Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 14 Dec 2016 17:03:38 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481731448896e7vkhghfbx37.htm/, Retrieved Fri, 01 Nov 2024 03:45:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299590, Retrieved Fri, 01 Nov 2024 03:45:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact96
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [N2259] [2016-12-14 16:03:38] [94c1b173d9287822f5e2740a4a602bdd] [Current]
Feedback Forum

Post a new message
Dataseries X:
3690
3750
3780
3890
3950
4025
4125
4130
4160
4210
4190
4160
4235
4285
4325
4330
4335
4340
4340
4315
4300
4295
4320
4290
4280
4305
4380
4445
4490
4490
4480
4535
4530
4490
4520
4480
4645
4615
4595
4645
4655
4640
4655
4695
4735
4770
4800
4835
4870
4920
4910
4965
4990
5075
5060
5065
4990
5095
5060
5035
5055
5105
5080
5150
5125
5075
5105
5050
5045
5070
5030
5095
5250
5110
5090
5080
5020
4990
4990
4965
4950
4970
4990
4995
5070
5055
5035
5015
4955
4930
4885
4845
4850
4825
4760
4725
4570
4510
4470
4520
4505
4645
4575
4600
4615
4550
4580
4545
4590
4635
4650
4645
4715
4650
4680
4700




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299590&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299590&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299590&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
136903690000
237503746.025820093513.269394130404733.099918971263490.715287495368253
337803775.607696356253.858707350424043.258389152928590.55254474279496
438903881.952489997736.797246271899583.657231837103432.14328621533892
539503943.801782164068.787510125962063.859174432889631.14627437080109
640254018.1470243459311.6136952749484.08897471988721.35944659183705
741254116.9697208753815.92484477482674.379431288580361.80160841568412
841304125.9320724370415.54114331894664.35752872262711-0.143341246337362
941604155.041266431816.35718301542354.39762819971790.278471144078098
1042104204.163747115118.47268773996134.48817617035560.670624986437715
1141904187.0605083042716.03880669842924.3966228911731-0.72638146705247
1241604157.5695991149212.77261895378824.2879018793105-0.927635226664063
1342354244.0492247475116.32794973224-11.98741911401771.79016725789523
1442854282.7278163146818.26447637129311.62509464554420.385394662052134
1543254322.4711995766419.95764835794361.660951468692350.435273204963433
1643304328.8942022886418.87107028371681.65164719280679-0.273888203322846
1743354333.914185920417.73781603381721.64340085153092-0.280012192938693
1843404338.8770245714916.67595049147291.63644921343245-0.258044352543811
1943404339.0348399902715.28488059074631.6282219142383-0.333420405195059
2043154314.9676248284311.93482789783411.61029723380499-0.793858844344989
2143004299.498913043249.58100234293631.59889167020893-0.552543620909606
2242954294.010078281798.27696858410731.59316447228206-0.30372954243817
2343204317.781617525939.625985916510651.59853830490070.312180234823804
2442904289.912466014996.344944962060541.58667678793782-0.755218239880394
2542804297.199061613876.42314549143365-17.23602129996430.020764446285448
2643054303.441753434396.40691008570621.56417595011779-0.00330716668260545
2743804375.7592986010512.23733055137711.6082449747211.32704753306777
2844454441.2621855327416.95696025107261.611428045758031.07186809242702
2944904487.2298138891219.53258693221661.612336185807070.58370596557167
3044904489.093224494217.96125596213241.61184967539453-0.355477763590087
3144804479.4886724806915.5064128194371.61115966066855-0.554541079744943
3245354531.9151246953518.79806014761941.612001039197190.742672944503493
3345304529.2448102612316.88220489505841.61155562802176-0.4318288889648
3444904490.6040990845311.92339792983441.6105069676023-1.11677511226979
3545204517.7808713401613.28657885774241.610769209175350.306791638441917
3644804480.410297561458.756953009215431.60997647710822-1.01883804991651
3746454634.6250098519521.56584504154244.654401082664923.11177194675922
3846154617.2111375192818.074878687983-0.857254212460466-0.733725037614584
3945954597.3837382158714.6818569984329-0.872015815571883-0.762477557688388
4046454644.5774293812217.5929105861284-0.8737657937464620.653797004188829
4146554656.1148071816217.0505983365612-0.873365036352171-0.121770803997705
4246404642.1096899063614.2688800570503-0.871472084732871-0.624497552141763
4346554655.8908890992514.2251913355703-0.871445017565087-0.00980672701704424
4446954694.8851475963416.4443830715004-0.8726961202668560.498078211757389
4547354734.9327212045918.5593265147769-0.873781084619430.474633500091549
4647704770.2080167809420.0572694425001-0.8744803366923090.336139241496877
4748004800.4680856033220.971620000251-0.8748687338588420.205166824178967
4848354835.3218721986922.2157774654114-0.8753496463146090.279154918280002
4948704859.991655707922.43422321200629.911562283071830.0517182343432206
5049204919.2570580855725.7252668199982-0.5759361268034980.703521020080051
5149104911.9043370178322.7605454997094-0.58527454710093-0.665329381789229
5249654964.4017638807625.4261140714428-0.5873001441571940.597949336333103
5349904990.558238086225.4915834323868-0.5873554158307350.0146859445656238
5450755073.308578996430.624306327344-0.5913316622288541.15135518532602
5550605062.2504720247226.8878233663827-0.588696579686733-0.838152177060027
5650655066.4903177567724.8576023375888-0.587393649439667-0.455409254434495
5749904994.4456172685116.17097290958-0.582320606846267-1.94853725804367
5850955092.3285115170323.4959376491576-0.5862134049101451.64309259509631
5950605062.7018192670418.7337964521553-0.583910384474931-1.06821336306987
6050355037.3401871025514.7808715623493-0.58217076870164-0.886693797006912
6150555049.0059558896714.50278937680596.11715101309973-0.0650581064265943
6251055103.790735853218.1011040759306-0.2612725413915720.776589958584234
6350805081.8663993904614.513247119969-0.270361626682664-0.805030293323165
6451505148.2074142291319.159568581299-0.273644712075331.0421514245411
6551255126.8847541557515.5303811948535-0.270850711772986-0.814010353979532
6650755077.84115030579.74142678099538-0.266764127986942-1.29845183386663
6751055104.5897119376211.2660827882635-0.2677439026516910.34198110022345
6850505052.779160042315.61140428992381-0.264437081255529-1.26835815880687
6950455045.767106339834.47974200689588-0.263834853031512-0.253836422923411
