Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 14 Dec 2016 17:59:06 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481734793olev1x4iu84b83s.htm/, Retrieved Fri, 01 Nov 2024 03:37:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299627, Retrieved Fri, 01 Nov 2024 03:37:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact82
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [structural time s...] [2016-12-14 16:59:06] [130d73899007e5ff8a4f636b9bcfb397] [Current]
Feedback Forum

Post a new message
Dataseries X:
5767
5772.5
5704
5634
5577
5623
5274
5311.5
5141
4943.5
4749.5
4665.5
4504
4395.5
4373
4381
4228
4113
4268.5
4259.5
4183.5
4190.5
4099
4179
4211.5
4160.5
4169.5
4197.5
4151
4230
4256.5
4098
4124
4149
4064
4069
3897.5
4201
4191.5
4182
4219.5
4254
4159.5
4067.5
4155
4121.5
4079.5
3941.5
3946
3932.5
3931
3771
3787
3699
3634
3630.5
3551
3613.5
3517.5
3468
3476.5
3464.5
3438
3300.5
3389.5
3273
3302.5
3421.5
3302
3284
3268.5
3259
3341
3179.5
3102.5
3234
3187.5
3288.5
3247.5
3255.5
3295
3315
3362.5
3333.5
3305.5
3292.5
3245
3354
3299.5
3207
3354
3505.5
3557.5
3596
3751.5
3866.5
3910
4079
4232.5
4155
4269.5
4244.5
4182
4222
4232.5
4290.5
4335.5
4502.5
4509.5
4645
4645
4623.5
4751
4885.5
4797.5
4795
4767




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299627&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299627&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299627&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
157675767000
25772.55768.34394326210.9527849813413150.1955791483000440.0838239823743706
357045738.19281469773-16.4601006272064-1.10639702138987-0.836051796922617
456345671.21297331917-40.3429775883693-1.57708673873557-0.997888170414502
555775598.97797535283-54.4155000810173-1.47705264591608-0.588059499527541
656235593.64176351095-33.0195067087075-1.817267686546180.896464118425793
752745385.49093268822-109.747876651804-0.671908760948629-3.19075987286116
85311.55298.15009722195-99.8785517240309-0.7752383374587120.407410586207602
951415163.53755929921-115.22189233058-0.684584491779052-0.63107137049435
104943.54984.34769592977-143.51870517186-0.612569285209947-1.16253501580796
114749.54785.13970970705-168.170805866509-0.598887130452151-1.01261245837836
124665.54647.11774739139-154.820233635662-0.5940215450857050.548393055082498
1345044494.51317470597-153.9078540904378.182477536482830.0466317361820558
144395.54378.27287744328-138.3541636245860.384148645689140.549807195907571
1543734322.17227320406-103.2125320111381.478198081743991.45340097427993
1643814317.33399844187-59.86720407211811.742560335422591.79086221387548
1742284238.25786379641-68.38523937024151.78448647834209-0.348185905671895
1841134133.69008941055-84.39567845568871.90926186206815-0.653915279827312
194268.54183.22240135974-25.2300291089021.507332032501852.42317236058084
204259.54219.52544201041.957459603577381.383296533261091.11572790332433
214183.54197.29139829916-8.740208463007091.40960830184991-0.439350450266313
224190.54188.88228260711-8.593688313660271.409464902886860.00601844031518965
2340994129.5285332429-31.06631622138821.41262810244449-0.923073269825324
2441794147.02148484794-9.564322351671481.417382679219580.88319209489689
254211.54182.611954177659.725166283738171.400549646982220.891491606884144
264160.54171.568821915040.947717288176836-0.546110716625763-0.328075445081283
274169.54170.990358700850.287680484332281-0.559547595392413-0.0272351697721493
284197.54187.696527434367.53391389471379-0.5304986379764330.298788794101174
2941514168.3591766457-4.37566801987339-0.491636120743477-0.487617720354416
3042304204.9394914043613.7505818619538-0.5852442605617980.741751189841705
314256.54242.321024940724.1978874196719-0.6322464887695920.428298848814804
3240984163.30238902722-21.438787322354-0.494423581212436-1.87342133138002
3341244131.1942973866-26.1588016824489-0.486741353938316-0.193858547344121
3441494132.32621325295-14.0796897254533-0.4945604728197760.496157290011197
3540644085.25427978732-28.6864442780074-0.493204971444645-0.599977890210603
3640694064.50041938438-25.1740271758215-0.492690082066210.144272551017061
373897.53960.47609405065-59.2636432518377-14.4407870826643-1.51832164498681
3842014093.522038993722.96555476845464.236287425596463.15278591525223
394191.54160.1395056612541.95719805400384.523604542131210.782749193027533
4041824186.9987268057435.28837796681384.50366831078796-0.274711253394283
414219.54217.8060902532633.30286944502054.50850952969308-0.0813595018182308
4242544250.1137514111632.86236759234294.51021006471144-0.0180430547439009
434159.54204.25996185519-1.951166300150654.62728195055017-1.42791498489506
444067.54116.62021258738-39.8510958181934.71282580945142-1.55605588272848
4541554121.91941404166-19.87285152048624.688524596007460.820556781347856
464121.54111.11074610366-15.86063386573594.686583562034440.164803997762362
474079.54082.70647001208-21.41418151593424.68696872211628-0.228113835323197
483941.53984.89539040141-55.24087800750394.68326277709167-1.38943362783575
4939463967.18341886687-38.9187100094014-44.41218747320820.713078918617975
503932.53928.39092475813-38.86436360855444.039011543419460.00211443387011396
5139313912.59192123132-28.79360025296974.160231193438260.414785334770652
5237713812.0630145042-60.49453544877394.08467448787157-1.30510940413444
5337873770.8292986905-51.96151513467744.068066789649260.349824363421553
5436993704.1477340692-58.477330639184.08815035160111-0.267040320210385
5536343635.98238278739-62.76296853681724.09965648410385-0.17583120568309
563630.53605.89272851043-48.30861882040824.073611127967490.593504905623443
5735513551.03960051303-51.20480972819884.07642347966632-0.118955433382243
583613.53567.10830286503-21.42504810903994.064922326114771.22321785350307
593517.53525.89008103004-30.1882989371524.06540751275125-0.35995327824712
6034683476.20505435348-38.82088833089184.06465250059945-0.35458442537821
613476.53484.67387297755-18.179826268625-37.54148661586620.891126761351026
623464.53463.06660101146-19.66250521440283.37794554220251-0.0582367161789751
6334383437.99654424642-22.02910648667663.35429288665751-0.0974288462207031
643300.53343.08094064505-54.24904512874453.29044324479914-1.32596488514283
