Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 14 Dec 2016 15:11:04 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481724893hti53q7tp2knvcr.htm/, Retrieved Fri, 01 Nov 2024 03:29:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299474, Retrieved Fri, 01 Nov 2024 03:29:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact95
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Forecasting N2170...] [2016-12-14 14:11:04] [a5a591d52ec67035c8301aa1739ae761] [Current]
Feedback Forum

Post a new message
Dataseries X:
4030
4320
4840
4410
4180
4240
3680
4270
4140
4470
4180
4510
4490
3960
3750
3670
3590
2840
3530
4320
3740
3710
3830
3490
4200
4280
4650
2100
2410
1230
2420
2360
1870
2250
1960
2550
3180
3330
3760
3930
3710
3250
3450
3480
3090
3690
3250
3300
4040
3630
3820
3400
2500
2380
2520
2340
2420
2430
2080
2420
2430
2400
2790
2370
2700
2640
2910
2420
2800
2830
2310
2540
2780
2820
3610
3270
3030
3250
3040
3630
3320
3440
3110
3180
3330
3100
3440
3320
3380
3610
3320
3860
3430
3510
3290
3010
3860
3530
3610
3370
3700
3500
4110
4590
3680
4220
3740
3550
4150
4110
4160
3780
3150
3260
4750
4110
3610
3890
2800
2610
3600
3400
3400
3120
3150
3240




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299474&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299474&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299474&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14030NANA306.96NA
24320NANA158.303NA
34840NANA431.497NA
44410NANA-50.0305NA
54180NANA-156.512NA
64240NANA-386.882NA
736804303.214291.6711.5482-623.215
842704478.014295.83182.173-208.007
941404099.424235.42-135.99340.5768
1044704268.554159.17109.382201.452
1141803833.84103.75-269.952346.202
1245103820.344020.83-200.493689.66
1344904263.213956.25306.96226.79
1439604110.393952.08158.303-150.386
15375043693937.5431.497-618.997
1636703839.143889.17-50.0305-169.136
1735903686.43842.92-156.512-96.4047
1828403398.953785.83-386.882-558.951
1935303742.83731.2511.5482-212.798
2043203914.673732.5182.173405.327
2137403647.343783.33-135.99392.6601
2237103864.83755.42109.382-154.798
2338303370.883640.83-269.952459.118
2434903324.093524.58-200.493165.91
2542003718.213411.25306.96481.79
2642803441.643283.33158.303838.364
2746503555.253123.75431.4971094.75
2821002934.972985-50.0305-834.97
2924102689.742846.25-156.512-279.738
3012302342.282729.17-386.882-1112.28
3124202659.052647.511.5482-239.048
3223602747.592565.42182.173-387.59
3318702352.762488.75-135.993-482.757
3422502637.32527.92109.382-387.298
3519602388.382658.33-269.952-428.382
3625502596.172796.67-200.493-46.1732
3731803230.712923.75306.96-50.7103
3833303171.643013.33158.303158.364
3937603542.333110.83431.497217.669
4039303171.643221.67-50.0305758.364
4137103178.93335.42-156.512531.095
4232503033.533420.42-386.882216.466
4334503499.053487.511.5482-49.0482
4434803718.013535.83182.173-238.007
4530903414.843550.83-135.993-324.84
4636903640.633531.25109.38249.3684
4732503188.83458.75-269.95261.2018
4833003171.593372.08-200.493128.41
4940403604.043297.08306.96435.956
5036303369.143210.83158.303260.864
5138203566.913135.42431.497253.086
5234003004.973055-50.0305395.03
5325002797.242953.75-156.512-297.238
5423802481.452868.33-386.882-101.451
5525202776.132764.5811.5482-256.132
5623402828.422646.25182.173-488.423
5724202416.092552.08-135.9933.91011
5824302575.632466.25109.382-145.632
5920802161.712431.67-269.952-81.7149
6024202250.342450.83-200.493169.66
6124302784.882477.92306.96-354.877
6224002655.82497.5158.303-255.803
6327902948.162516.67431.497-158.164
6423702499.142549.17-50.0305-129.136