7050705069.497194837476.20548641616392-0.2646705745862550.387093738650456
7150305032.005093948172.28811223229598-0.262944256522454-0.878692379245747
7250955092.927395897487.54451209222936-0.2650521788264221.1790492953355
7352505231.8231973663119.282623514236912.97834957428042.72650977155162
7451105116.980850457067.29834487268368-2.01866755467048-2.60237582661021
7550905093.261450267714.51787541045-2.02462680430549-0.623841231235308
7650805082.627830183063.1595387530895-2.02377772281075-0.304668008067982
7750205024.46481753313-2.33801852111526-2.02005404725246-1.23307439796075
7849904993.17276796931-4.93372545721689-2.0184422541974-0.582211203286366
7949904991.87371994973-4.6078810735297-2.018626438992280.0730869439798148
8049654967.79403034202-6.35349807753231-2.01772851237291-0.391545643039761
8149504952.37862981951-7.1658810597362-2.01734824051961-0.182220592020206
8249704970.99061158569-4.85494747051082-2.01833261814330.518354358315729
8349904991.02682403847-2.62350805955089-2.019197586120720.500525935169353
8449954996.68911590722-1.8807043943995-2.019459603103620.16661624552513
8550705042.742462586092.4052530005138525.35846301870140.990606825433684
8650555056.806083194063.44730766765009-2.24165952457430.227269187265375
8750355038.127604444941.4639042924606-2.24535863400242-0.444993784487269
8850155018.10107172158-0.462720190930982-2.24429532631186-0.432135130021439
8949554959.55676021512-5.6697270216494-2.24118667231416-1.16791398756245
9049304933.07009137476-7.53595151050844-2.24016533097636-0.418592511890245
9148854888.70675582765-10.8374853021471-2.23852053836336-0.740538295588051
9248454848.41174257614-13.4783102182364-2.23732329315767-0.592345199220364
9348504851.57448664739-11.9864676523111-2.237938764468010.334627129302995
9448254827.71105629548-13.0512153864741-2.23753902933797-0.238829115517593
9547604764.24593138933-17.5707232337175-2.23599499379987-1.01375654643447
9647254727.9807978965-19.246638960977-2.23547396862536-0.375920789470105
9745704559.8516838995-32.563515205016416.0515052102934-3.0665731023717
9845104512.10438395894-33.9211061716207-1.5328031634163-0.297063430481774
9944704471.78872416328-34.4943324072525-1.53375005553419-0.128605306554988
10045204518.30748760283-27.2314931394156-1.537320660762831.62904107044661
10145054505.94522480224-25.8984698612646-1.538029194895450.298994740567703
10246454640.16155716369-11.5442921685197-1.545023020748753.21964863844011
10345754578.53954275987-16.033704906871-1.54303182587389-1.00698605375247
10446004600.04765734356-12.6681329698895-1.544390236290730.754911287159448
10546154615.42709716121-10.1537130621556-1.545313766487170.563997827708072
10645504553.60376639721-14.7858034722592-1.54376555256548-1.0390077613269
10745804579.90672502867-11.1022724975915-1.544885915460570.826243131353591
10845454547.39781474499-13.0213362512542-1.54435475701507-0.430461590417323
10945904569.80181832551-9.8518685613903918.79269782046110.727765274861825
11046354633.59863556895-3.26516325831531-1.387665041640381.44502114963813
11146504650.57775763269-1.45039506307863-1.384963457752240.407141982267083
11246454646.49000559344-1.68683428886119-1.3848588340322-0.053033189494927
11347154713.643287993544.48466158808009-1.387810814099691.38426379581435
11446504653.94418233502-1.26936517136629-1.38528788422175-1.29063729305445
11546804680.285482244151.20590071763456-1.386275851532460.555210380010569
11647004700.624104523072.92112324181014-1.386898852789730.384732612621529

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 3690 & 3690 & 0 & 0 & 0 \tabularnewline
2 & 3750 & 3746.02582009351 & 3.26939413040473 & 3.09991897126349 & 0.715287495368253 \tabularnewline
3 & 3780 & 3775.60769635625 & 3.85870735042404 & 3.25838915292859 & 0.55254474279496 \tabularnewline
4 & 3890 & 3881.95248999773 & 6.79724627189958 & 3.65723183710343 & 2.14328621533892 \tabularnewline
5 & 3950 & 3943.80178216406 & 8.78751012596206 & 3.85917443288963 & 1.14627437080109 \tabularnewline
6 & 4025 & 4018.14702434593 & 11.613695274948 & 4.0889747198872 & 1.35944659183705 \tabularnewline
7 & 4125 & 4116.96972087538 & 15.9248447748267 & 4.37943128858036 & 1.80160841568412 \tabularnewline
8 & 4130 & 4125.93207243704 & 15.5411433189466 & 4.35752872262711 & -0.143341246337362 \tabularnewline
9 & 4160 & 4155.0412664318 & 16.3571830154235 & 4.3976281997179 & 0.278471144078098 \tabularnewline
10 & 4210 & 4204.1637471151 & 18.4726877399613 & 4.4881761703556 & 0.670624986437715 \tabularnewline
11 & 4190 & 4187.06050830427 & 16.0388066984292 & 4.3966228911731 & -0.72638146705247 \tabularnewline
12 & 4160 & 4157.56959911492 & 12.7726189537882 & 4.2879018793105 & -0.927635226664063 \tabularnewline
13 & 4235 & 4244.04922474751 & 16.32794973224 & -11.9874191140177 & 1.79016725789523 \tabularnewline
14 & 4285 & 4282.72781631468 & 18.2644763712931 & 1.6250946455442 & 0.385394662052134 \tabularnewline
15 & 4325 & 4322.47119957664 & 19.9576483579436 & 1.66095146869235 & 0.435273204963433 \tabularnewline
16 & 4330 & 4328.89420228864 & 18.8710702837168 & 1.65164719280679 & -0.273888203322846 \tabularnewline
17 & 4335 & 4333.9141859204 & 17.7378160338172 & 1.64340085153092 & -0.280012192938693 \tabularnewline
18 & 4340 & 4338.87702457149 & 16.6759504914729 & 1.63644921343245 & -0.258044352543811 \tabularnewline
19 & 4340 & 4339.03483999027 & 15.2848805907463 & 1.6282219142383 & -0.333420405195059 \tabularnewline
20 & 4315 & 4314.96762482843 & 11.9348278978341 & 1.61029723380499 & -0.793858844344989 \tabularnewline
21 & 4300 & 4299.49891304324 & 9.5810023429363 & 1.59889167020893 & -0.552543620909606 \tabularnewline
22 & 4295 & 4294.01007828179 & 8.2769685841073 & 1.59316447228206 & -0.30372954243817 \tabularnewline
23 & 4320 & 4317.78161752593 & 9.62598591651065 & 1.5985383049007 & 0.312180234823804 \tabularnewline
24 & 4290 & 4289.91246601499 & 6.34494496206054 & 1.58667678793782 & -0.755218239880394 \tabularnewline
25 & 4280 & 4297.19906161387 & 6.42314549143365 & -17.2360212999643 & 0.020764446285448 \tabularnewline
26 & 4305 & 4303.44175343439 & 6.4069100857062 & 1.56417595011779 & -0.00330716668260545 \tabularnewline
27 & 4380 & 4375.75929860105 & 12.2373305513771 & 1.608244974721 & 1.32704753306777 \tabularnewline
28 & 4445 & 4441.26218553274 & 16.9569602510726 & 1.61142804575803 & 1.07186809242702 \tabularnewline