653389.53348.65367760271-27.74924444108013.247526672722871.08675038377665
6632733289.45750875618-41.66974328951453.28323552327938-0.570723907282935
673302.53279.39642692637-27.68513046906123.251989336525950.573871663393432
683421.53354.0108682824417.57741113759393.1841182660351.8586198774954
6933023326.9051431269-2.198168931483253.20009836199335-0.812250837214608
7032843297.75445883988-14.12954638261643.203932946349-0.490086498527379
713268.53272.37514427058-19.11030330479973.2041624276572-0.204586080865829
7232593254.81821943516-18.42251680584943.204212485867490.0282509106988515
7333413316.3635784966816.5652025830081-25.13477098961081.49842292609467
743179.53234.67810359332-26.07843315878061.42576315049646-1.68616360549504
753102.53142.42158295945-55.08963812075181.17787975042828-1.19395192004988
7632343176.58449533937-15.62602478967431.244803604089181.62362197559403
773187.53176.49688497231-8.743336870588571.235259503618970.282322138937675
783288.53241.2085730620723.77365253243991.163829909793331.33351489259972
793247.53253.52448420418.70387482307021.17352988366498-0.208071691352058
803255.53261.2329765143513.83848046217151.17977708613821-0.199796617926459
8132953286.5827512489818.93337291947481.176251734466660.209266009529222
8233153310.6156791133721.19090355860481.175630467146520.0927289820845097
833362.53349.9237783199829.21219230616571.175314010753430.329476751574915
843333.53350.4057961380616.49144877378361.17452123158143-0.522506225746476
853305.53338.904970147794.22336249497073-15.9553344810569-0.52236792869573
863292.53310.38203915459-10.02490635323671.19962984402774-0.56617658142574
8732453265.56058065045-25.29815597906471.08566251120772-0.628415230539023
8833543309.374239469525.265285218178761.130959359719641.25719059984467
893299.53304.646436168910.8391238320514031.13632558020085-0.181588648835995
9032073244.26594395234-26.26207816316761.18838027243568-1.11163736361811
9133543300.8290729629610.38898258093891.127065812606321.50437239804038
923505.53429.8435340589362.88393756111411.068131278159372.15576522152536
933557.53531.838730057380.19531336830871.057658054050620.711045355035806
9435963601.5426369705675.55077399749721.05877560876679-0.190776225752909
953751.53722.1121568548695.48262436132461.058088066996840.818706353468946
963866.53846.96080119055108.4848508468071.058796566321170.534068329021334
9739103935.7841763424499.8568855205836-13.5132215905862-0.365766191103972
9840794062.06064927671111.3746127957091.408532837292150.459418465273844
994232.54208.89864797612126.9556840667661.511723546416110.640959218043763
10041554223.9676212826977.46930242414271.44659221974063-2.03523861374833
1014269.54280.9348473380468.38886392350961.456371984855-0.372585715679206
1024244.54284.0215048897439.4798750910181.50570242214962-1.18597377532359
10341824235.648664289730.6017143858851381.56348354699891-1.59591317199035
10442224226.5390242499-3.696065442583461.5677699464694-0.176497591115111
1054232.54227.80919019741-1.497843954531491.566588500581990.0902898140689977
1064290.54264.7501925185215.51924036695291.56295098555110.698982933568046
1074335.54313.2089917859930.10311156981171.562504077537750.599036518364504
1084502.54440.0544296808572.93704165828051.564577575775071.75941025228392
1094509.54521.0184495716576.4629809179648-16.53279271481780.148963391316891
11046454626.2752040841889.03519811167361.679719493225280.502996694253094
11146454671.0400331945269.56962725169521.56383334166391-0.800635012321679
1124623.54667.7973475462737.36207351754151.52571117650079-1.32443932348721
11347514732.3731762177349.41472602799171.514034126159920.494593380835068
1144885.54844.575054812277.21067492041991.471364702595081.14045383442662
1154797.54844.5372095665243.02360582249881.51707246020291-1.40343783546599
11647954829.7904541507317.45604856925861.54001171473411-1.05000756393946
11747674797.03682864484-4.769047733691871.5507571875656-0.912876931213328

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 5767 & 5767 & 0 & 0 & 0 \tabularnewline
2 & 5772.5 & 5768.3439432621 & 0.952784981341315 & 0.195579148300044 & 0.0838239823743706 \tabularnewline
3 & 5704 & 5738.19281469773 & -16.4601006272064 & -1.10639702138987 & -0.836051796922617 \tabularnewline
4 & 5634 & 5671.21297331917 & -40.3429775883693 & -1.57708673873557 & -0.997888170414502 \tabularnewline
5 & 5577 & 5598.97797535283 & -54.4155000810173 & -1.47705264591608 & -0.588059499527541 \tabularnewline
6 & 5623 & 5593.64176351095 & -33.0195067087075 & -1.81726768654618 & 0.896464118425793 \tabularnewline
7 & 5274 & 5385.49093268822 & -109.747876651804 & -0.671908760948629 & -3.19075987286116 \tabularnewline
8 & 5311.5 & 5298.15009722195 & -99.8785517240309 & -0.775238337458712 & 0.407410586207602 \tabularnewline
9 & 5141 & 5163.53755929921 & -115.22189233058 & -0.684584491779052 & -0.63107137049435 \tabularnewline
10 & 4943.5 & 4984.34769592977 & -143.51870517186 & -0.612569285209947 & -1.16253501580796 \tabularnewline
11 & 4749.5 & 4785.13970970705 & -168.170805866509 & -0.598887130452151 & -1.01261245837836 \tabularnewline
12 & 4665.5 & 4647.11774739139 & -154.820233635662 & -0.594021545085705 & 0.548393055082498 \tabularnewline
13 & 4504 & 4494.51317470597 & -153.907854090437 & 8.18247753648283 & 0.0466317361820558 \tabularnewline
14 & 4395.5 & 4378.27287744328 & -138.354163624586 & 0.38414864568914 & 0.549807195907571 \tabularnewline
15 & 4373 & 4322.17227320406 & -103.212532011138 & 1.47819808174399 & 1.45340097427993 \tabularnewline
16 & 4381 & 4317.33399844187 & -59.8672040721181 & 1.74256033542259 & 1.79086221387548 \tabularnewline
17 & 4228 & 4238.25786379641 & -68.3852393702415 & 1.78448647834209 & -0.348185905671895 \tabularnewline
18 & 4113 & 4133.69008941055 & -84.3956784556887 & 1.90926186206815 & -0.653915279827312 \tabularnewline
19 & 4268.5 & 4183.22240135974 & -25.230029108902 & 1.50733203250185 & 2.42317236058084 \tabularnewline
20 & 4259.5 & 4219.5254420104 & 1.95745960357738 & 1.38329653326109 & 1.11572790332433 \tabularnewline
21 & 4183.5 & 4197.29139829916 & -8.74020846300709 & 1.40960830184991 & -0.439350450266313 \tabularnewline
22 & 4190.5 & 4188.88228260711 & -8.59368831366027 & 1.40946490288686 & 0.00601844031518965 \tabularnewline