6527002418.92575.42-156.512281.095
6626402203.122590-386.882436.882
6729102621.132609.5811.5482288.868
6824202823.842641.67182.173-403.84
6928002557.342693.33-135.993242.66
7028302874.382765109.382-44.3816
7123102546.32816.25-269.952-236.298
7225402654.922855.42-200.493-114.923
7327803193.212886.25306.96-413.21
7428203100.392942.08158.303-280.386
7536103445.663014.17431.497164.336
7632703011.223061.25-50.0305258.78
7730302963.493120-156.51266.512
7832502793.123180-386.882456.882
7930403241.133229.5811.5482-201.132
8036303446.343264.17182.173183.66
8133203132.763268.75-135.993187.243
8234403373.133263.75109.38266.8684
8331103010.463280.42-269.95299.5351
8431803109.513310-200.49370.4934
8533303643.633336.67306.96-313.627
8631003516.223357.92158.303-416.22
8734403803.583372.08431.497-363.581
8833203329.553379.58-50.0305-9.55285
8933803233.493390-156.512146.512
9036103003.533390.42-386.882606.466
9133203416.963405.4211.5482-96.9649
9238603627.593445.42182.173232.41
9334303334.423470.42-135.99395.5768
9435103588.963479.58109.382-78.9649
9532903225.053495-269.95264.9518
9630103303.263503.75-200.493-293.257
9738603839.043532.08306.9620.9564
9835303753.723595.42158.303-223.72
9936104067.753636.25431.497-457.747
10033703626.223676.25-50.0305-256.22
10137003568.073724.58-156.512131.929
10235003378.953765.83-386.882121.049
10341103811.963800.4211.5482298.035
10445904018.843836.67182.173571.16
10536803747.763883.75-135.993-67.7566
10642204033.133923.75109.382186.868
10737403647.963917.92-269.95292.0351
10835503684.513885-200.493-134.507
10941504208.633901.67306.96-58.6269
11041104066.643908.33158.30343.3638
11141604316.913885.42431.497-156.914
11237803818.723868.75-50.0305-38.7195
11331503659.323815.83-156.512-509.321
11432603350.623737.5-386.882-90.6177
11547503686.963675.4211.54821063.04
11641103805.093622.92182.173304.91
11736103425.673561.67-135.993184.327
11838903611.883502.5109.382278.118
11928003205.053475-269.952-405.048
12026103273.673474.17-200.493-663.673
1213600NANA306.96NA
1223400NANA158.303NA
1233400NANA431.497NA
1243120NANA-50.0305NA
1253150NANA-156.512NA
1263240NANA-386.882NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 4030 & NA & NA & 306.96 & NA \tabularnewline
2 & 4320 & NA & NA & 158.303 & NA \tabularnewline
3 & 4840 & NA & NA & 431.497 & NA \tabularnewline
4 & 4410 & NA & NA & -50.0305 & NA \tabularnewline
5 & 4180 & NA & NA & -156.512 & NA \tabularnewline
6 & 4240 & NA & NA & -386.882 & NA \tabularnewline
7 & 3680 & 4303.21 & 4291.67 & 11.5482 & -623.215 \tabularnewline
8 & 4270 & 4478.01 & 4295.83 & 182.173 & -208.007 \tabularnewline
9 & 4140 & 4099.42 & 4235.42 & -135.993 & 40.5768 \tabularnewline
10 & 4470 & 4268.55 & 4159.17 & 109.382 & 201.452 \tabularnewline
11 & 4180 & 3833.8 & 4103.75 & -269.952 & 346.202 \tabularnewline
12 & 4510 & 3820.34 & 4020.83 & -200.493 & 689.66 \tabularnewline
13 & 4490 & 4263.21 & 3956.25 & 306.96 & 226.79 \tabularnewline
14 & 3960 & 4110.39 & 3952.08 & 158.303 & -150.386 \tabularnewline
15 & 3750 & 4369 & 3937.5 & 431.497 & -618.997 \tabularnewline
16 & 3670 & 3839.14 & 3889.17 & -50.0305 & -169.136 \tabularnewline
17 & 3590 & 3686.4 & 3842.92 & -156.512 & -96.4047 \tabularnewline
18 & 2840 & 3398.95 & 3785.83 & -386.882 & -558.951 \tabularnewline
19 & 3530 & 3742.8 & 3731.25 & 11.5482 & -212.798 \tabularnewline
20 & 4320 & 3914.67 & 3732.5 & 182.173 & 405.327 \tabularnewline
21 & 3740 & 3647.34 & 3783.33 & -135.993 & 92.6601 \tabularnewline
22 & 3710 & 3864.8 & 3755.42 & 109.382 & -154.798 \tabularnewline
23 & 3830 & 3370.88 & 3640.83 & -269.952 & 459.118 \tabularnewline