29 & 4490 & 4487.22981388912 & 19.5325869322166 & 1.61233618580707 & 0.58370596557167 \tabularnewline
30 & 4490 & 4489.0932244942 & 17.9612559621324 & 1.61184967539453 & -0.355477763590087 \tabularnewline
31 & 4480 & 4479.48867248069 & 15.506412819437 & 1.61115966066855 & -0.554541079744943 \tabularnewline
32 & 4535 & 4531.91512469535 & 18.7980601476194 & 1.61200103919719 & 0.742672944503493 \tabularnewline
33 & 4530 & 4529.24481026123 & 16.8822048950584 & 1.61155562802176 & -0.4318288889648 \tabularnewline
34 & 4490 & 4490.60409908453 & 11.9233979298344 & 1.6105069676023 & -1.11677511226979 \tabularnewline
35 & 4520 & 4517.78087134016 & 13.2865788577424 & 1.61076920917535 & 0.306791638441917 \tabularnewline
36 & 4480 & 4480.41029756145 & 8.75695300921543 & 1.60997647710822 & -1.01883804991651 \tabularnewline
37 & 4645 & 4634.62500985195 & 21.5658450415424 & 4.65440108266492 & 3.11177194675922 \tabularnewline
38 & 4615 & 4617.21113751928 & 18.074878687983 & -0.857254212460466 & -0.733725037614584 \tabularnewline
39 & 4595 & 4597.38373821587 & 14.6818569984329 & -0.872015815571883 & -0.762477557688388 \tabularnewline
40 & 4645 & 4644.57742938122 & 17.5929105861284 & -0.873765793746462 & 0.653797004188829 \tabularnewline
41 & 4655 & 4656.11480718162 & 17.0505983365612 & -0.873365036352171 & -0.121770803997705 \tabularnewline
42 & 4640 & 4642.10968990636 & 14.2688800570503 & -0.871472084732871 & -0.624497552141763 \tabularnewline
43 & 4655 & 4655.89088909925 & 14.2251913355703 & -0.871445017565087 & -0.00980672701704424 \tabularnewline
44 & 4695 & 4694.88514759634 & 16.4443830715004 & -0.872696120266856 & 0.498078211757389 \tabularnewline
45 & 4735 & 4734.93272120459 & 18.5593265147769 & -0.87378108461943 & 0.474633500091549 \tabularnewline
46 & 4770 & 4770.20801678094 & 20.0572694425001 & -0.874480336692309 & 0.336139241496877 \tabularnewline
47 & 4800 & 4800.46808560332 & 20.971620000251 & -0.874868733858842 & 0.205166824178967 \tabularnewline
48 & 4835 & 4835.32187219869 & 22.2157774654114 & -0.875349646314609 & 0.279154918280002 \tabularnewline
49 & 4870 & 4859.9916557079 & 22.4342232120062 & 9.91156228307183 & 0.0517182343432206 \tabularnewline
50 & 4920 & 4919.25705808557 & 25.7252668199982 & -0.575936126803498 & 0.703521020080051 \tabularnewline
51 & 4910 & 4911.90433701783 & 22.7605454997094 & -0.58527454710093 & -0.665329381789229 \tabularnewline
52 & 4965 & 4964.40176388076 & 25.4261140714428 & -0.587300144157194 & 0.597949336333103 \tabularnewline
53 & 4990 & 4990.5582380862 & 25.4915834323868 & -0.587355415830735 & 0.0146859445656238 \tabularnewline
54 & 5075 & 5073.3085789964 & 30.624306327344 & -0.591331662228854 & 1.15135518532602 \tabularnewline
55 & 5060 & 5062.25047202472 & 26.8878233663827 & -0.588696579686733 & -0.838152177060027 \tabularnewline
56 & 5065 & 5066.49031775677 & 24.8576023375888 & -0.587393649439667 & -0.455409254434495 \tabularnewline
57 & 4990 & 4994.44561726851 & 16.17097290958 & -0.582320606846267 & -1.94853725804367 \tabularnewline
58 & 5095 & 5092.32851151703 & 23.4959376491576 & -0.586213404910145 & 1.64309259509631 \tabularnewline
59 & 5060 & 5062.70181926704 & 18.7337964521553 & -0.583910384474931 & -1.06821336306987 \tabularnewline
60 & 5035 & 5037.34018710255 & 14.7808715623493 & -0.58217076870164 & -0.886693797006912 \tabularnewline
61 & 5055 & 5049.00595588967 & 14.5027893768059 & 6.11715101309973 & -0.0650581064265943 \tabularnewline
62 & 5105 & 5103.7907358532 & 18.1011040759306 & -0.261272541391572 & 0.776589958584234 \tabularnewline
63 & 5080 & 5081.86639939046 & 14.513247119969 & -0.270361626682664 & -0.805030293323165 \tabularnewline
64 & 5150 & 5148.20741422913 & 19.159568581299 & -0.27364471207533 & 1.0421514245411 \tabularnewline
65 & 5125 & 5126.88475415575 & 15.5303811948535 & -0.270850711772986 & -0.814010353979532 \tabularnewline
66 & 5075 & 5077.8411503057 & 9.74142678099538 & -0.266764127986942 & -1.29845183386663 \tabularnewline
67 & 5105 & 5104.58971193762 & 11.2660827882635 & -0.267743902651691 & 0.34198110022345 \tabularnewline
68 & 5050 & 5052.77916004231 & 5.61140428992381 & -0.264437081255529 & -1.26835815880687 \tabularnewline
69 & 5045 & 5045.76710633983 & 4.47974200689588 & -0.263834853031512 & -0.253836422923411 \tabularnewline
70 & 5070 & 5069.49719483747 & 6.20548641616392 & -0.264670574586255 & 0.387093738650456 \tabularnewline
71 & 5030 & 5032.00509394817 & 2.28811223229598 & -0.262944256522454 & -0.878692379245747 \tabularnewline
72 & 5095 & 5092.92739589748 & 7.54451209222936 & -0.265052178826422 & 1.1790492953355 \tabularnewline
73 & 5250 & 5231.82319736631 & 19.2826235142369 & 12.9783495742804 & 2.72650977155162 \tabularnewline
74 & 5110 & 5116.98085045706 & 7.29834487268368 & -2.01866755467048 & -2.60237582661021 \tabularnewline
75 & 5090 & 5093.26145026771 & 4.51787541045 & -2.02462680430549 & -0.623841231235308 \tabularnewline
76 & 5080 & 5082.62783018306 & 3.1595387530895 & -2.02377772281075 & -0.304668008067982 \tabularnewline
77 & 5020 & 5024.46481753313 & -2.33801852111526 & -2.02005404725246 & -1.23307439796075 \tabularnewline
78 & 4990 & 4993.17276796931 & -4.93372545721689 & -2.0184422541974 & -0.582211203286366 \tabularnewline
79 & 4990 & 4991.87371994973 & -4.6078810735297 & -2.01862643899228 & 0.0730869439798148 \tabularnewline
80 & 4965 & 4967.79403034202 & -6.35349807753231 & -2.01772851237291 & -0.391545643039761 \tabularnewline
81 & 4950 & 4952.37862981951 & -7.1658810597362 & -2.01734824051961 & -0.182220592020206 \tabularnewline
82 & 4970 & 4970.99061158569 & -4.85494747051082 & -2.0183326181433 & 0.518354358315729 \tabularnewline
83 & 4990 & 4991.02682403847 & -2.62350805955089 & -2.01919758612072 & 0.500525935169353 \tabularnewline
84 & 4995 & 4996.68911590722 & -1.8807043943995 & -2.01945960310362 & 0.16661624552513 \tabularnewline
85 & 5070 & 5042.74246258609 & 2.40525300051385 & 25.3584630187014 & 0.990606825433684 \tabularnewline
86 & 5055 & 5056.80608319406 & 3.44730766765009 & -2.2416595245743 & 0.227269187265375 \tabularnewline
87 & 5035 & 5038.12760444494 & 1.4639042924606 & -2.24535863400242 & -0.444993784487269 \tabularnewline
88 & 5015 & 5018.10107172158 & -0.462720190930982 & -2.24429532631186 & -0.432135130021439 \tabularnewline