23 & 4099 & 4129.5285332429 & -31.0663162213882 & 1.41262810244449 & -0.923073269825324 \tabularnewline
24 & 4179 & 4147.02148484794 & -9.56432235167148 & 1.41738267921958 & 0.88319209489689 \tabularnewline
25 & 4211.5 & 4182.61195417765 & 9.72516628373817 & 1.40054964698222 & 0.891491606884144 \tabularnewline
26 & 4160.5 & 4171.56882191504 & 0.947717288176836 & -0.546110716625763 & -0.328075445081283 \tabularnewline
27 & 4169.5 & 4170.99035870085 & 0.287680484332281 & -0.559547595392413 & -0.0272351697721493 \tabularnewline
28 & 4197.5 & 4187.69652743436 & 7.53391389471379 & -0.530498637976433 & 0.298788794101174 \tabularnewline
29 & 4151 & 4168.3591766457 & -4.37566801987339 & -0.491636120743477 & -0.487617720354416 \tabularnewline
30 & 4230 & 4204.93949140436 & 13.7505818619538 & -0.585244260561798 & 0.741751189841705 \tabularnewline
31 & 4256.5 & 4242.3210249407 & 24.1978874196719 & -0.632246488769592 & 0.428298848814804 \tabularnewline
32 & 4098 & 4163.30238902722 & -21.438787322354 & -0.494423581212436 & -1.87342133138002 \tabularnewline
33 & 4124 & 4131.1942973866 & -26.1588016824489 & -0.486741353938316 & -0.193858547344121 \tabularnewline
34 & 4149 & 4132.32621325295 & -14.0796897254533 & -0.494560472819776 & 0.496157290011197 \tabularnewline
35 & 4064 & 4085.25427978732 & -28.6864442780074 & -0.493204971444645 & -0.599977890210603 \tabularnewline
36 & 4069 & 4064.50041938438 & -25.1740271758215 & -0.49269008206621 & 0.144272551017061 \tabularnewline
37 & 3897.5 & 3960.47609405065 & -59.2636432518377 & -14.4407870826643 & -1.51832164498681 \tabularnewline
38 & 4201 & 4093.5220389937 & 22.9655547684546 & 4.23628742559646 & 3.15278591525223 \tabularnewline
39 & 4191.5 & 4160.13950566125 & 41.9571980540038 & 4.52360454213121 & 0.782749193027533 \tabularnewline
40 & 4182 & 4186.99872680574 & 35.2883779668138 & 4.50366831078796 & -0.274711253394283 \tabularnewline
41 & 4219.5 & 4217.80609025326 & 33.3028694450205 & 4.50850952969308 & -0.0813595018182308 \tabularnewline
42 & 4254 & 4250.11375141116 & 32.8623675923429 & 4.51021006471144 & -0.0180430547439009 \tabularnewline
43 & 4159.5 & 4204.25996185519 & -1.95116630015065 & 4.62728195055017 & -1.42791498489506 \tabularnewline
44 & 4067.5 & 4116.62021258738 & -39.851095818193 & 4.71282580945142 & -1.55605588272848 \tabularnewline
45 & 4155 & 4121.91941404166 & -19.8728515204862 & 4.68852459600746 & 0.820556781347856 \tabularnewline
46 & 4121.5 & 4111.11074610366 & -15.8606338657359 & 4.68658356203444 & 0.164803997762362 \tabularnewline
47 & 4079.5 & 4082.70647001208 & -21.4141815159342 & 4.68696872211628 & -0.228113835323197 \tabularnewline
48 & 3941.5 & 3984.89539040141 & -55.2408780075039 & 4.68326277709167 & -1.38943362783575 \tabularnewline
49 & 3946 & 3967.18341886687 & -38.9187100094014 & -44.4121874732082 & 0.713078918617975 \tabularnewline
50 & 3932.5 & 3928.39092475813 & -38.8643636085544 & 4.03901154341946 & 0.00211443387011396 \tabularnewline
51 & 3931 & 3912.59192123132 & -28.7936002529697 & 4.16023119343826 & 0.414785334770652 \tabularnewline
52 & 3771 & 3812.0630145042 & -60.4945354487739 & 4.08467448787157 & -1.30510940413444 \tabularnewline
53 & 3787 & 3770.8292986905 & -51.9615151346774 & 4.06806678964926 & 0.349824363421553 \tabularnewline
54 & 3699 & 3704.1477340692 & -58.47733063918 & 4.08815035160111 & -0.267040320210385 \tabularnewline
55 & 3634 & 3635.98238278739 & -62.7629685368172 & 4.09965648410385 & -0.17583120568309 \tabularnewline
56 & 3630.5 & 3605.89272851043 & -48.3086188204082 & 4.07361112796749 & 0.593504905623443 \tabularnewline
57 & 3551 & 3551.03960051303 & -51.2048097281988 & 4.07642347966632 & -0.118955433382243 \tabularnewline
58 & 3613.5 & 3567.10830286503 & -21.4250481090399 & 4.06492232611477 & 1.22321785350307 \tabularnewline
59 & 3517.5 & 3525.89008103004 & -30.188298937152 & 4.06540751275125 & -0.35995327824712 \tabularnewline
60 & 3468 & 3476.20505435348 & -38.8208883308918 & 4.06465250059945 & -0.35458442537821 \tabularnewline
61 & 3476.5 & 3484.67387297755 & -18.179826268625 & -37.5414866158662 & 0.891126761351026 \tabularnewline
62 & 3464.5 & 3463.06660101146 & -19.6625052144028 & 3.37794554220251 & -0.0582367161789751 \tabularnewline
63 & 3438 & 3437.99654424642 & -22.0291064866766 & 3.35429288665751 & -0.0974288462207031 \tabularnewline
64 & 3300.5 & 3343.08094064505 & -54.2490451287445 & 3.29044324479914 & -1.32596488514283 \tabularnewline
65 & 3389.5 & 3348.65367760271 & -27.7492444410801 & 3.24752667272287 & 1.08675038377665 \tabularnewline
66 & 3273 & 3289.45750875618 & -41.6697432895145 & 3.28323552327938 & -0.570723907282935 \tabularnewline
67 & 3302.5 & 3279.39642692637 & -27.6851304690612 & 3.25198933652595 & 0.573871663393432 \tabularnewline
68 & 3421.5 & 3354.01086828244 & 17.5774111375939 & 3.184118266035 & 1.8586198774954 \tabularnewline
69 & 3302 & 3326.9051431269 & -2.19816893148325 & 3.20009836199335 & -0.812250837214608 \tabularnewline
70 & 3284 & 3297.75445883988 & -14.1295463826164 & 3.203932946349 & -0.490086498527379 \tabularnewline
71 & 3268.5 & 3272.37514427058 & -19.1103033047997 & 3.2041624276572 & -0.204586080865829 \tabularnewline
72 & 3259 & 3254.81821943516 & -18.4225168058494 & 3.20421248586749 & 0.0282509106988515 \tabularnewline
73 & 3341 & 3316.36357849668 & 16.5652025830081 & -25.1347709896108 & 1.49842292609467 \tabularnewline
74 & 3179.5 & 3234.67810359332 & -26.0784331587806 & 1.42576315049646 & -1.68616360549504 \tabularnewline
75 & 3102.5 & 3142.42158295945 & -55.0896381207518 & 1.17787975042828 & -1.19395192004988 \tabularnewline
76 & 3234 & 3176.58449533937 & -15.6260247896743 & 1.24480360408918 & 1.62362197559403 \tabularnewline
77 & 3187.5 & 3176.49688497231 & -8.74333687058857 & 1.23525950361897 & 0.282322138937675 \tabularnewline
78 & 3288.5 & 3241.20857306207 & 23.7736525324399 & 1.16382990979333 & 1.33351489259972 \tabularnewline
79 & 3247.5 & 3253.524484204 & 18.7038748230702 & 1.17352988366498 & -0.208071691352058 \tabularnewline
80 & 3255.5 & 3261.23297651435 & 13.8384804621715 & 1.17977708613821 & -0.199796617926459 \tabularnewline
81 & 3295 & 3286.58275124898 & 18.9333729194748 & 1.17625173446666 & 0.209266009529222 \tabularnewline