24 & 3490 & 3324.09 & 3524.58 & -200.493 & 165.91 \tabularnewline
25 & 4200 & 3718.21 & 3411.25 & 306.96 & 481.79 \tabularnewline
26 & 4280 & 3441.64 & 3283.33 & 158.303 & 838.364 \tabularnewline
27 & 4650 & 3555.25 & 3123.75 & 431.497 & 1094.75 \tabularnewline
28 & 2100 & 2934.97 & 2985 & -50.0305 & -834.97 \tabularnewline
29 & 2410 & 2689.74 & 2846.25 & -156.512 & -279.738 \tabularnewline
30 & 1230 & 2342.28 & 2729.17 & -386.882 & -1112.28 \tabularnewline
31 & 2420 & 2659.05 & 2647.5 & 11.5482 & -239.048 \tabularnewline
32 & 2360 & 2747.59 & 2565.42 & 182.173 & -387.59 \tabularnewline
33 & 1870 & 2352.76 & 2488.75 & -135.993 & -482.757 \tabularnewline
34 & 2250 & 2637.3 & 2527.92 & 109.382 & -387.298 \tabularnewline
35 & 1960 & 2388.38 & 2658.33 & -269.952 & -428.382 \tabularnewline
36 & 2550 & 2596.17 & 2796.67 & -200.493 & -46.1732 \tabularnewline
37 & 3180 & 3230.71 & 2923.75 & 306.96 & -50.7103 \tabularnewline
38 & 3330 & 3171.64 & 3013.33 & 158.303 & 158.364 \tabularnewline
39 & 3760 & 3542.33 & 3110.83 & 431.497 & 217.669 \tabularnewline
40 & 3930 & 3171.64 & 3221.67 & -50.0305 & 758.364 \tabularnewline
41 & 3710 & 3178.9 & 3335.42 & -156.512 & 531.095 \tabularnewline
42 & 3250 & 3033.53 & 3420.42 & -386.882 & 216.466 \tabularnewline
43 & 3450 & 3499.05 & 3487.5 & 11.5482 & -49.0482 \tabularnewline
44 & 3480 & 3718.01 & 3535.83 & 182.173 & -238.007 \tabularnewline
45 & 3090 & 3414.84 & 3550.83 & -135.993 & -324.84 \tabularnewline
46 & 3690 & 3640.63 & 3531.25 & 109.382 & 49.3684 \tabularnewline
47 & 3250 & 3188.8 & 3458.75 & -269.952 & 61.2018 \tabularnewline
48 & 3300 & 3171.59 & 3372.08 & -200.493 & 128.41 \tabularnewline
49 & 4040 & 3604.04 & 3297.08 & 306.96 & 435.956 \tabularnewline
50 & 3630 & 3369.14 & 3210.83 & 158.303 & 260.864 \tabularnewline
51 & 3820 & 3566.91 & 3135.42 & 431.497 & 253.086 \tabularnewline
52 & 3400 & 3004.97 & 3055 & -50.0305 & 395.03 \tabularnewline
53 & 2500 & 2797.24 & 2953.75 & -156.512 & -297.238 \tabularnewline
54 & 2380 & 2481.45 & 2868.33 & -386.882 & -101.451 \tabularnewline
55 & 2520 & 2776.13 & 2764.58 & 11.5482 & -256.132 \tabularnewline
56 & 2340 & 2828.42 & 2646.25 & 182.173 & -488.423 \tabularnewline
57 & 2420 & 2416.09 & 2552.08 & -135.993 & 3.91011 \tabularnewline
58 & 2430 & 2575.63 & 2466.25 & 109.382 & -145.632 \tabularnewline
59 & 2080 & 2161.71 & 2431.67 & -269.952 & -81.7149 \tabularnewline
60 & 2420 & 2250.34 & 2450.83 & -200.493 & 169.66 \tabularnewline
61 & 2430 & 2784.88 & 2477.92 & 306.96 & -354.877 \tabularnewline
62 & 2400 & 2655.8 & 2497.5 & 158.303 & -255.803 \tabularnewline
63 & 2790 & 2948.16 & 2516.67 & 431.497 & -158.164 \tabularnewline
64 & 2370 & 2499.14 & 2549.17 & -50.0305 & -129.136 \tabularnewline
65 & 2700 & 2418.9 & 2575.42 & -156.512 & 281.095 \tabularnewline
66 & 2640 & 2203.12 & 2590 & -386.882 & 436.882 \tabularnewline
67 & 2910 & 2621.13 & 2609.58 & 11.5482 & 288.868 \tabularnewline
68 & 2420 & 2823.84 & 2641.67 & 182.173 & -403.84 \tabularnewline
69 & 2800 & 2557.34 & 2693.33 & -135.993 & 242.66 \tabularnewline
70 & 2830 & 2874.38 & 2765 & 109.382 & -44.3816 \tabularnewline
71 & 2310 & 2546.3 & 2816.25 & -269.952 & -236.298 \tabularnewline
72 & 2540 & 2654.92 & 2855.42 & -200.493 & -114.923 \tabularnewline
73 & 2780 & 3193.21 & 2886.25 & 306.96 & -413.21 \tabularnewline
74 & 2820 & 3100.39 & 2942.08 & 158.303 & -280.386 \tabularnewline
75 & 3610 & 3445.66 & 3014.17 & 431.497 & 164.336 \tabularnewline
76 & 3270 & 3011.22 & 3061.25 & -50.0305 & 258.78 \tabularnewline
77 & 3030 & 2963.49 & 3120 & -156.512 & 66.512 \tabularnewline