89 & 4955 & 4959.55676021512 & -5.6697270216494 & -2.24118667231416 & -1.16791398756245 \tabularnewline
90 & 4930 & 4933.07009137476 & -7.53595151050844 & -2.24016533097636 & -0.418592511890245 \tabularnewline
91 & 4885 & 4888.70675582765 & -10.8374853021471 & -2.23852053836336 & -0.740538295588051 \tabularnewline
92 & 4845 & 4848.41174257614 & -13.4783102182364 & -2.23732329315767 & -0.592345199220364 \tabularnewline
93 & 4850 & 4851.57448664739 & -11.9864676523111 & -2.23793876446801 & 0.334627129302995 \tabularnewline
94 & 4825 & 4827.71105629548 & -13.0512153864741 & -2.23753902933797 & -0.238829115517593 \tabularnewline
95 & 4760 & 4764.24593138933 & -17.5707232337175 & -2.23599499379987 & -1.01375654643447 \tabularnewline
96 & 4725 & 4727.9807978965 & -19.246638960977 & -2.23547396862536 & -0.375920789470105 \tabularnewline
97 & 4570 & 4559.8516838995 & -32.5635152050164 & 16.0515052102934 & -3.0665731023717 \tabularnewline
98 & 4510 & 4512.10438395894 & -33.9211061716207 & -1.5328031634163 & -0.297063430481774 \tabularnewline
99 & 4470 & 4471.78872416328 & -34.4943324072525 & -1.53375005553419 & -0.128605306554988 \tabularnewline
100 & 4520 & 4518.30748760283 & -27.2314931394156 & -1.53732066076283 & 1.62904107044661 \tabularnewline
101 & 4505 & 4505.94522480224 & -25.8984698612646 & -1.53802919489545 & 0.298994740567703 \tabularnewline
102 & 4645 & 4640.16155716369 & -11.5442921685197 & -1.54502302074875 & 3.21964863844011 \tabularnewline
103 & 4575 & 4578.53954275987 & -16.033704906871 & -1.54303182587389 & -1.00698605375247 \tabularnewline
104 & 4600 & 4600.04765734356 & -12.6681329698895 & -1.54439023629073 & 0.754911287159448 \tabularnewline
105 & 4615 & 4615.42709716121 & -10.1537130621556 & -1.54531376648717 & 0.563997827708072 \tabularnewline
106 & 4550 & 4553.60376639721 & -14.7858034722592 & -1.54376555256548 & -1.0390077613269 \tabularnewline
107 & 4580 & 4579.90672502867 & -11.1022724975915 & -1.54488591546057 & 0.826243131353591 \tabularnewline
108 & 4545 & 4547.39781474499 & -13.0213362512542 & -1.54435475701507 & -0.430461590417323 \tabularnewline
109 & 4590 & 4569.80181832551 & -9.85186856139039 & 18.7926978204611 & 0.727765274861825 \tabularnewline
110 & 4635 & 4633.59863556895 & -3.26516325831531 & -1.38766504164038 & 1.44502114963813 \tabularnewline
111 & 4650 & 4650.57775763269 & -1.45039506307863 & -1.38496345775224 & 0.407141982267083 \tabularnewline
112 & 4645 & 4646.49000559344 & -1.68683428886119 & -1.3848588340322 & -0.053033189494927 \tabularnewline
113 & 4715 & 4713.64328799354 & 4.48466158808009 & -1.38781081409969 & 1.38426379581435 \tabularnewline
114 & 4650 & 4653.94418233502 & -1.26936517136629 & -1.38528788422175 & -1.29063729305445 \tabularnewline
115 & 4680 & 4680.28548224415 & 1.20590071763456 & -1.38627585153246 & 0.555210380010569 \tabularnewline
116 & 4700 & 4700.62410452307 & 2.92112324181014 & -1.38689885278973 & 0.384732612621529 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299590&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]3690[/C][C]3690[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]3750[/C][C]3746.02582009351[/C][C]3.26939413040473[/C][C]3.09991897126349[/C][C]0.715287495368253[/C][/ROW]
[ROW][C]3[/C][C]3780[/C][C]3775.60769635625[/C][C]3.85870735042404[/C][C]3.25838915292859[/C][C]0.55254474279496[/C][/ROW]
[ROW][C]4[/C][C]3890[/C][C]3881.95248999773[/C][C]6.79724627189958[/C][C]3.65723183710343[/C][C]2.14328621533892[/C][/ROW]
[ROW][C]5[/C][C]3950[/C][C]3943.80178216406[/C][C]8.78751012596206[/C][C]3.85917443288963[/C][C]1.14627437080109[/C][/ROW]
[ROW][C]6[/C][C]4025[/C][C]4018.14702434593[/C][C]11.613695274948[/C][C]4.0889747198872[/C][C]1.35944659183705[/C][/ROW]
[ROW][C]7[/C][C]4125[/C][C]4116.96972087538[/C][C]15.9248447748267[/C][C]4.37943128858036[/C][C]1.80160841568412[/C][/ROW]
[ROW][C]8[/C][C]4130[/C][C]4125.93207243704[/C][C]15.5411433189466[/C][C]4.35752872262711[/C][C]-0.143341246337362[/C][/ROW]
[ROW][C]9[/C][C]4160[/C][C]4155.0412664318[/C][C]16.3571830154235[/C][C]4.3976281997179[/C][C]0.278471144078098[/C][/ROW]
[ROW][C]10[/C][C]4210[/C][C]4204.1637471151[/C][C]18.4726877399613[/C][C]4.4881761703556[/C][C]0.670624986437715[/C][/ROW]
[ROW][C]11[/C][C]4190[/C][C]4187.06050830427[/C][C]16.0388066984292[/C][C]4.3966228911731[/C][C]-0.72638146705247[/C][/ROW]
[ROW][C]12[/C][C]4160[/C][C]4157.56959911492[/C][C]12.7726189537882[/C][C]4.2879018793105[/C][C]-0.927635226664063[/C][/ROW]
[ROW][C]13[/C][C]4235[/C][C]4244.04922474751[/C][C]16.32794973224[/C][C]-11.9874191140177[/C][C]1.79016725789523[/C][/ROW]
[ROW][C]14[/C][C]4285[/C][C]4282.72781631468[/C][C]18.2644763712931[/C][C]1.6250946455442[/C][C]0.385394662052134[/C][/ROW]
[ROW][C]15[/C][C]4325[/C][C]4322.47119957664[/C][C]19.9576483579436[/C][C]1.66095146869235[/C][C]0.435273204963433[/C][/ROW]
[ROW][C]16[/C][C]4330[/C][C]4328.89420228864[/C][C]18.8710702837168[/C][C]1.65164719280679[/C][C]-0.273888203322846[/C][/ROW]
[ROW][C]17[/C][C]4335[/C][C]4333.9141859204[/C][C]17.7378160338172[/C][C]1.64340085153092[/C][C]-0.280012192938693[/C][/ROW]
[ROW][C]18[/C][C]4340[/C][C]4338.87702457149[/C][C]16.6759504914729[/C][C]1.63644921343245[/C][C]-0.258044352543811[/C][/ROW]
[ROW][C]19[/C][C]4340[/C][C]4339.03483999027[/C][C]15.2848805907463[/C][C]1.6282219142383[/C][C]-0.333420405195059[/C][/ROW]
[ROW][C]20[/C][C]4315[/C][C]4314.96762482843[/C][C]11.9348278978341[/C][C]1.61029723380499[/C][C]-0.793858844344989[/C][/ROW]
[ROW][C]21[/C][C]4300[/C][C]4299.49891304324[/C][C]9.5810023429363[/C][C]1.59889167020893[/C][C]-0.552543620909606[/C][/ROW]
[ROW][C]22[/C][C]4295[/C][C]4294.01007828179[/C][C]8.2769685841073[/C][C]1.59316447228206[/C][C]-0.30372954243817[/C][/ROW]
[ROW][C]23[/C][C]4320[/C][C]4317.78161752593[/C][C]9.62598591651065[/C][C]1.5985383049007[/C][C]0.312180234823804[/C][/ROW]
[ROW][C]24[/C][C]4290[/C][C]4289.91246601499[/C][C]6.34494496206054[/C][C]1.58667678793782[/C][C]-0.755218239880394[/C][/ROW]
[ROW][C]25[/C][C]4280[/C][C]4297.19906161387[/C][C]6.42314549143365[/C][C]-17.2360212999643[/C][C]0.020764446285448[/C][/ROW]
[ROW][C]26[/C][C]4305[/C][C]4303.44175343439[/C][C]6.4069100857062[/C][C]1.56417595011779[/C][C]-0.00330716668260545[/C][/ROW]
[ROW][C]27[/C][C]4380[/C][C]4375.75929860105[/C][C]12.2373305513771[/C][C]1.608244974721[/C][C]1.32704753306777[/C][/ROW]