82 & 3315 & 3310.61567911337 & 21.1909035586048 & 1.17563046714652 & 0.0927289820845097 \tabularnewline
83 & 3362.5 & 3349.92377831998 & 29.2121923061657 & 1.17531401075343 & 0.329476751574915 \tabularnewline
84 & 3333.5 & 3350.40579613806 & 16.4914487737836 & 1.17452123158143 & -0.522506225746476 \tabularnewline
85 & 3305.5 & 3338.90497014779 & 4.22336249497073 & -15.9553344810569 & -0.52236792869573 \tabularnewline
86 & 3292.5 & 3310.38203915459 & -10.0249063532367 & 1.19962984402774 & -0.56617658142574 \tabularnewline
87 & 3245 & 3265.56058065045 & -25.2981559790647 & 1.08566251120772 & -0.628415230539023 \tabularnewline
88 & 3354 & 3309.37423946952 & 5.26528521817876 & 1.13095935971964 & 1.25719059984467 \tabularnewline
89 & 3299.5 & 3304.64643616891 & 0.839123832051403 & 1.13632558020085 & -0.181588648835995 \tabularnewline
90 & 3207 & 3244.26594395234 & -26.2620781631676 & 1.18838027243568 & -1.11163736361811 \tabularnewline
91 & 3354 & 3300.82907296296 & 10.3889825809389 & 1.12706581260632 & 1.50437239804038 \tabularnewline
92 & 3505.5 & 3429.84353405893 & 62.8839375611141 & 1.06813127815937 & 2.15576522152536 \tabularnewline
93 & 3557.5 & 3531.8387300573 & 80.1953133683087 & 1.05765805405062 & 0.711045355035806 \tabularnewline
94 & 3596 & 3601.54263697056 & 75.5507739974972 & 1.05877560876679 & -0.190776225752909 \tabularnewline
95 & 3751.5 & 3722.11215685486 & 95.4826243613246 & 1.05808806699684 & 0.818706353468946 \tabularnewline
96 & 3866.5 & 3846.96080119055 & 108.484850846807 & 1.05879656632117 & 0.534068329021334 \tabularnewline
97 & 3910 & 3935.78417634244 & 99.8568855205836 & -13.5132215905862 & -0.365766191103972 \tabularnewline
98 & 4079 & 4062.06064927671 & 111.374612795709 & 1.40853283729215 & 0.459418465273844 \tabularnewline
99 & 4232.5 & 4208.89864797612 & 126.955684066766 & 1.51172354641611 & 0.640959218043763 \tabularnewline
100 & 4155 & 4223.96762128269 & 77.4693024241427 & 1.44659221974063 & -2.03523861374833 \tabularnewline
101 & 4269.5 & 4280.93484733804 & 68.3888639235096 & 1.456371984855 & -0.372585715679206 \tabularnewline
102 & 4244.5 & 4284.02150488974 & 39.479875091018 & 1.50570242214962 & -1.18597377532359 \tabularnewline
103 & 4182 & 4235.64866428973 & 0.601714385885138 & 1.56348354699891 & -1.59591317199035 \tabularnewline
104 & 4222 & 4226.5390242499 & -3.69606544258346 & 1.5677699464694 & -0.176497591115111 \tabularnewline
105 & 4232.5 & 4227.80919019741 & -1.49784395453149 & 1.56658850058199 & 0.0902898140689977 \tabularnewline
106 & 4290.5 & 4264.75019251852 & 15.5192403669529 & 1.5629509855511 & 0.698982933568046 \tabularnewline
107 & 4335.5 & 4313.20899178599 & 30.1031115698117 & 1.56250407753775 & 0.599036518364504 \tabularnewline
108 & 4502.5 & 4440.05442968085 & 72.9370416582805 & 1.56457757577507 & 1.75941025228392 \tabularnewline
109 & 4509.5 & 4521.01844957165 & 76.4629809179648 & -16.5327927148178 & 0.148963391316891 \tabularnewline
110 & 4645 & 4626.27520408418 & 89.0351981116736 & 1.67971949322528 & 0.502996694253094 \tabularnewline
111 & 4645 & 4671.04003319452 & 69.5696272516952 & 1.56383334166391 & -0.800635012321679 \tabularnewline
112 & 4623.5 & 4667.79734754627 & 37.3620735175415 & 1.52571117650079 & -1.32443932348721 \tabularnewline
113 & 4751 & 4732.37317621773 & 49.4147260279917 & 1.51403412615992 & 0.494593380835068 \tabularnewline
114 & 4885.5 & 4844.5750548122 & 77.2106749204199 & 1.47136470259508 & 1.14045383442662 \tabularnewline
115 & 4797.5 & 4844.53720956652 & 43.0236058224988 & 1.51707246020291 & -1.40343783546599 \tabularnewline
116 & 4795 & 4829.79045415073 & 17.4560485692586 & 1.54001171473411 & -1.05000756393946 \tabularnewline
117 & 4767 & 4797.03682864484 & -4.76904773369187 & 1.5507571875656 & -0.912876931213328 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299627&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]5767[/C][C]5767[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]5772.5[/C][C]5768.3439432621[/C][C]0.952784981341315[/C][C]0.195579148300044[/C][C]0.0838239823743706[/C][/ROW]
[ROW][C]3[/C][C]5704[/C][C]5738.19281469773[/C][C]-16.4601006272064[/C][C]-1.10639702138987[/C][C]-0.836051796922617[/C][/ROW]
[ROW][C]4[/C][C]5634[/C][C]5671.21297331917[/C][C]-40.3429775883693[/C][C]-1.57708673873557[/C][C]-0.997888170414502[/C][/ROW]
[ROW][C]5[/C][C]5577[/C][C]5598.97797535283[/C][C]-54.4155000810173[/C][C]-1.47705264591608[/C][C]-0.588059499527541[/C][/ROW]
[ROW][C]6[/C][C]5623[/C][C]5593.64176351095[/C][C]-33.0195067087075[/C][C]-1.81726768654618[/C][C]0.896464118425793[/C][/ROW]
[ROW][C]7[/C][C]5274[/C][C]5385.49093268822[/C][C]-109.747876651804[/C][C]-0.671908760948629[/C][C]-3.19075987286116[/C][/ROW]
[ROW][C]8[/C][C]5311.5[/C][C]5298.15009722195[/C][C]-99.8785517240309[/C][C]-0.775238337458712[/C][C]0.407410586207602[/C][/ROW]
[ROW][C]9[/C][C]5141[/C][C]5163.53755929921[/C][C]-115.22189233058[/C][C]-0.684584491779052[/C][C]-0.63107137049435[/C][/ROW]
[ROW][C]10[/C][C]4943.5[/C][C]4984.34769592977[/C][C]-143.51870517186[/C][C]-0.612569285209947[/C][C]-1.16253501580796[/C][/ROW]
[ROW][C]11[/C][C]4749.5[/C][C]4785.13970970705[/C][C]-168.170805866509[/C][C]-0.598887130452151[/C][C]-1.01261245837836[/C][/ROW]
[ROW][C]12[/C][C]4665.5[/C][C]4647.11774739139[/C][C]-154.820233635662[/C][C]-0.594021545085705[/C][C]0.548393055082498[/C][/ROW]
[ROW][C]13[/C][C]4504[/C][C]4494.51317470597[/C][C]-153.907854090437[/C][C]8.18247753648283[/C][C]0.0466317361820558[/C][/ROW]
[ROW][C]14[/C][C]4395.5[/C][C]4378.27287744328[/C][C]-138.354163624586[/C][C]0.38414864568914[/C][C]0.549807195907571[/C][/ROW]
[ROW][C]15[/C][C]4373[/C][C]4322.17227320406[/C][C]-103.212532011138[/C][C]1.47819808174399[/C][C]1.45340097427993[/C][/ROW]
[ROW][C]16[/C][C]4381[/C][C]4317.33399844187[/C][C]-59.8672040721181[/C][C]1.74256033542259[/C][C]1.79086221387548[/C][/ROW]
[ROW][C]17[/C][C]4228[/C][C]4238.25786379641[/C][C]-68.3852393702415[/C][C]1.78448647834209[/C][C]-0.348185905671895[/C][/ROW]
[ROW][C]18[/C][C]4113[/C][C]4133.69008941055[/C][C]-84.3956784556887[/C][C]1.90926186206815[/C][C]-0.653915279827312[/C][/ROW]
[ROW][C]19[/C][C]4268.5[/C][C]4183.22240135974[/C][C]-25.230029108902[/C][C]1.50733203250185[/C][C]2.42317236058084[/C][/ROW]