78 & 3250 & 2793.12 & 3180 & -386.882 & 456.882 \tabularnewline
79 & 3040 & 3241.13 & 3229.58 & 11.5482 & -201.132 \tabularnewline
80 & 3630 & 3446.34 & 3264.17 & 182.173 & 183.66 \tabularnewline
81 & 3320 & 3132.76 & 3268.75 & -135.993 & 187.243 \tabularnewline
82 & 3440 & 3373.13 & 3263.75 & 109.382 & 66.8684 \tabularnewline
83 & 3110 & 3010.46 & 3280.42 & -269.952 & 99.5351 \tabularnewline
84 & 3180 & 3109.51 & 3310 & -200.493 & 70.4934 \tabularnewline
85 & 3330 & 3643.63 & 3336.67 & 306.96 & -313.627 \tabularnewline
86 & 3100 & 3516.22 & 3357.92 & 158.303 & -416.22 \tabularnewline
87 & 3440 & 3803.58 & 3372.08 & 431.497 & -363.581 \tabularnewline
88 & 3320 & 3329.55 & 3379.58 & -50.0305 & -9.55285 \tabularnewline
89 & 3380 & 3233.49 & 3390 & -156.512 & 146.512 \tabularnewline
90 & 3610 & 3003.53 & 3390.42 & -386.882 & 606.466 \tabularnewline
91 & 3320 & 3416.96 & 3405.42 & 11.5482 & -96.9649 \tabularnewline
92 & 3860 & 3627.59 & 3445.42 & 182.173 & 232.41 \tabularnewline
93 & 3430 & 3334.42 & 3470.42 & -135.993 & 95.5768 \tabularnewline
94 & 3510 & 3588.96 & 3479.58 & 109.382 & -78.9649 \tabularnewline
95 & 3290 & 3225.05 & 3495 & -269.952 & 64.9518 \tabularnewline
96 & 3010 & 3303.26 & 3503.75 & -200.493 & -293.257 \tabularnewline
97 & 3860 & 3839.04 & 3532.08 & 306.96 & 20.9564 \tabularnewline
98 & 3530 & 3753.72 & 3595.42 & 158.303 & -223.72 \tabularnewline
99 & 3610 & 4067.75 & 3636.25 & 431.497 & -457.747 \tabularnewline
100 & 3370 & 3626.22 & 3676.25 & -50.0305 & -256.22 \tabularnewline
101 & 3700 & 3568.07 & 3724.58 & -156.512 & 131.929 \tabularnewline
102 & 3500 & 3378.95 & 3765.83 & -386.882 & 121.049 \tabularnewline
103 & 4110 & 3811.96 & 3800.42 & 11.5482 & 298.035 \tabularnewline
104 & 4590 & 4018.84 & 3836.67 & 182.173 & 571.16 \tabularnewline
105 & 3680 & 3747.76 & 3883.75 & -135.993 & -67.7566 \tabularnewline
106 & 4220 & 4033.13 & 3923.75 & 109.382 & 186.868 \tabularnewline
107 & 3740 & 3647.96 & 3917.92 & -269.952 & 92.0351 \tabularnewline
108 & 3550 & 3684.51 & 3885 & -200.493 & -134.507 \tabularnewline
109 & 4150 & 4208.63 & 3901.67 & 306.96 & -58.6269 \tabularnewline
110 & 4110 & 4066.64 & 3908.33 & 158.303 & 43.3638 \tabularnewline
111 & 4160 & 4316.91 & 3885.42 & 431.497 & -156.914 \tabularnewline
112 & 3780 & 3818.72 & 3868.75 & -50.0305 & -38.7195 \tabularnewline
113 & 3150 & 3659.32 & 3815.83 & -156.512 & -509.321 \tabularnewline
114 & 3260 & 3350.62 & 3737.5 & -386.882 & -90.6177 \tabularnewline
115 & 4750 & 3686.96 & 3675.42 & 11.5482 & 1063.04 \tabularnewline
116 & 4110 & 3805.09 & 3622.92 & 182.173 & 304.91 \tabularnewline
117 & 3610 & 3425.67 & 3561.67 & -135.993 & 184.327 \tabularnewline
118 & 3890 & 3611.88 & 3502.5 & 109.382 & 278.118 \tabularnewline
119 & 2800 & 3205.05 & 3475 & -269.952 & -405.048 \tabularnewline
120 & 2610 & 3273.67 & 3474.17 & -200.493 & -663.673 \tabularnewline
121 & 3600 & NA & NA & 306.96 & NA \tabularnewline
122 & 3400 & NA & NA & 158.303 & NA \tabularnewline
123 & 3400 & NA & NA & 431.497 & NA \tabularnewline
124 & 3120 & NA & NA & -50.0305 & NA \tabularnewline
125 & 3150 & NA & NA & -156.512 & NA \tabularnewline
126 & 3240 & NA & NA & -386.882 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299474&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]4030[/C][C]NA[/C][C]NA[/C][C]306.96[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]4320[/C][C]NA[/C][C]NA[/C][C]158.303[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]4840[/C][C]NA[/C][C]NA[/C][C]431.497[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]4410[/C][C]NA[/C][C]NA[/C][C]-50.0305[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]4180[/C][C]NA[/C][C]NA[/C][C]-156.512[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]4240[/C][C]NA[/C][C]NA[/C][C]-386.882[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3680[/C][C]4303.21[/C][C]4291.67[/C][C]11.5482[/C][C]-623.215[/C][/ROW]