[ROW][C]28[/C][C]4445[/C][C]4441.26218553274[/C][C]16.9569602510726[/C][C]1.61142804575803[/C][C]1.07186809242702[/C][/ROW]
[ROW][C]29[/C][C]4490[/C][C]4487.22981388912[/C][C]19.5325869322166[/C][C]1.61233618580707[/C][C]0.58370596557167[/C][/ROW]
[ROW][C]30[/C][C]4490[/C][C]4489.0932244942[/C][C]17.9612559621324[/C][C]1.61184967539453[/C][C]-0.355477763590087[/C][/ROW]
[ROW][C]31[/C][C]4480[/C][C]4479.48867248069[/C][C]15.506412819437[/C][C]1.61115966066855[/C][C]-0.554541079744943[/C][/ROW]
[ROW][C]32[/C][C]4535[/C][C]4531.91512469535[/C][C]18.7980601476194[/C][C]1.61200103919719[/C][C]0.742672944503493[/C][/ROW]
[ROW][C]33[/C][C]4530[/C][C]4529.24481026123[/C][C]16.8822048950584[/C][C]1.61155562802176[/C][C]-0.4318288889648[/C][/ROW]
[ROW][C]34[/C][C]4490[/C][C]4490.60409908453[/C][C]11.9233979298344[/C][C]1.6105069676023[/C][C]-1.11677511226979[/C][/ROW]
[ROW][C]35[/C][C]4520[/C][C]4517.78087134016[/C][C]13.2865788577424[/C][C]1.61076920917535[/C][C]0.306791638441917[/C][/ROW]
[ROW][C]36[/C][C]4480[/C][C]4480.41029756145[/C][C]8.75695300921543[/C][C]1.60997647710822[/C][C]-1.01883804991651[/C][/ROW]
[ROW][C]37[/C][C]4645[/C][C]4634.62500985195[/C][C]21.5658450415424[/C][C]4.65440108266492[/C][C]3.11177194675922[/C][/ROW]
[ROW][C]38[/C][C]4615[/C][C]4617.21113751928[/C][C]18.074878687983[/C][C]-0.857254212460466[/C][C]-0.733725037614584[/C][/ROW]
[ROW][C]39[/C][C]4595[/C][C]4597.38373821587[/C][C]14.6818569984329[/C][C]-0.872015815571883[/C][C]-0.762477557688388[/C][/ROW]
[ROW][C]40[/C][C]4645[/C][C]4644.57742938122[/C][C]17.5929105861284[/C][C]-0.873765793746462[/C][C]0.653797004188829[/C][/ROW]
[ROW][C]41[/C][C]4655[/C][C]4656.11480718162[/C][C]17.0505983365612[/C][C]-0.873365036352171[/C][C]-0.121770803997705[/C][/ROW]
[ROW][C]42[/C][C]4640[/C][C]4642.10968990636[/C][C]14.2688800570503[/C][C]-0.871472084732871[/C][C]-0.624497552141763[/C][/ROW]
[ROW][C]43[/C][C]4655[/C][C]4655.89088909925[/C][C]14.2251913355703[/C][C]-0.871445017565087[/C][C]-0.00980672701704424[/C][/ROW]
[ROW][C]44[/C][C]4695[/C][C]4694.88514759634[/C][C]16.4443830715004[/C][C]-0.872696120266856[/C][C]0.498078211757389[/C][/ROW]
[ROW][C]45[/C][C]4735[/C][C]4734.93272120459[/C][C]18.5593265147769[/C][C]-0.87378108461943[/C][C]0.474633500091549[/C][/ROW]
[ROW][C]46[/C][C]4770[/C][C]4770.20801678094[/C][C]20.0572694425001[/C][C]-0.874480336692309[/C][C]0.336139241496877[/C][/ROW]
[ROW][C]47[/C][C]4800[/C][C]4800.46808560332[/C][C]20.971620000251[/C][C]-0.874868733858842[/C][C]0.205166824178967[/C][/ROW]
[ROW][C]48[/C][C]4835[/C][C]4835.32187219869[/C][C]22.2157774654114[/C][C]-0.875349646314609[/C][C]0.279154918280002[/C][/ROW]
[ROW][C]49[/C][C]4870[/C][C]4859.9916557079[/C][C]22.4342232120062[/C][C]9.91156228307183[/C][C]0.0517182343432206[/C][/ROW]
[ROW][C]50[/C][C]4920[/C][C]4919.25705808557[/C][C]25.7252668199982[/C][C]-0.575936126803498[/C][C]0.703521020080051[/C][/ROW]
[ROW][C]51[/C][C]4910[/C][C]4911.90433701783[/C][C]22.7605454997094[/C][C]-0.58527454710093[/C][C]-0.665329381789229[/C][/ROW]
[ROW][C]52[/C][C]4965[/C][C]4964.40176388076[/C][C]25.4261140714428[/C][C]-0.587300144157194[/C][C]0.597949336333103[/C][/ROW]
[ROW][C]53[/C][C]4990[/C][C]4990.5582380862[/C][C]25.4915834323868[/C][C]-0.587355415830735[/C][C]0.0146859445656238[/C][/ROW]
[ROW][C]54[/C][C]5075[/C][C]5073.3085789964[/C][C]30.624306327344[/C][C]-0.591331662228854[/C][C]1.15135518532602[/C][/ROW]
[ROW][C]55[/C][C]5060[/C][C]5062.25047202472[/C][C]26.8878233663827[/C][C]-0.588696579686733[/C][C]-0.838152177060027[/C][/ROW]
[ROW][C]56[/C][C]5065[/C][C]5066.49031775677[/C][C]24.8576023375888[/C][C]-0.587393649439667[/C][C]-0.455409254434495[/C][/ROW]
[ROW][C]57[/C][C]4990[/C][C]4994.44561726851[/C][C]16.17097290958[/C][C]-0.582320606846267[/C][C]-1.94853725804367[/C][/ROW]
[ROW][C]58[/C][C]5095[/C][C]5092.32851151703[/C][C]23.4959376491576[/C][C]-0.586213404910145[/C][C]1.64309259509631[/C][/ROW]
[ROW][C]59[/C][C]5060[/C][C]5062.70181926704[/C][C]18.7337964521553[/C][C]-0.583910384474931[/C][C]-1.06821336306987[/C][/ROW]
[ROW][C]60[/C][C]5035[/C][C]5037.34018710255[/C][C]14.7808715623493[/C][C]-0.58217076870164[/C][C]-0.886693797006912[/C][/ROW]
[ROW][C]61[/C][C]5055[/C][C]5049.00595588967[/C][C]14.5027893768059[/C][C]6.11715101309973[/C][C]-0.0650581064265943[/C][/ROW]
[ROW][C]62[/C][C]5105[/C][C]5103.7907358532[/C][C]18.1011040759306[/C][C]-0.261272541391572[/C][C]0.776589958584234[/C][/ROW]
[ROW][C]63[/C][C]5080[/C][C]5081.86639939046[/C][C]14.513247119969[/C][C]-0.270361626682664[/C][C]-0.805030293323165[/C][/ROW]
[ROW][C]64[/C][C]5150[/C][C]5148.20741422913[/C][C]19.159568581299[/C][C]-0.27364471207533[/C][C]1.0421514245411[/C][/ROW]
[ROW][C]65[/C][C]5125[/C][C]5126.88475415575[/C][C]15.5303811948535[/C][C]-0.270850711772986[/C][C]-0.814010353979532[/C][/ROW]
[ROW][C]66[/C][C]5075[/C][C]5077.8411503057[/C][C]9.74142678099538[/C][C]-0.266764127986942[/C][C]-1.29845183386663[/C][/ROW]
[ROW][C]67[/C][C]5105[/C][C]5104.58971193762[/C][C]11.2660827882635[/C][C]-0.267743902651691[/C][C]0.34198110022345[/C][/ROW]
[ROW][C]68[/C][C]5050[/C][C]5052.77916004231[/C][C]5.61140428992381[/C][C]-0.264437081255529[/C][C]-1.26835815880687[/C][/ROW]
[ROW][C]69[/C][C]5045[/C][C]5045.76710633983[/C][C]4.47974200689588[/C][C]-0.263834853031512[/C][C]-0.253836422923411[/C][/ROW]
[ROW][C]70[/C][C]5070[/C][C]5069.49719483747[/C][C]6.20548641616392[/C][C]-0.264670574586255[/C][C]0.387093738650456[/C][/ROW]
[ROW][C]71[/C][C]5030[/C][C]5032.00509394817[/C][C]2.28811223229598[/C][C]-0.262944256522454[/C][C]-0.878692379245747[/C][/ROW]
[ROW][C]72[/C][C]5095[/C][C]5092.92739589748[/C][C]7.54451209222936[/C][C]-0.265052178826422[/C][C]1.1790492953355[/C][/ROW]
[ROW][C]73[/C][C]5250[/C][C]5231.82319736631[/C][C]19.2826235142369[/C][C]12.9783495742804[/C][C]2.72650977155162[/C][/ROW]
[ROW][C]74[/C][C]5110[/C][C]5116.98085045706[/C][C]7.29834487268368[/C][C]-2.01866755467048[/C][C]-2.60237582661021[/C][/ROW]
[ROW][C]75[/C][C]5090[/C][C]5093.26145026771[/C][C]4.51787541045[/C][C]-2.02462680430549[/C][C]-0.623841231235308[/C][/ROW]
[ROW][C]76[/C][C]5080[/C][C]5082.62783018306[/C][C]3.1595387530895[/C][C]-2.02377772281075[/C][C]-0.304668008067982[/C][/ROW]
[ROW][C]77[/C][C]5020[/C][C]5024.46481753313[/C][C]-2.33801852111526[/C][C]-2.02005404725246[/C][C]-1.23307439796075[/C][/ROW]