[ROW][C]20[/C][C]4259.5[/C][C]4219.5254420104[/C][C]1.95745960357738[/C][C]1.38329653326109[/C][C]1.11572790332433[/C][/ROW]
[ROW][C]21[/C][C]4183.5[/C][C]4197.29139829916[/C][C]-8.74020846300709[/C][C]1.40960830184991[/C][C]-0.439350450266313[/C][/ROW]
[ROW][C]22[/C][C]4190.5[/C][C]4188.88228260711[/C][C]-8.59368831366027[/C][C]1.40946490288686[/C][C]0.00601844031518965[/C][/ROW]
[ROW][C]23[/C][C]4099[/C][C]4129.5285332429[/C][C]-31.0663162213882[/C][C]1.41262810244449[/C][C]-0.923073269825324[/C][/ROW]
[ROW][C]24[/C][C]4179[/C][C]4147.02148484794[/C][C]-9.56432235167148[/C][C]1.41738267921958[/C][C]0.88319209489689[/C][/ROW]
[ROW][C]25[/C][C]4211.5[/C][C]4182.61195417765[/C][C]9.72516628373817[/C][C]1.40054964698222[/C][C]0.891491606884144[/C][/ROW]
[ROW][C]26[/C][C]4160.5[/C][C]4171.56882191504[/C][C]0.947717288176836[/C][C]-0.546110716625763[/C][C]-0.328075445081283[/C][/ROW]
[ROW][C]27[/C][C]4169.5[/C][C]4170.99035870085[/C][C]0.287680484332281[/C][C]-0.559547595392413[/C][C]-0.0272351697721493[/C][/ROW]
[ROW][C]28[/C][C]4197.5[/C][C]4187.69652743436[/C][C]7.53391389471379[/C][C]-0.530498637976433[/C][C]0.298788794101174[/C][/ROW]
[ROW][C]29[/C][C]4151[/C][C]4168.3591766457[/C][C]-4.37566801987339[/C][C]-0.491636120743477[/C][C]-0.487617720354416[/C][/ROW]
[ROW][C]30[/C][C]4230[/C][C]4204.93949140436[/C][C]13.7505818619538[/C][C]-0.585244260561798[/C][C]0.741751189841705[/C][/ROW]
[ROW][C]31[/C][C]4256.5[/C][C]4242.3210249407[/C][C]24.1978874196719[/C][C]-0.632246488769592[/C][C]0.428298848814804[/C][/ROW]
[ROW][C]32[/C][C]4098[/C][C]4163.30238902722[/C][C]-21.438787322354[/C][C]-0.494423581212436[/C][C]-1.87342133138002[/C][/ROW]
[ROW][C]33[/C][C]4124[/C][C]4131.1942973866[/C][C]-26.1588016824489[/C][C]-0.486741353938316[/C][C]-0.193858547344121[/C][/ROW]
[ROW][C]34[/C][C]4149[/C][C]4132.32621325295[/C][C]-14.0796897254533[/C][C]-0.494560472819776[/C][C]0.496157290011197[/C][/ROW]
[ROW][C]35[/C][C]4064[/C][C]4085.25427978732[/C][C]-28.6864442780074[/C][C]-0.493204971444645[/C][C]-0.599977890210603[/C][/ROW]
[ROW][C]36[/C][C]4069[/C][C]4064.50041938438[/C][C]-25.1740271758215[/C][C]-0.49269008206621[/C][C]0.144272551017061[/C][/ROW]
[ROW][C]37[/C][C]3897.5[/C][C]3960.47609405065[/C][C]-59.2636432518377[/C][C]-14.4407870826643[/C][C]-1.51832164498681[/C][/ROW]
[ROW][C]38[/C][C]4201[/C][C]4093.5220389937[/C][C]22.9655547684546[/C][C]4.23628742559646[/C][C]3.15278591525223[/C][/ROW]
[ROW][C]39[/C][C]4191.5[/C][C]4160.13950566125[/C][C]41.9571980540038[/C][C]4.52360454213121[/C][C]0.782749193027533[/C][/ROW]
[ROW][C]40[/C][C]4182[/C][C]4186.99872680574[/C][C]35.2883779668138[/C][C]4.50366831078796[/C][C]-0.274711253394283[/C][/ROW]
[ROW][C]41[/C][C]4219.5[/C][C]4217.80609025326[/C][C]33.3028694450205[/C][C]4.50850952969308[/C][C]-0.0813595018182308[/C][/ROW]
[ROW][C]42[/C][C]4254[/C][C]4250.11375141116[/C][C]32.8623675923429[/C][C]4.51021006471144[/C][C]-0.0180430547439009[/C][/ROW]
[ROW][C]43[/C][C]4159.5[/C][C]4204.25996185519[/C][C]-1.95116630015065[/C][C]4.62728195055017[/C][C]-1.42791498489506[/C][/ROW]
[ROW][C]44[/C][C]4067.5[/C][C]4116.62021258738[/C][C]-39.851095818193[/C][C]4.71282580945142[/C][C]-1.55605588272848[/C][/ROW]
[ROW][C]45[/C][C]4155[/C][C]4121.91941404166[/C][C]-19.8728515204862[/C][C]4.68852459600746[/C][C]0.820556781347856[/C][/ROW]
[ROW][C]46[/C][C]4121.5[/C][C]4111.11074610366[/C][C]-15.8606338657359[/C][C]4.68658356203444[/C][C]0.164803997762362[/C][/ROW]
[ROW][C]47[/C][C]4079.5[/C][C]4082.70647001208[/C][C]-21.4141815159342[/C][C]4.68696872211628[/C][C]-0.228113835323197[/C][/ROW]
[ROW][C]48[/C][C]3941.5[/C][C]3984.89539040141[/C][C]-55.2408780075039[/C][C]4.68326277709167[/C][C]-1.38943362783575[/C][/ROW]
[ROW][C]49[/C][C]3946[/C][C]3967.18341886687[/C][C]-38.9187100094014[/C][C]-44.4121874732082[/C][C]0.713078918617975[/C][/ROW]
[ROW][C]50[/C][C]3932.5[/C][C]3928.39092475813[/C][C]-38.8643636085544[/C][C]4.03901154341946[/C][C]0.00211443387011396[/C][/ROW]
[ROW][C]51[/C][C]3931[/C][C]3912.59192123132[/C][C]-28.7936002529697[/C][C]4.16023119343826[/C][C]0.414785334770652[/C][/ROW]
[ROW][C]52[/C][C]3771[/C][C]3812.0630145042[/C][C]-60.4945354487739[/C][C]4.08467448787157[/C][C]-1.30510940413444[/C][/ROW]
[ROW][C]53[/C][C]3787[/C][C]3770.8292986905[/C][C]-51.9615151346774[/C][C]4.06806678964926[/C][C]0.349824363421553[/C][/ROW]
[ROW][C]54[/C][C]3699[/C][C]3704.1477340692[/C][C]-58.47733063918[/C][C]4.08815035160111[/C][C]-0.267040320210385[/C][/ROW]
[ROW][C]55[/C][C]3634[/C][C]3635.98238278739[/C][C]-62.7629685368172[/C][C]4.09965648410385[/C][C]-0.17583120568309[/C][/ROW]
[ROW][C]56[/C][C]3630.5[/C][C]3605.89272851043[/C][C]-48.3086188204082[/C][C]4.07361112796749[/C][C]0.593504905623443[/C][/ROW]
[ROW][C]57[/C][C]3551[/C][C]3551.03960051303[/C][C]-51.2048097281988[/C][C]4.07642347966632[/C][C]-0.118955433382243[/C][/ROW]
[ROW][C]58[/C][C]3613.5[/C][C]3567.10830286503[/C][C]-21.4250481090399[/C][C]4.06492232611477[/C][C]1.22321785350307[/C][/ROW]
[ROW][C]59[/C][C]3517.5[/C][C]3525.89008103004[/C][C]-30.188298937152[/C][C]4.06540751275125[/C][C]-0.35995327824712[/C][/ROW]
[ROW][C]60[/C][C]3468[/C][C]3476.20505435348[/C][C]-38.8208883308918[/C][C]4.06465250059945[/C][C]-0.35458442537821[/C][/ROW]
[ROW][C]61[/C][C]3476.5[/C][C]3484.67387297755[/C][C]-18.179826268625[/C][C]-37.5414866158662[/C][C]0.891126761351026[/C][/ROW]
[ROW][C]62[/C][C]3464.5[/C][C]3463.06660101146[/C][C]-19.6625052144028[/C][C]3.37794554220251[/C][C]-0.0582367161789751[/C][/ROW]
[ROW][C]63[/C][C]3438[/C][C]3437.99654424642[/C][C]-22.0291064866766[/C][C]3.35429288665751[/C][C]-0.0974288462207031[/C][/ROW]
[ROW][C]64[/C][C]3300.5[/C][C]3343.08094064505[/C][C]-54.2490451287445[/C][C]3.29044324479914[/C][C]-1.32596488514283[/C][/ROW]
[ROW][C]65[/C][C]3389.5[/C][C]3348.65367760271[/C][C]-27.7492444410801[/C][C]3.24752667272287[/C][C]1.08675038377665[/C][/ROW]
[ROW][C]66[/C][C]3273[/C][C]3289.45750875618[/C][C]-41.6697432895145[/C][C]3.28323552327938[/C][C]-0.570723907282935[/C][/ROW]
[ROW][C]67[/C][C]3302.5[/C][C]3279.39642692637[/C][C]-27.6851304690612[/C][C]3.25198933652595[/C][C]0.573871663393432[/C][/ROW]
[ROW][C]68[/C][C]3421.5[/C][C]3354.01086828244[/C][C]17.5774111375939[/C][C]3.184118266035[/C][C]1.8586198774954[/C][/ROW]