[ROW][C]8[/C][C]4270[/C][C]4478.01[/C][C]4295.83[/C][C]182.173[/C][C]-208.007[/C][/ROW]
[ROW][C]9[/C][C]4140[/C][C]4099.42[/C][C]4235.42[/C][C]-135.993[/C][C]40.5768[/C][/ROW]
[ROW][C]10[/C][C]4470[/C][C]4268.55[/C][C]4159.17[/C][C]109.382[/C][C]201.452[/C][/ROW]
[ROW][C]11[/C][C]4180[/C][C]3833.8[/C][C]4103.75[/C][C]-269.952[/C][C]346.202[/C][/ROW]
[ROW][C]12[/C][C]4510[/C][C]3820.34[/C][C]4020.83[/C][C]-200.493[/C][C]689.66[/C][/ROW]
[ROW][C]13[/C][C]4490[/C][C]4263.21[/C][C]3956.25[/C][C]306.96[/C][C]226.79[/C][/ROW]
[ROW][C]14[/C][C]3960[/C][C]4110.39[/C][C]3952.08[/C][C]158.303[/C][C]-150.386[/C][/ROW]
[ROW][C]15[/C][C]3750[/C][C]4369[/C][C]3937.5[/C][C]431.497[/C][C]-618.997[/C][/ROW]
[ROW][C]16[/C][C]3670[/C][C]3839.14[/C][C]3889.17[/C][C]-50.0305[/C][C]-169.136[/C][/ROW]
[ROW][C]17[/C][C]3590[/C][C]3686.4[/C][C]3842.92[/C][C]-156.512[/C][C]-96.4047[/C][/ROW]
[ROW][C]18[/C][C]2840[/C][C]3398.95[/C][C]3785.83[/C][C]-386.882[/C][C]-558.951[/C][/ROW]
[ROW][C]19[/C][C]3530[/C][C]3742.8[/C][C]3731.25[/C][C]11.5482[/C][C]-212.798[/C][/ROW]
[ROW][C]20[/C][C]4320[/C][C]3914.67[/C][C]3732.5[/C][C]182.173[/C][C]405.327[/C][/ROW]
[ROW][C]21[/C][C]3740[/C][C]3647.34[/C][C]3783.33[/C][C]-135.993[/C][C]92.6601[/C][/ROW]
[ROW][C]22[/C][C]3710[/C][C]3864.8[/C][C]3755.42[/C][C]109.382[/C][C]-154.798[/C][/ROW]
[ROW][C]23[/C][C]3830[/C][C]3370.88[/C][C]3640.83[/C][C]-269.952[/C][C]459.118[/C][/ROW]
[ROW][C]24[/C][C]3490[/C][C]3324.09[/C][C]3524.58[/C][C]-200.493[/C][C]165.91[/C][/ROW]
[ROW][C]25[/C][C]4200[/C][C]3718.21[/C][C]3411.25[/C][C]306.96[/C][C]481.79[/C][/ROW]
[ROW][C]26[/C][C]4280[/C][C]3441.64[/C][C]3283.33[/C][C]158.303[/C][C]838.364[/C][/ROW]
[ROW][C]27[/C][C]4650[/C][C]3555.25[/C][C]3123.75[/C][C]431.497[/C][C]1094.75[/C][/ROW]
[ROW][C]28[/C][C]2100[/C][C]2934.97[/C][C]2985[/C][C]-50.0305[/C][C]-834.97[/C][/ROW]
[ROW][C]29[/C][C]2410[/C][C]2689.74[/C][C]2846.25[/C][C]-156.512[/C][C]-279.738[/C][/ROW]
[ROW][C]30[/C][C]1230[/C][C]2342.28[/C][C]2729.17[/C][C]-386.882[/C][C]-1112.28[/C][/ROW]
[ROW][C]31[/C][C]2420[/C][C]2659.05[/C][C]2647.5[/C][C]11.5482[/C][C]-239.048[/C][/ROW]
[ROW][C]32[/C][C]2360[/C][C]2747.59[/C][C]2565.42[/C][C]182.173[/C][C]-387.59[/C][/ROW]
[ROW][C]33[/C][C]1870[/C][C]2352.76[/C][C]2488.75[/C][C]-135.993[/C][C]-482.757[/C][/ROW]
[ROW][C]34[/C][C]2250[/C][C]2637.3[/C][C]2527.92[/C][C]109.382[/C][C]-387.298[/C][/ROW]
[ROW][C]35[/C][C]1960[/C][C]2388.38[/C][C]2658.33[/C][C]-269.952[/C][C]-428.382[/C][/ROW]
[ROW][C]36[/C][C]2550[/C][C]2596.17[/C][C]2796.67[/C][C]-200.493[/C][C]-46.1732[/C][/ROW]
[ROW][C]37[/C][C]3180[/C][C]3230.71[/C][C]2923.75[/C][C]306.96[/C][C]-50.7103[/C][/ROW]
[ROW][C]38[/C][C]3330[/C][C]3171.64[/C][C]3013.33[/C][C]158.303[/C][C]158.364[/C][/ROW]
[ROW][C]39[/C][C]3760[/C][C]3542.33[/C][C]3110.83[/C][C]431.497[/C][C]217.669[/C][/ROW]
[ROW][C]40[/C][C]3930[/C][C]3171.64[/C][C]3221.67[/C][C]-50.0305[/C][C]758.364[/C][/ROW]
[ROW][C]41[/C][C]3710[/C][C]3178.9[/C][C]3335.42[/C][C]-156.512[/C][C]531.095[/C][/ROW]
[ROW][C]42[/C][C]3250[/C][C]3033.53[/C][C]3420.42[/C][C]-386.882[/C][C]216.466[/C][/ROW]
[ROW][C]43[/C][C]3450[/C][C]3499.05[/C][C]3487.5[/C][C]11.5482[/C][C]-49.0482[/C][/ROW]
