992.5664582.7146472.1740
Residuals9164.4340.708

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
EPSUM & 12 & 54992.566 & 4582.714 & 6472.174 & 0 \tabularnewline
Residuals & 91 & 64.434 & 0.708 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299658&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]EPSUM[/C][C]12[/C][C]54992.566[/C][C]4582.714[/C][C]6472.174[/C][C]0[/C][/ROW]
[ROW][C]Residuals[/C][C]91[/C][C]64.434[/C][C]0.708[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299658&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299658&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
EPSUM1254992.5664582.7146472.1740
Residuals9164.4340.708







Must Include Intercept to use Tukey Test

\begin{tabular}{lllllllll}
\hline
Must Include Intercept to use Tukey Test  \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299658&T=3

[TABLE]
[ROW][C]Must Include Intercept to use Tukey Test [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299658&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299658&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Must Include Intercept to use Tukey Test







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group113.3840.001
91

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 11 & 3.384 & 0.001 \tabularnewline
  & 91 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299658&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]11[/C][C]3.384[/C][C]0.001[/C][/ROW]
[ROW][C] [/C][C]91[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299658&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299658&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group113.3840.001
91



Parameters (Session):
par1 = 2 ; par2 = 1 ; par3 = FALSE ;
Parameters (R input):
par1 = 2 ; par2 = 1 ; par3 = FALSE ;
R code (references can be found in the software module):
par3 <- 'FALSE'
par2 <- ''
par1 <- ''
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
'Tukey Plot'
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-leveneTest(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')