[ROW][C]69[/C][C]3302[/C][C]3326.9051431269[/C][C]-2.19816893148325[/C][C]3.20009836199335[/C][C]-0.812250837214608[/C][/ROW]
[ROW][C]70[/C][C]3284[/C][C]3297.75445883988[/C][C]-14.1295463826164[/C][C]3.203932946349[/C][C]-0.490086498527379[/C][/ROW]
[ROW][C]71[/C][C]3268.5[/C][C]3272.37514427058[/C][C]-19.1103033047997[/C][C]3.2041624276572[/C][C]-0.204586080865829[/C][/ROW]
[ROW][C]72[/C][C]3259[/C][C]3254.81821943516[/C][C]-18.4225168058494[/C][C]3.20421248586749[/C][C]0.0282509106988515[/C][/ROW]
[ROW][C]73[/C][C]3341[/C][C]3316.36357849668[/C][C]16.5652025830081[/C][C]-25.1347709896108[/C][C]1.49842292609467[/C][/ROW]
[ROW][C]74[/C][C]3179.5[/C][C]3234.67810359332[/C][C]-26.0784331587806[/C][C]1.42576315049646[/C][C]-1.68616360549504[/C][/ROW]
[ROW][C]75[/C][C]3102.5[/C][C]3142.42158295945[/C][C]-55.0896381207518[/C][C]1.17787975042828[/C][C]-1.19395192004988[/C][/ROW]
[ROW][C]76[/C][C]3234[/C][C]3176.58449533937[/C][C]-15.6260247896743[/C][C]1.24480360408918[/C][C]1.62362197559403[/C][/ROW]
[ROW][C]77[/C][C]3187.5[/C][C]3176.49688497231[/C][C]-8.74333687058857[/C][C]1.23525950361897[/C][C]0.282322138937675[/C][/ROW]
[ROW][C]78[/C][C]3288.5[/C][C]3241.20857306207[/C][C]23.7736525324399[/C][C]1.16382990979333[/C][C]1.33351489259972[/C][/ROW]
[ROW][C]79[/C][C]3247.5[/C][C]3253.524484204[/C][C]18.7038748230702[/C][C]1.17352988366498[/C][C]-0.208071691352058[/C][/ROW]
[ROW][C]80[/C][C]3255.5[/C][C]3261.23297651435[/C][C]13.8384804621715[/C][C]1.17977708613821[/C][C]-0.199796617926459[/C][/ROW]
[ROW][C]81[/C][C]3295[/C][C]3286.58275124898[/C][C]18.9333729194748[/C][C]1.17625173446666[/C][C]0.209266009529222[/C][/ROW]
[ROW][C]82[/C][C]3315[/C][C]3310.61567911337[/C][C]21.1909035586048[/C][C]1.17563046714652[/C][C]0.0927289820845097[/C][/ROW]
[ROW][C]83[/C][C]3362.5[/C][C]3349.92377831998[/C][C]29.2121923061657[/C][C]1.17531401075343[/C][C]0.329476751574915[/C][/ROW]
[ROW][C]84[/C][C]3333.5[/C][C]3350.40579613806[/C][C]16.4914487737836[/C][C]1.17452123158143[/C][C]-0.522506225746476[/C][/ROW]
[ROW][C]85[/C][C]3305.5[/C][C]3338.90497014779[/C][C]4.22336249497073[/C][C]-15.9553344810569[/C][C]-0.52236792869573[/C][/ROW]
[ROW][C]86[/C][C]3292.5[/C][C]3310.38203915459[/C][C]-10.0249063532367[/C][C]1.19962984402774[/C][C]-0.56617658142574[/C][/ROW]
[ROW][C]87[/C][C]3245[/C][C]3265.56058065045[/C][C]-25.2981559790647[/C][C]1.08566251120772[/C][C]-0.628415230539023[/C][/ROW]
[ROW][C]88[/C][C]3354[/C][C]3309.37423946952[/C][C]5.26528521817876[/C][C]1.13095935971964[/C][C]1.25719059984467[/C][/ROW]
[ROW][C]89[/C][C]3299.5[/C][C]3304.64643616891[/C][C]0.839123832051403[/C][C]1.13632558020085[/C][C]-0.181588648835995[/C][/ROW]
[ROW][C]90[/C][C]3207[/C][C]3244.26594395234[/C][C]-26.2620781631676[/C][C]1.18838027243568[/C][C]-1.11163736361811[/C][/ROW]
[ROW][C]91[/C][C]3354[/C][C]3300.82907296296[/C][C]10.3889825809389[/C][C]1.12706581260632[/C][C]1.50437239804038[/C][/ROW]
[ROW][C]92[/C][C]3505.5[/C][C]3429.84353405893[/C][C]62.8839375611141[/C][C]1.06813127815937[/C][C]2.15576522152536[/C][/ROW]
[ROW][C]93[/C][C]3557.5[/C][C]3531.8387300573[/C][C]80.1953133683087[/C][C]1.05765805405062[/C][C]0.711045355035806[/C][/ROW]
[ROW][C]94[/C][C]3596[/C][C]3601.54263697056[/C][C]75.5507739974972[/C][C]1.05877560876679[/C][C]-0.190776225752909[/C][/ROW]
[ROW][C]95[/C][C]3751.5[/C][C]3722.11215685486[/C][C]95.4826243613246[/C][C]1.05808806699684[/C][C]0.818706353468946[/C][/ROW]
[ROW][C]96[/C][C]3866.5[/C][C]3846.96080119055[/C][C]108.484850846807[/C][C]1.05879656632117[/C][C]0.534068329021334[/C][/ROW]
[ROW][C]97[/C][C]3910[/C][C]3935.78417634244[/C][C]99.8568855205836[/C][C]-13.5132215905862[/C][C]-0.365766191103972[/C][/ROW]
[ROW][C]98[/C][C]4079[/C][C]4062.06064927671[/C][C]111.374612795709[/C][C]1.40853283729215[/C][C]0.459418465273844[/C][/ROW]
[ROW][C]99[/C][C]4232.5[/C][C]4208.89864797612[/C][C]126.955684066766[/C][C]1.51172354641611[/C][C]0.640959218043763[/C][/ROW]
[ROW][C]100[/C][C]4155[/C][C]4223.96762128269[/C][C]77.4693024241427[/C][C]1.44659221974063[/C][C]-2.03523861374833[/C][/ROW]
[ROW][C]101[/C][C]4269.5[/C][C]4280.93484733804[/C][C]68.3888639235096[/C][C]1.456371984855[/C][C]-0.372585715679206[/C][/ROW]
[ROW][C]102[/C][C]4244.5[/C][C]4284.02150488974[/C][C]39.479875091018[/C][C]1.50570242214962[/C][C]-1.18597377532359[/C][/ROW]
[ROW][C]103[/C][C]4182[/C][C]4235.64866428973[/C][C]0.601714385885138[/C][C]1.56348354699891[/C][C]-1.59591317199035[/C][/ROW]
[ROW][C]104[/C][C]4222[/C][C]4226.5390242499[/C][C]-3.69606544258346[/C][C]1.5677699464694[/C][C]-0.176497591115111[/C][/ROW]
[ROW][C]105[/C][C]4232.5[/C][C]4227.80919019741[/C][C]-1.49784395453149[/C][C]1.56658850058199[/C][C]0.0902898140689977[/C][/ROW]
[ROW][C]106[/C][C]4290.5[/C][C]4264.75019251852[/C][C]15.5192403669529[/C][C]1.5629509855511[/C][C]0.698982933568046[/C][/ROW]
[ROW][C]107[/C][C]4335.5[/C][C]4313.20899178599[/C][C]30.1031115698117[/C][C]1.56250407753775[/C][C]0.599036518364504[/C][/ROW]
[ROW][C]108[/C][C]4502.5[/C][C]4440.05442968085[/C][C]72.9370416582805[/C][C]1.56457757577507[/C][C]1.75941025228392[/C][/ROW]
[ROW][C]109[/C][C]4509.5[/C][C]4521.01844957165[/C][C]76.4629809179648[/C][C]-16.5327927148178[/C][C]0.148963391316891[/C][/ROW]
[ROW][C]110[/C][C]4645[/C][C]4626.27520408418[/C][C]89.0351981116736[/C][C]1.67971949322528[/C][C]0.502996694253094[/C][/ROW]
[ROW][C]111[/C][C]4645[/C][C]4671.04003319452[/C][C]69.5696272516952[/C][C]1.56383334166391[/C][C]-0.800635012321679[/C][/ROW]
[ROW][C]112[/C][C]4623.5[/C][C]4667.79734754627[/C][C]37.3620735175415[/C][C]1.52571117650079[/C][C]-1.32443932348721[/C][/ROW]
[ROW][C]113[/C][C]4751[/C][C]4732.37317621773[/C][C]49.4147260279917[/C][C]1.51403412615992[/C][C]0.494593380835068[/C][/ROW]
[ROW][C]114[/C][C]4885.5[/C][C]4844.5750548122[/C][C]77.2106749204199[/C][C]1.47136470259508[/C][C]1.14045383442662[/C][/ROW]
[ROW][C]115[/C][C]4797.5[/C][C]4844.53720956652[/C][C]43.0236058224988[/C][C]1.51707246020291[/C][C]-1.40343783546599[/C][/ROW]
[ROW][C]116[/C][C]4795[/C][C]4829.79045415073[/C][C]17.4560485692586[/C][C]1.54001171473411[/C][C]-1.05000756393946[/C][/ROW]