[ROW][C]78[/C][C]4990[/C][C]4993.17276796931[/C][C]-4.93372545721689[/C][C]-2.0184422541974[/C][C]-0.582211203286366[/C][/ROW]
[ROW][C]79[/C][C]4990[/C][C]4991.87371994973[/C][C]-4.6078810735297[/C][C]-2.01862643899228[/C][C]0.0730869439798148[/C][/ROW]
[ROW][C]80[/C][C]4965[/C][C]4967.79403034202[/C][C]-6.35349807753231[/C][C]-2.01772851237291[/C][C]-0.391545643039761[/C][/ROW]
[ROW][C]81[/C][C]4950[/C][C]4952.37862981951[/C][C]-7.1658810597362[/C][C]-2.01734824051961[/C][C]-0.182220592020206[/C][/ROW]
[ROW][C]82[/C][C]4970[/C][C]4970.99061158569[/C][C]-4.85494747051082[/C][C]-2.0183326181433[/C][C]0.518354358315729[/C][/ROW]
[ROW][C]83[/C][C]4990[/C][C]4991.02682403847[/C][C]-2.62350805955089[/C][C]-2.01919758612072[/C][C]0.500525935169353[/C][/ROW]
[ROW][C]84[/C][C]4995[/C][C]4996.68911590722[/C][C]-1.8807043943995[/C][C]-2.01945960310362[/C][C]0.16661624552513[/C][/ROW]
[ROW][C]85[/C][C]5070[/C][C]5042.74246258609[/C][C]2.40525300051385[/C][C]25.3584630187014[/C][C]0.990606825433684[/C][/ROW]
[ROW][C]86[/C][C]5055[/C][C]5056.80608319406[/C][C]3.44730766765009[/C][C]-2.2416595245743[/C][C]0.227269187265375[/C][/ROW]
[ROW][C]87[/C][C]5035[/C][C]5038.12760444494[/C][C]1.4639042924606[/C][C]-2.24535863400242[/C][C]-0.444993784487269[/C][/ROW]
[ROW][C]88[/C][C]5015[/C][C]5018.10107172158[/C][C]-0.462720190930982[/C][C]-2.24429532631186[/C][C]-0.432135130021439[/C][/ROW]
[ROW][C]89[/C][C]4955[/C][C]4959.55676021512[/C][C]-5.6697270216494[/C][C]-2.24118667231416[/C][C]-1.16791398756245[/C][/ROW]
[ROW][C]90[/C][C]4930[/C][C]4933.07009137476[/C][C]-7.53595151050844[/C][C]-2.24016533097636[/C][C]-0.418592511890245[/C][/ROW]
[ROW][C]91[/C][C]4885[/C][C]4888.70675582765[/C][C]-10.8374853021471[/C][C]-2.23852053836336[/C][C]-0.740538295588051[/C][/ROW]
[ROW][C]92[/C][C]4845[/C][C]4848.41174257614[/C][C]-13.4783102182364[/C][C]-2.23732329315767[/C][C]-0.592345199220364[/C][/ROW]
[ROW][C]93[/C][C]4850[/C][C]4851.57448664739[/C][C]-11.9864676523111[/C][C]-2.23793876446801[/C][C]0.334627129302995[/C][/ROW]
[ROW][C]94[/C][C]4825[/C][C]4827.71105629548[/C][C]-13.0512153864741[/C][C]-2.23753902933797[/C][C]-0.238829115517593[/C][/ROW]
[ROW][C]95[/C][C]4760[/C][C]4764.24593138933[/C][C]-17.5707232337175[/C][C]-2.23599499379987[/C][C]-1.01375654643447[/C][/ROW]
[ROW][C]96[/C][C]4725[/C][C]4727.9807978965[/C][C]-19.246638960977[/C][C]-2.23547396862536[/C][C]-0.375920789470105[/C][/ROW]
[ROW][C]97[/C][C]4570[/C][C]4559.8516838995[/C][C]-32.5635152050164[/C][C]16.0515052102934[/C][C]-3.0665731023717[/C][/ROW]
[ROW][C]98[/C][C]4510[/C][C]4512.10438395894[/C][C]-33.9211061716207[/C][C]-1.5328031634163[/C][C]-0.297063430481774[/C][/ROW]
[ROW][C]99[/C][C]4470[/C][C]4471.78872416328[/C][C]-34.4943324072525[/C][C]-1.53375005553419[/C][C]-0.128605306554988[/C][/ROW]
[ROW][C]100[/C][C]4520[/C][C]4518.30748760283[/C][C]-27.2314931394156[/C][C]-1.53732066076283[/C][C]1.62904107044661[/C][/ROW]
[ROW][C]101[/C][C]4505[/C][C]4505.94522480224[/C][C]-25.8984698612646[/C][C]-1.53802919489545[/C][C]0.298994740567703[/C][/ROW]
[ROW][C]102[/C][C]4645[/C][C]4640.16155716369[/C][C]-11.5442921685197[/C][C]-1.54502302074875[/C][C]3.21964863844011[/C][/ROW]
[ROW][C]103[/C][C]4575[/C][C]4578.53954275987[/C][C]-16.033704906871[/C][C]-1.54303182587389[/C][C]-1.00698605375247[/C][/ROW]
[ROW][C]104[/C][C]4600[/C][C]4600.04765734356[/C][C]-12.6681329698895[/C][C]-1.54439023629073[/C][C]0.754911287159448[/C][/ROW]
[ROW][C]105[/C][C]4615[/C][C]4615.42709716121[/C][C]-10.1537130621556[/C][C]-1.54531376648717[/C][C]0.563997827708072[/C][/ROW]
[ROW][C]106[/C][C]4550[/C][C]4553.60376639721[/C][C]-14.7858034722592[/C][C]-1.54376555256548[/C][C]-1.0390077613269[/C][/ROW]
[ROW][C]107[/C][C]4580[/C][C]4579.90672502867[/C][C]-11.1022724975915[/C][C]-1.54488591546057[/C][C]0.826243131353591[/C][/ROW]
[ROW][C]108[/C][C]4545[/C][C]4547.39781474499[/C][C]-13.0213362512542[/C][C]-1.54435475701507[/C][C]-0.430461590417323[/C][/ROW]
[ROW][C]109[/C][C]4590[/C][C]4569.80181832551[/C][C]-9.85186856139039[/C][C]18.7926978204611[/C][C]0.727765274861825[/C][/ROW]
[ROW][C]110[/C][C]4635[/C][C]4633.59863556895[/C][C]-3.26516325831531[/C][C]-1.38766504164038[/C][C]1.44502114963813[/C][/ROW]
[ROW][C]111[/C][C]4650[/C][C]4650.57775763269[/C][C]-1.45039506307863[/C][C]-1.38496345775224[/C][C]0.407141982267083[/C][/ROW]
[ROW][C]112[/C][C]4645[/C][C]4646.49000559344[/C][C]-1.68683428886119[/C][C]-1.3848588340322[/C][C]-0.053033189494927[/C][/ROW]
[ROW][C]113[/C][C]4715[/C][C]4713.64328799354[/C][C]4.48466158808009[/C][C]-1.38781081409969[/C][C]1.38426379581435[/C][/ROW]
[ROW][C]114[/C][C]4650[/C][C]4653.94418233502[/C][C]-1.26936517136629[/C][C]-1.38528788422175[/C][C]-1.29063729305445[/C][/ROW]
[ROW][C]115[/C][C]4680[/C][C]4680.28548224415[/C][C]1.20590071763456[/C][C]-1.38627585153246[/C][C]0.555210380010569[/C][/ROW]
[ROW][C]116[/C][C]4700[/C][C]4700.62410452307[/C][C]2.92112324181014[/C][C]-1.38689885278973[/C][C]0.384732612621529[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299590&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299590&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
136903690000
237503746.025820093513.269394130404733.099918971263490.715287495368253
337803775.607696356253.858707350424043.258389152928590.55254474279496
438903881.952489997736.797246271899583.657231837103432.14328621533892
539503943.801782164068.787510125962063.859174432889631.14627437080109
640254018.1470243459311.6136952749484.08897471988721.35944659183705
741254116.9697208753815.92484477482674.379431288580361.80160841568412
841304125.9320724370415.54114331894664.35752872262711-0.143341246337362
941604155.041266431816.35718301542354.39762819971790.278471144078098
1042104204.163747115118.47268773996134.48817617035560.670624986437715
1141904187.0605083042716.03880669842924.3966228911731-0.72638146705247
1241604157.5695991149212.77261895378824.2879018793105-0.927635226664063
1342354244.0492247475116.32794973224-11.98741911401771.79016725789523
1442854282.7278163146818.26447637129311.62509464554420.385394662052134
1543254322.4711995766419.95764835794361.660951468692350.435273204963433
1643304328.8942022886418.87107028371681.65164719280679-0.273888203322846
1743354333.914185920417.73781603381721.64340085153092-0.280012192938693