[ROW][C]44[/C][C]3480[/C][C]3718.01[/C][C]3535.83[/C][C]182.173[/C][C]-238.007[/C][/ROW]
[ROW][C]45[/C][C]3090[/C][C]3414.84[/C][C]3550.83[/C][C]-135.993[/C][C]-324.84[/C][/ROW]
[ROW][C]46[/C][C]3690[/C][C]3640.63[/C][C]3531.25[/C][C]109.382[/C][C]49.3684[/C][/ROW]
[ROW][C]47[/C][C]3250[/C][C]3188.8[/C][C]3458.75[/C][C]-269.952[/C][C]61.2018[/C][/ROW]
[ROW][C]48[/C][C]3300[/C][C]3171.59[/C][C]3372.08[/C][C]-200.493[/C][C]128.41[/C][/ROW]
[ROW][C]49[/C][C]4040[/C][C]3604.04[/C][C]3297.08[/C][C]306.96[/C][C]435.956[/C][/ROW]
[ROW][C]50[/C][C]3630[/C][C]3369.14[/C][C]3210.83[/C][C]158.303[/C][C]260.864[/C][/ROW]
[ROW][C]51[/C][C]3820[/C][C]3566.91[/C][C]3135.42[/C][C]431.497[/C][C]253.086[/C][/ROW]
[ROW][C]52[/C][C]3400[/C][C]3004.97[/C][C]3055[/C][C]-50.0305[/C][C]395.03[/C][/ROW]
[ROW][C]53[/C][C]2500[/C][C]2797.24[/C][C]2953.75[/C][C]-156.512[/C][C]-297.238[/C][/ROW]
[ROW][C]54[/C][C]2380[/C][C]2481.45[/C][C]2868.33[/C][C]-386.882[/C][C]-101.451[/C][/ROW]
[ROW][C]55[/C][C]2520[/C][C]2776.13[/C][C]2764.58[/C][C]11.5482[/C][C]-256.132[/C][/ROW]
[ROW][C]56[/C][C]2340[/C][C]2828.42[/C][C]2646.25[/C][C]182.173[/C][C]-488.423[/C][/ROW]
[ROW][C]57[/C][C]2420[/C][C]2416.09[/C][C]2552.08[/C][C]-135.993[/C][C]3.91011[/C][/ROW]
[ROW][C]58[/C][C]2430[/C][C]2575.63[/C][C]2466.25[/C][C]109.382[/C][C]-145.632[/C][/ROW]
[ROW][C]59[/C][C]2080[/C][C]2161.71[/C][C]2431.67[/C][C]-269.952[/C][C]-81.7149[/C][/ROW]
[ROW][C]60[/C][C]2420[/C][C]2250.34[/C][C]2450.83[/C][C]-200.493[/C][C]169.66[/C][/ROW]
[ROW][C]61[/C][C]2430[/C][C]2784.88[/C][C]2477.92[/C][C]306.96[/C][C]-354.877[/C][/ROW]
[ROW][C]62[/C][C]2400[/C][C]2655.8[/C][C]2497.5[/C][C]158.303[/C][C]-255.803[/C][/ROW]
[ROW][C]63[/C][C]2790[/C][C]2948.16[/C][C]2516.67[/C][C]431.497[/C][C]-158.164[/C][/ROW]
[ROW][C]64[/C][C]2370[/C][C]2499.14[/C][C]2549.17[/C][C]-50.0305[/C][C]-129.136[/C][/ROW]
[ROW][C]65[/C][C]2700[/C][C]2418.9[/C][C]2575.42[/C][C]-156.512[/C][C]281.095[/C][/ROW]
[ROW][C]66[/C][C]2640[/C][C]2203.12[/C][C]2590[/C][C]-386.882[/C][C]436.882[/C][/ROW]
[ROW][C]67[/C][C]2910[/C][C]2621.13[/C][C]2609.58[/C][C]11.5482[/C][C]288.868[/C][/ROW]
[ROW][C]68[/C][C]2420[/C][C]2823.84[/C][C]2641.67[/C][C]182.173[/C][C]-403.84[/C][/ROW]
[ROW][C]69[/C][C]2800[/C][C]2557.34[/C][C]2693.33[/C][C]-135.993[/C][C]242.66[/C][/ROW]
[ROW][C]70[/C][C]2830[/C][C]2874.38[/C][C]2765[/C][C]109.382[/C][C]-44.3816[/C][/ROW]
[ROW][C]71[/C][C]2310[/C][C]2546.3[/C][C]2816.25[/C][C]-269.952[/C][C]-236.298[/C][/ROW]
[ROW][C]72[/C][C]2540[/C][C]2654.92[/C][C]2855.42[/C][C]-200.493[/C][C]-114.923[/C][/ROW]
[ROW][C]73[/C][C]2780[/C][C]3193.21[/C][C]2886.25[/C][C]306.96[/C][C]-413.21[/C][/ROW]
[ROW][C]74[/C][C]2820[/C][C]3100.39[/C][C]2942.08[/C][C]158.303[/C][C]-280.386[/C][/ROW]
[ROW][C]75[/C][C]3610[/C][C]3445.66[/C][C]3014.17[/C][C]431.497[/C][C]164.336[/C][/ROW]
[ROW][C]76[/C][C]3270[/C][C]3011.22[/C][C]3061.25[/C][C]-50.0305[/C][C]258.78[/C][/ROW]
[ROW][C]77[/C][C]3030[/C][C]2963.49[/C][C]3120[/C][C]-156.512[/C][C]66.512[/C][/ROW]
[ROW][C]78[/C][C]3250[/C][C]2793.12[/C][C]3180[/C][C]-386.882[/C][C]456.882[/C][/ROW]
[ROW][C]79[/C][C]3040[/C][C]3241.13[/C][C]3229.58[/C][C]11.5482[/C][C]-201.132[/C][/ROW]
[ROW][C]80[/C][C]3630[/C][C]3446.34[/C][C]3264.17[/C][C]182.173[/C][C]183.66[/C][/ROW]
[ROW][C]81[/C][C]3320[/C][C]3132.76[/C][C]3268.75[/C][C]-135.993[/C][C]187.243[/C][/ROW]
[ROW][C]82[/C][C]3440[/C][C]3373.13[/C][C]3263.75[/C][C]109.382[/C][C]66.8684[/C][/ROW]
[ROW][C]83[/C][C]3110[/C][C]3010.46[/C][C]3280.42[/C][C]-269.952[/C][C]99.5351[/C][/ROW]
[ROW][C]84[/C][C]3180[/C][C]3109.51[/C][C]3310[/C][C]-200.493[/C][C]70.4934[/C][/ROW]