[ROW][C]117[/C][C]4767[/C][C]4797.03682864484[/C][C]-4.76904773369187[/C][C]1.5507571875656[/C][C]-0.912876931213328[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299627&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299627&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
157675767000
25772.55768.34394326210.9527849813413150.1955791483000440.0838239823743706
357045738.19281469773-16.4601006272064-1.10639702138987-0.836051796922617
456345671.21297331917-40.3429775883693-1.57708673873557-0.997888170414502
555775598.97797535283-54.4155000810173-1.47705264591608-0.588059499527541
656235593.64176351095-33.0195067087075-1.817267686546180.896464118425793
752745385.49093268822-109.747876651804-0.671908760948629-3.19075987286116
85311.55298.15009722195-99.8785517240309-0.7752383374587120.407410586207602
951415163.53755929921-115.22189233058-0.684584491779052-0.63107137049435
104943.54984.34769592977-143.51870517186-0.612569285209947-1.16253501580796
114749.54785.13970970705-168.170805866509-0.598887130452151-1.01261245837836
124665.54647.11774739139-154.820233635662-0.5940215450857050.548393055082498
1345044494.51317470597-153.9078540904378.182477536482830.0466317361820558
144395.54378.27287744328-138.3541636245860.384148645689140.549807195907571
1543734322.17227320406-103.2125320111381.478198081743991.45340097427993
1643814317.33399844187-59.86720407211811.742560335422591.79086221387548
1742284238.25786379641-68.38523937024151.78448647834209-0.348185905671895
1841134133.69008941055-84.39567845568871.90926186206815-0.653915279827312
194268.54183.22240135974-25.2300291089021.507332032501852.42317236058084
204259.54219.52544201041.957459603577381.383296533261091.11572790332433
214183.54197.29139829916-8.740208463007091.40960830184991-0.439350450266313
224190.54188.88228260711-8.593688313660271.409464902886860.00601844031518965
2340994129.5285332429-31.06631622138821.41262810244449-0.923073269825324
2441794147.02148484794-9.564322351671481.417382679219580.88319209489689
254211.54182.611954177659.725166283738171.400549646982220.891491606884144
264160.54171.568821915040.947717288176836-0.546110716625763-0.328075445081283
274169.54170.990358700850.287680484332281-0.559547595392413-0.0272351697721493
284197.54187.696527434367.53391389471379-0.5304986379764330.298788794101174
2941514168.3591766457-4.37566801987339-0.491636120743477-0.487617720354416
3042304204.9394914043613.7505818619538-0.5852442605617980.741751189841705
314256.54242.321024940724.1978874196719-0.6322464887695920.428298848814804
3240984163.30238902722-21.438787322354-0.494423581212436-1.87342133138002
3341244131.1942973866-26.1588016824489-0.486741353938316-0.193858547344121
3441494132.32621325295-14.0796897254533-0.4945604728197760.496157290011197
3540644085.25427978732-28.6864442780074-0.493204971444645-0.599977890210603
3640694064.50041938438-25.1740271758215-0.492690082066210.144272551017061
373897.53960.47609405065-59.2636432518377-14.4407870826643-1.51832164498681
3842014093.522038993722.96555476845464.236287425596463.15278591525223
394191.54160.1395056612541.95719805400384.523604542131210.782749193027533
4041824186.9987268057435.28837796681384.50366831078796-0.274711253394283
414219.54217.8060902532633.30286944502054.50850952969308-0.0813595018182308
4242544250.1137514111632.86236759234294.51021006471144-0.0180430547439009
434159.54204.25996185519-1.951166300150654.62728195055017-1.42791498489506
444067.54116.62021258738-39.8510958181934.71282580945142-1.55605588272848
4541554121.91941404166-19.87285152048624.688524596007460.820556781347856
464121.54111.11074610366-15.86063386573594.686583562034440.164803997762362
474079.54082.70647001208-21.41418151593424.68696872211628-0.228113835323197
483941.53984.89539040141-55.24087800750394.68326277709167-1.38943362783575
4939463967.18341886687-38.9187100094014-44.41218747320820.713078918617975
503932.53928.39092475813-38.86436360855444.039011543419460.00211443387011396
5139313912.59192123132-28.79360025296974.160231193438260.414785334770652
5237713812.0630145042-60.49453544877394.08467448787157-1.30510940413444
5337873770.8292986905-51.96151513467744.068066789649260.349824363421553
5436993704.1477340692-58.477330639184.08815035160111-0.267040320210385
5536343635.98238278739-62.76296853681724.09965648410385-0.17583120568309
563630.53605.89272851043-48.30861882040824.073611127967490.593504905623443
5735513551.03960051303-51.20480972819884.07642347966632-0.118955433382243
583613.53567.10830286503-21.42504810903994.064922326114771.22321785350307
593517.53525.89008103004-30.1882989371524.06540751275125-0.35995327824712
6034683476.20505435348-38.82088833089184.06465250059945-0.35458442537821
613476.53484.67387297755-18.179826268625-37.54148661586620.891126761351026
623464.53463.06660101146-19.66250521440283.37794554220251-0.0582367161789751
6334383437.99654424642-22.02910648667663.35429288665751-0.0974288462207031
643300.53343.08094064505-54.24904512874453.29044324479914-1.32596488514283
653389.53348.65367760271-27.74924444108013.247526672722871.08675038377665
6632733289.45750875618-41.66974328951453.28323552327938-0.570723907282935
673302.53279.39642692637-27.68513046906123.251989336525950.573871663393432
683421.53354.0108682824417.57741113759393.1841182660351.8586198774954
6933023326.9051431269-2.198168931483253.20009836199335-0.812250837214608
7032843297.75445883988-14.12954638261643.203932946349-0.490086498527379
713268.53272.37514427058-19.11030330479973.2041624276572-0.204586080865829
7232593254.81821943516-18.42251680584943.204212485867490.0282509106988515
7333413316.3635784966816.5652025830081-25.13477098961081.49842292609467
743179.53234.67810359332-26.07843315878061.42576315049646-1.68616360549504
753102.53142.42158295945-55.08963812075181.17787975042828-1.19395192004988
7632343176.58449533937-15.62602478967431.244803604089181.62362197559403
773187.53176.49688497231-8.743336870588571.235259503618970.282322138937675
783288.53241.2085730620723.77365253243991.163829909793331.33351489259972
793247.53253.52448420418.70387482307021.17352988366498-0.208071691352058
803255.53261.2329765143513.83848046217151.17977708613821-0.199796617926459
8132953286.5827512489818.93337291947481.176251734466660.209266009529222
8233153310.6156791133721.19090355860481.175630467146520.0927289820845097