1843404338.8770245714916.67595049147291.63644921343245-0.258044352543811
1943404339.0348399902715.28488059074631.6282219142383-0.333420405195059
2043154314.9676248284311.93482789783411.61029723380499-0.793858844344989
2143004299.498913043249.58100234293631.59889167020893-0.552543620909606
2242954294.010078281798.27696858410731.59316447228206-0.30372954243817
2343204317.781617525939.625985916510651.59853830490070.312180234823804
2442904289.912466014996.344944962060541.58667678793782-0.755218239880394
2542804297.199061613876.42314549143365-17.23602129996430.020764446285448
2643054303.441753434396.40691008570621.56417595011779-0.00330716668260545
2743804375.7592986010512.23733055137711.6082449747211.32704753306777
2844454441.2621855327416.95696025107261.611428045758031.07186809242702
2944904487.2298138891219.53258693221661.612336185807070.58370596557167
3044904489.093224494217.96125596213241.61184967539453-0.355477763590087
3144804479.4886724806915.5064128194371.61115966066855-0.554541079744943
3245354531.9151246953518.79806014761941.612001039197190.742672944503493
3345304529.2448102612316.88220489505841.61155562802176-0.4318288889648
3444904490.6040990845311.92339792983441.6105069676023-1.11677511226979
3545204517.7808713401613.28657885774241.610769209175350.306791638441917
3644804480.410297561458.756953009215431.60997647710822-1.01883804991651
3746454634.6250098519521.56584504154244.654401082664923.11177194675922
3846154617.2111375192818.074878687983-0.857254212460466-0.733725037614584
3945954597.3837382158714.6818569984329-0.872015815571883-0.762477557688388
4046454644.5774293812217.5929105861284-0.8737657937464620.653797004188829
4146554656.1148071816217.0505983365612-0.873365036352171-0.121770803997705
4246404642.1096899063614.2688800570503-0.871472084732871-0.624497552141763
4346554655.8908890992514.2251913355703-0.871445017565087-0.00980672701704424
4446954694.8851475963416.4443830715004-0.8726961202668560.498078211757389
4547354734.9327212045918.5593265147769-0.873781084619430.474633500091549
4647704770.2080167809420.0572694425001-0.8744803366923090.336139241496877
4748004800.4680856033220.971620000251-0.8748687338588420.205166824178967
4848354835.3218721986922.2157774654114-0.8753496463146090.279154918280002
4948704859.991655707922.43422321200629.911562283071830.0517182343432206
5049204919.2570580855725.7252668199982-0.5759361268034980.703521020080051
5149104911.9043370178322.7605454997094-0.58527454710093-0.665329381789229
5249654964.4017638807625.4261140714428-0.5873001441571940.597949336333103
5349904990.558238086225.4915834323868-0.5873554158307350.0146859445656238
5450755073.308578996430.624306327344-0.5913316622288541.15135518532602
5550605062.2504720247226.8878233663827-0.588696579686733-0.838152177060027
5650655066.4903177567724.8576023375888-0.587393649439667-0.455409254434495
5749904994.4456172685116.17097290958-0.582320606846267-1.94853725804367
5850955092.3285115170323.4959376491576-0.5862134049101451.64309259509631
5950605062.7018192670418.7337964521553-0.583910384474931-1.06821336306987
6050355037.3401871025514.7808715623493-0.58217076870164-0.886693797006912
6150555049.0059558896714.50278937680596.11715101309973-0.0650581064265943
6251055103.790735853218.1011040759306-0.2612725413915720.776589958584234
6350805081.8663993904614.513247119969-0.270361626682664-0.805030293323165
6451505148.2074142291319.159568581299-0.273644712075331.0421514245411
6551255126.8847541557515.5303811948535-0.270850711772986-0.814010353979532
6650755077.84115030579.74142678099538-0.266764127986942-1.29845183386663
6751055104.5897119376211.2660827882635-0.2677439026516910.34198110022345
6850505052.779160042315.61140428992381-0.264437081255529-1.26835815880687
6950455045.767106339834.47974200689588-0.263834853031512-0.253836422923411
7050705069.497194837476.20548641616392-0.2646705745862550.387093738650456
7150305032.005093948172.28811223229598-0.262944256522454-0.878692379245747
7250955092.927395897487.54451209222936-0.2650521788264221.1790492953355
7352505231.8231973663119.282623514236912.97834957428042.72650977155162
7451105116.980850457067.29834487268368-2.01866755467048-2.60237582661021
7550905093.261450267714.51787541045-2.02462680430549-0.623841231235308
7650805082.627830183063.1595387530895-2.02377772281075-0.304668008067982
7750205024.46481753313-2.33801852111526-2.02005404725246-1.23307439796075
7849904993.17276796931-4.93372545721689-2.0184422541974-0.582211203286366
7949904991.87371994973-4.6078810735297-2.018626438992280.0730869439798148
8049654967.79403034202-6.35349807753231-2.01772851237291-0.391545643039761
8149504952.37862981951-7.1658810597362-2.01734824051961-0.182220592020206
8249704970.99061158569-4.85494747051082-2.01833261814330.518354358315729
8349904991.02682403847-2.62350805955089-2.019197586120720.500525935169353
8449954996.68911590722-1.8807043943995-2.019459603103620.16661624552513
8550705042.742462586092.4052530005138525.35846301870140.990606825433684
8650555056.806083194063.44730766765009-2.24165952457430.227269187265375
8750355038.127604444941.4639042924606-2.24535863400242-0.444993784487269
8850155018.10107172158-0.462720190930982-2.24429532631186-0.432135130021439
8949554959.55676021512-5.6697270216494-2.24118667231416-1.16791398756245
9049304933.07009137476-7.53595151050844-2.24016533097636-0.418592511890245
9148854888.70675582765-10.8374853021471-2.23852053836336-0.740538295588051
9248454848.41174257614-13.4783102182364-2.23732329315767-0.592345199220364
9348504851.57448664739-11.9864676523111-2.237938764468010.334627129302995
9448254827.71105629548-13.0512153864741-2.23753902933797-0.238829115517593
9547604764.24593138933-17.5707232337175-2.23599499379987-1.01375654643447
9647254727.9807978965-19.246638960977-2.23547396862536-0.375920789470105
9745704559.8516838995-32.563515205016416.0515052102934-3.0665731023717
9845104512.10438395894-33.9211061716207-1.5328031634163-0.297063430481774
9944704471.78872416328-34.4943324072525-1.53375005553419-0.128605306554988
10045204518.30748760283-27.2314931394156-1.537320660762831.62904107044661
10145054505.94522480224-25.8984698612646-1.538029194895450.298994740567703
10246454640.16155716369-11.5442921685197-1.545023020748753.21964863844011
10345754578.53954275987-16.033704906871-1.54303182587389-1.00698605375247