[ROW][C]85[/C][C]3330[/C][C]3643.63[/C][C]3336.67[/C][C]306.96[/C][C]-313.627[/C][/ROW]
[ROW][C]86[/C][C]3100[/C][C]3516.22[/C][C]3357.92[/C][C]158.303[/C][C]-416.22[/C][/ROW]
[ROW][C]87[/C][C]3440[/C][C]3803.58[/C][C]3372.08[/C][C]431.497[/C][C]-363.581[/C][/ROW]
[ROW][C]88[/C][C]3320[/C][C]3329.55[/C][C]3379.58[/C][C]-50.0305[/C][C]-9.55285[/C][/ROW]
[ROW][C]89[/C][C]3380[/C][C]3233.49[/C][C]3390[/C][C]-156.512[/C][C]146.512[/C][/ROW]
[ROW][C]90[/C][C]3610[/C][C]3003.53[/C][C]3390.42[/C][C]-386.882[/C][C]606.466[/C][/ROW]
[ROW][C]91[/C][C]3320[/C][C]3416.96[/C][C]3405.42[/C][C]11.5482[/C][C]-96.9649[/C][/ROW]
[ROW][C]92[/C][C]3860[/C][C]3627.59[/C][C]3445.42[/C][C]182.173[/C][C]232.41[/C][/ROW]
[ROW][C]93[/C][C]3430[/C][C]3334.42[/C][C]3470.42[/C][C]-135.993[/C][C]95.5768[/C][/ROW]
[ROW][C]94[/C][C]3510[/C][C]3588.96[/C][C]3479.58[/C][C]109.382[/C][C]-78.9649[/C][/ROW]
[ROW][C]95[/C][C]3290[/C][C]3225.05[/C][C]3495[/C][C]-269.952[/C][C]64.9518[/C][/ROW]
[ROW][C]96[/C][C]3010[/C][C]3303.26[/C][C]3503.75[/C][C]-200.493[/C][C]-293.257[/C][/ROW]
[ROW][C]97[/C][C]3860[/C][C]3839.04[/C][C]3532.08[/C][C]306.96[/C][C]20.9564[/C][/ROW]
[ROW][C]98[/C][C]3530[/C][C]3753.72[/C][C]3595.42[/C][C]158.303[/C][C]-223.72[/C][/ROW]
[ROW][C]99[/C][C]3610[/C][C]4067.75[/C][C]3636.25[/C][C]431.497[/C][C]-457.747[/C][/ROW]
[ROW][C]100[/C][C]3370[/C][C]3626.22[/C][C]3676.25[/C][C]-50.0305[/C][C]-256.22[/C][/ROW]
[ROW][C]101[/C][C]3700[/C][C]3568.07[/C][C]3724.58[/C][C]-156.512[/C][C]131.929[/C][/ROW]
[ROW][C]102[/C][C]3500[/C][C]3378.95[/C][C]3765.83[/C][C]-386.882[/C][C]121.049[/C][/ROW]
[ROW][C]103[/C][C]4110[/C][C]3811.96[/C][C]3800.42[/C][C]11.5482[/C][C]298.035[/C][/ROW]
[ROW][C]104[/C][C]4590[/C][C]4018.84[/C][C]3836.67[/C][C]182.173[/C][C]571.16[/C][/ROW]
[ROW][C]105[/C][C]3680[/C][C]3747.76[/C][C]3883.75[/C][C]-135.993[/C][C]-67.7566[/C][/ROW]
[ROW][C]106[/C][C]4220[/C][C]4033.13[/C][C]3923.75[/C][C]109.382[/C][C]186.868[/C][/ROW]
[ROW][C]107[/C][C]3740[/C][C]3647.96[/C][C]3917.92[/C][C]-269.952[/C][C]92.0351[/C][/ROW]
[ROW][C]108[/C][C]3550[/C][C]3684.51[/C][C]3885[/C][C]-200.493[/C][C]-134.507[/C][/ROW]
[ROW][C]109[/C][C]4150[/C][C]4208.63[/C][C]3901.67[/C][C]306.96[/C][C]-58.6269[/C][/ROW]
[ROW][C]110[/C][C]4110[/C][C]4066.64[/C][C]3908.33[/C][C]158.303[/C][C]43.3638[/C][/ROW]
[ROW][C]111[/C][C]4160[/C][C]4316.91[/C][C]3885.42[/C][C]431.497[/C][C]-156.914[/C][/ROW]
[ROW][C]112[/C][C]3780[/C][C]3818.72[/C][C]3868.75[/C][C]-50.0305[/C][C]-38.7195[/C][/ROW]
[ROW][C]113[/C][C]3150[/C][C]3659.32[/C][C]3815.83[/C][C]-156.512[/C][C]-509.321[/C][/ROW]
[ROW][C]114[/C][C]3260[/C][C]3350.62[/C][C]3737.5[/C][C]-386.882[/C][C]-90.6177[/C][/ROW]
[ROW][C]115[/C][C]4750[/C][C]3686.96[/C][C]3675.42[/C][C]11.5482[/C][C]1063.04[/C][/ROW]
[ROW][C]116[/C][C]4110[/C][C]3805.09[/C][C]3622.92[/C][C]182.173[/C][C]304.91[/C][/ROW]
[ROW][C]117[/C][C]3610[/C][C]3425.67[/C][C]3561.67[/C][C]-135.993[/C][C]184.327[/C][/ROW]
[ROW][C]118[/C][C]3890[/C][C]3611.88[/C][C]3502.5[/C][C]109.382[/C][C]278.118[/C][/ROW]
[ROW][C]119[/C][C]2800[/C][C]3205.05[/C][C]3475[/C][C]-269.952[/C][C]-405.048[/C][/ROW]
[ROW][C]120[/C][C]2610[/C][C]3273.67[/C][C]3474.17[/C][C]-200.493[/C][C]-663.673[/C][/ROW]
[ROW][C]121[/C][C]3600[/C][C]NA[/C][C]NA[/C][C]306.96[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]3400[/C][C]NA[/C][C]NA[/C][C]158.303[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]3400[/C][C]NA[/C][C]NA[/C][C]431.497[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]3120[/C][C]NA[/C][C]NA[/C][C]-50.0305[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]3150[/C][C]NA[/C][C]NA[/C][C]-156.512[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]3240[/C][C]NA[/C][C]NA[/C][C]-386.882[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299474&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299474&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14030NANA306.96NA