833362.53349.9237783199829.21219230616571.175314010753430.329476751574915
843333.53350.4057961380616.49144877378361.17452123158143-0.522506225746476
853305.53338.904970147794.22336249497073-15.9553344810569-0.52236792869573
863292.53310.38203915459-10.02490635323671.19962984402774-0.56617658142574
8732453265.56058065045-25.29815597906471.08566251120772-0.628415230539023
8833543309.374239469525.265285218178761.130959359719641.25719059984467
893299.53304.646436168910.8391238320514031.13632558020085-0.181588648835995
9032073244.26594395234-26.26207816316761.18838027243568-1.11163736361811
9133543300.8290729629610.38898258093891.127065812606321.50437239804038
923505.53429.8435340589362.88393756111411.068131278159372.15576522152536
933557.53531.838730057380.19531336830871.057658054050620.711045355035806
9435963601.5426369705675.55077399749721.05877560876679-0.190776225752909
953751.53722.1121568548695.48262436132461.058088066996840.818706353468946
963866.53846.96080119055108.4848508468071.058796566321170.534068329021334
9739103935.7841763424499.8568855205836-13.5132215905862-0.365766191103972
9840794062.06064927671111.3746127957091.408532837292150.459418465273844
994232.54208.89864797612126.9556840667661.511723546416110.640959218043763
10041554223.9676212826977.46930242414271.44659221974063-2.03523861374833
1014269.54280.9348473380468.38886392350961.456371984855-0.372585715679206
1024244.54284.0215048897439.4798750910181.50570242214962-1.18597377532359
10341824235.648664289730.6017143858851381.56348354699891-1.59591317199035
10442224226.5390242499-3.696065442583461.5677699464694-0.176497591115111
1054232.54227.80919019741-1.497843954531491.566588500581990.0902898140689977
1064290.54264.7501925185215.51924036695291.56295098555110.698982933568046
1074335.54313.2089917859930.10311156981171.562504077537750.599036518364504
1084502.54440.0544296808572.93704165828051.564577575775071.75941025228392
1094509.54521.0184495716576.4629809179648-16.53279271481780.148963391316891
11046454626.2752040841889.03519811167361.679719493225280.502996694253094
11146454671.0400331945269.56962725169521.56383334166391-0.800635012321679
1124623.54667.7973475462737.36207351754151.52571117650079-1.32443932348721
11347514732.3731762177349.41472602799171.514034126159920.494593380835068
1144885.54844.575054812277.21067492041991.471364702595081.14045383442662
1154797.54844.5372095665243.02360582249881.51707246020291-1.40343783546599
11647954829.7904541507317.45604856925861.54001171473411-1.05000756393946
11747674797.03682864484-4.769047733691871.5507571875656-0.912876931213328







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
14794.49568540564794.68943052457-0.193745118967811
24768.875793718594792.12827064003-23.2524769214382
34779.814382757344789.56711075549-9.75272799815078
44762.052061081284787.00595087096-24.953889789679
54795.570408439184784.4447909864211.1256174527574
64794.241394855954781.8836311018912.357763754061
74781.615021191074779.322471217352.29254997371541
84791.241285064644776.7613113328114.4799737318253
94793.570189191874774.2001514482819.3700377435901
104765.551735378964771.63899156374-6.08725618477853
114780.335916965324769.077831679211.2580852861193
124759.872739865614766.51667179467-6.64393192905414

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 4794.4956854056 & 4794.68943052457 & -0.193745118967811 \tabularnewline
2 & 4768.87579371859 & 4792.12827064003 & -23.2524769214382 \tabularnewline
3 & 4779.81438275734 & 4789.56711075549 & -9.75272799815078 \tabularnewline
4 & 4762.05206108128 & 4787.00595087096 & -24.953889789679 \tabularnewline
5 & 4795.57040843918 & 4784.44479098642 & 11.1256174527574 \tabularnewline
6 & 4794.24139485595 & 4781.88363110189 & 12.357763754061 \tabularnewline
7 & 4781.61502119107 & 4779.32247121735 & 2.29254997371541 \tabularnewline
8 & 4791.24128506464 & 4776.76131133281 & 14.4799737318253 \tabularnewline
9 & 4793.57018919187 & 4774.20015144828 & 19.3700377435901 \tabularnewline
10 & 4765.55173537896 & 4771.63899156374 & -6.08725618477853 \tabularnewline
11 & 4780.33591696532 & 4769.0778316792 & 11.2580852861193 \tabularnewline
12 & 4759.87273986561 & 4766.51667179467 & -6.64393192905414 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299627&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]4794.4956854056[/C][C]4794.68943052457[/C][C]-0.193745118967811[/C][/ROW]
[ROW][C]2[/C][C]4768.87579371859[/C][C]4792.12827064003[/C][C]-23.2524769214382[/C][/ROW]
[ROW][C]3[/C][C]4779.81438275734[/C][C]4789.56711075549[/C][C]-9.75272799815078[/C][/ROW]
[ROW][C]4[/C][C]4762.05206108128[/C][C]4787.00595087096[/C][C]-24.953889789679[/C][/ROW]
[ROW][C]5[/C][C]4795.57040843918[/C][C]4784.44479098642[/C][C]11.1256174527574[/C][/ROW]
[ROW][C]6[/C][C]4794.24139485595[/C][C]4781.88363110189[/C][C]12.357763754061[/C][/ROW]
[ROW][C]7[/C][C]4781.61502119107[/C][C]4779.32247121735[/C][C]2.29254997371541[/C][/ROW]
[ROW][C]8[/C][C]4791.24128506464[/C][C]4776.76131133281[/C][C]14.4799737318253[/C][/ROW]
[ROW][C]9[/C][C]4793.57018919187[/C][C]4774.20015144828[/C][C]19.3700377435901[/C][/ROW]
[ROW][C]10[/C][C]4765.55173537896[/C][C]4771.63899156374[/C][C]-6.08725618477853[/C][/ROW]
[ROW][C]11[/C][C]4780.33591696532[/C][C]4769.0778316792[/C][C]11.2580852861193[/C][/ROW]
[ROW][C]12[/C][C]4759.87273986561[/C][C]4766.51667179467[/C][C]-6.64393192905414[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299627&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299627&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
14794.49568540564794.68943052457-0.193745118967811
24768.875793718594792.12827064003-23.2524769214382
34779.814382757344789.56711075549-9.75272799815078
44762.052061081284787.00595087096-24.953889789679
54795.570408439184784.4447909864211.1256174527574
64794.241394855954781.8836311018912.357763754061
74781.615021191074779.322471217352.29254997371541
84791.241285064644776.7613113328114.4799737318253
94793.570189191874774.2001514482819.3700377435901
104765.551735378964771.63899156374-6.08725618477853
114780.335916965324769.077831679211.2580852861193
124759.872739865614766.51667179467-6.64393192905414



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')