10446004600.04765734356-12.6681329698895-1.544390236290730.754911287159448
10546154615.42709716121-10.1537130621556-1.545313766487170.563997827708072
10645504553.60376639721-14.7858034722592-1.54376555256548-1.0390077613269
10745804579.90672502867-11.1022724975915-1.544885915460570.826243131353591
10845454547.39781474499-13.0213362512542-1.54435475701507-0.430461590417323
10945904569.80181832551-9.8518685613903918.79269782046110.727765274861825
11046354633.59863556895-3.26516325831531-1.387665041640381.44502114963813
11146504650.57775763269-1.45039506307863-1.384963457752240.407141982267083
11246454646.49000559344-1.68683428886119-1.3848588340322-0.053033189494927
11347154713.643287993544.48466158808009-1.387810814099691.38426379581435
11446504653.94418233502-1.26936517136629-1.38528788422175-1.29063729305445
11546804680.285482244151.20590071763456-1.386275851532460.555210380010569
11647004700.624104523072.92112324181014-1.386898852789730.384732612621529







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
14689.793867009814697.05555233804-7.26168532823212
24695.309745560674699.76034418845-4.45059862777159
34687.279051789414702.46513603886-15.1860842494487
44672.368450137114705.16992788926-32.8014777521509
54712.648779447934707.874719739674.77405970825761
64708.648376601264710.57951159008-1.93113498882384
74703.956059025784713.28430344049-9.32824441471437
84734.071825014874715.989095290918.0827297239763
94732.995680215864718.6938871413114.3017930745518
104738.727623588614721.3986789917217.328944596895
114736.267655835744724.1034708421212.1641849936207
124731.115775956374726.808262692534.30751326384008
134722.251369214714729.51305454294-7.26168532823213
144727.767247765584732.21784639335-4.45059862777158
154719.736553994314734.92263824376-15.1860842494487
164704.825952342024737.62743009417-32.8014777521509
174745.106281652834740.332221944584.7740597082576
184741.105878806164743.03701379498-1.93113498882384

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 4689.79386700981 & 4697.05555233804 & -7.26168532823212 \tabularnewline
2 & 4695.30974556067 & 4699.76034418845 & -4.45059862777159 \tabularnewline
3 & 4687.27905178941 & 4702.46513603886 & -15.1860842494487 \tabularnewline
4 & 4672.36845013711 & 4705.16992788926 & -32.8014777521509 \tabularnewline
5 & 4712.64877944793 & 4707.87471973967 & 4.77405970825761 \tabularnewline
6 & 4708.64837660126 & 4710.57951159008 & -1.93113498882384 \tabularnewline
7 & 4703.95605902578 & 4713.28430344049 & -9.32824441471437 \tabularnewline
8 & 4734.07182501487 & 4715.9890952909 & 18.0827297239763 \tabularnewline
9 & 4732.99568021586 & 4718.69388714131 & 14.3017930745518 \tabularnewline
10 & 4738.72762358861 & 4721.39867899172 & 17.328944596895 \tabularnewline
11 & 4736.26765583574 & 4724.10347084212 & 12.1641849936207 \tabularnewline
12 & 4731.11577595637 & 4726.80826269253 & 4.30751326384008 \tabularnewline
13 & 4722.25136921471 & 4729.51305454294 & -7.26168532823213 \tabularnewline
14 & 4727.76724776558 & 4732.21784639335 & -4.45059862777158 \tabularnewline
15 & 4719.73655399431 & 4734.92263824376 & -15.1860842494487 \tabularnewline
16 & 4704.82595234202 & 4737.62743009417 & -32.8014777521509 \tabularnewline
17 & 4745.10628165283 & 4740.33222194458 & 4.7740597082576 \tabularnewline
18 & 4741.10587880616 & 4743.03701379498 & -1.93113498882384 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299590&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]4689.79386700981[/C][C]4697.05555233804[/C][C]-7.26168532823212[/C][/ROW]
[ROW][C]2[/C][C]4695.30974556067[/C][C]4699.76034418845[/C][C]-4.45059862777159[/C][/ROW]
[ROW][C]3[/C][C]4687.27905178941[/C][C]4702.46513603886[/C][C]-15.1860842494487[/C][/ROW]
[ROW][C]4[/C][C]4672.36845013711[/C][C]4705.16992788926[/C][C]-32.8014777521509[/C][/ROW]
[ROW][C]5[/C][C]4712.64877944793[/C][C]4707.87471973967[/C][C]4.77405970825761[/C][/ROW]
[ROW][C]6[/C][C]4708.64837660126[/C][C]4710.57951159008[/C][C]-1.93113498882384[/C][/ROW]
[ROW][C]7[/C][C]4703.95605902578[/C][C]4713.28430344049[/C][C]-9.32824441471437[/C][/ROW]
[ROW][C]8[/C][C]4734.07182501487[/C][C]4715.9890952909[/C][C]18.0827297239763[/C][/ROW]
[ROW][C]9[/C][C]4732.99568021586[/C][C]4718.69388714131[/C][C]14.3017930745518[/C][/ROW]
[ROW][C]10[/C][C]4738.72762358861[/C][C]4721.39867899172[/C][C]17.328944596895[/C][/ROW]
[ROW][C]11[/C][C]4736.26765583574[/C][C]4724.10347084212[/C][C]12.1641849936207[/C][/ROW]
[ROW][C]12[/C][C]4731.11577595637[/C][C]4726.80826269253[/C][C]4.30751326384008[/C][/ROW]
[ROW][C]13[/C][C]4722.25136921471[/C][C]4729.51305454294[/C][C]-7.26168532823213[/C][/ROW]
[ROW][C]14[/C][C]4727.76724776558[/C][C]4732.21784639335[/C][C]-4.45059862777158[/C][/ROW]
[ROW][C]15[/C][C]4719.73655399431[/C][C]4734.92263824376[/C][C]-15.1860842494487[/C][/ROW]
[ROW][C]16[/C][C]4704.82595234202[/C][C]4737.62743009417[/C][C]-32.8014777521509[/C][/ROW]
[ROW][C]17[/C][C]4745.10628165283[/C][C]4740.33222194458[/C][C]4.7740597082576[/C][/ROW]
[ROW][C]18[/C][C]4741.10587880616[/C][C]4743.03701379498[/C][C]-1.93113498882384[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299590&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299590&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
14689.793867009814697.05555233804-7.26168532823212
24695.309745560674699.76034418845-4.45059862777159
34687.279051789414702.46513603886-15.1860842494487
44672.368450137114705.16992788926-32.8014777521509
54712.648779447934707.874719739674.77405970825761
64708.648376601264710.57951159008-1.93113498882384
74703.956059025784713.28430344049-9.32824441471437
84734.071825014874715.989095290918.0827297239763
94732.995680215864718.6938871413114.3017930745518
104738.727623588614721.3986789917217.328944596895
114736.267655835744724.1034708421212.1641849936207
124731.115775956374726.808262692534.30751326384008
134722.251369214714729.51305454294-7.26168532823213
144727.767247765584732.21784639335-4.45059862777158
154719.736553994314734.92263824376-15.1860842494487
164704.825952342024737.62743009417-32.8014777521509
174745.106281652834740.332221944584.7740597082576
184741.105878806164743.03701379498-1.93113498882384



Parameters (Session):
par1 = 8 ; par2 = 0 ;
Parameters (R input):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')