24320NANA158.303NA
34840NANA431.497NA
44410NANA-50.0305NA
54180NANA-156.512NA
64240NANA-386.882NA
736804303.214291.6711.5482-623.215
842704478.014295.83182.173-208.007
941404099.424235.42-135.99340.5768
1044704268.554159.17109.382201.452
1141803833.84103.75-269.952346.202
1245103820.344020.83-200.493689.66
1344904263.213956.25306.96226.79
1439604110.393952.08158.303-150.386
15375043693937.5431.497-618.997
1636703839.143889.17-50.0305-169.136
1735903686.43842.92-156.512-96.4047
1828403398.953785.83-386.882-558.951
1935303742.83731.2511.5482-212.798
2043203914.673732.5182.173405.327
2137403647.343783.33-135.99392.6601
2237103864.83755.42109.382-154.798
2338303370.883640.83-269.952459.118
2434903324.093524.58-200.493165.91
2542003718.213411.25306.96481.79
2642803441.643283.33158.303838.364
2746503555.253123.75431.4971094.75
2821002934.972985-50.0305-834.97
2924102689.742846.25-156.512-279.738
3012302342.282729.17-386.882-1112.28
3124202659.052647.511.5482-239.048
3223602747.592565.42182.173-387.59
3318702352.762488.75-135.993-482.757
3422502637.32527.92109.382-387.298
3519602388.382658.33-269.952-428.382
3625502596.172796.67-200.493-46.1732
3731803230.712923.75306.96-50.7103
3833303171.643013.33158.303158.364
3937603542.333110.83431.497217.669
4039303171.643221.67-50.0305758.364
4137103178.93335.42-156.512531.095
4232503033.533420.42-386.882216.466
4334503499.053487.511.5482-49.0482
4434803718.013535.83182.173-238.007
4530903414.843550.83-135.993-324.84
4636903640.633531.25109.38249.3684
4732503188.83458.75-269.95261.2018
4833003171.593372.08-200.493128.41
4940403604.043297.08306.96435.956
5036303369.143210.83158.303260.864
5138203566.913135.42431.497253.086
5234003004.973055-50.0305395.03
5325002797.242953.75-156.512-297.238
5423802481.452868.33-386.882-101.451
5525202776.132764.5811.5482-256.132
5623402828.422646.25182.173-488.423
5724202416.092552.08-135.9933.91011
5824302575.632466.25109.382-145.632
5920802161.712431.67-269.952-81.7149
6024202250.342450.83-200.493169.66
6124302784.882477.92306.96-354.877
6224002655.82497.5158.303-255.803
6327902948.162516.67431.497-158.164
6423702499.142549.17-50.0305-129.136
6527002418.92575.42-156.512281.095
6626402203.122590-386.882436.882
6729102621.132609.5811.5482288.868
6824202823.842641.67182.173-403.84
6928002557.342693.33-135.993242.66
7028302874.382765109.382-44.3816
7123102546.32816.25-269.952-236.298
7225402654.922855.42-200.493-114.923
7327803193.212886.25306.96-413.21
7428203100.392942.08158.303-280.386
7536103445.663014.17431.497164.336
7632703011.223061.25-50.0305258.78
7730302963.493120-156.51266.512
7832502793.123180-386.882456.882
7930403241.133229.5811.5482-201.132
8036303446.343264.17182.173183.66
8133203132.763268.75-135.993187.243
8234403373.133263.75109.38266.8684
8331103010.463280.42-269.95299.5351
8431803109.513310-200.49370.4934
8533303643.633336.67306.96-313.627
8631003516.223357.92158.303-416.22
8734403803.583372.08431.497-363.581
8833203329.553379.58-50.0305-9.55285
8933803233.493390-156.512146.512
9036103003.533390.42-386.882606.466
9133203416.963405.4211.5482-96.9649
9238603627.593445.42182.173232.41
9334303334.423470.42-135.99395.5768
9435103588.963479.58109.382-78.9649
9532903225.053495-269.95264.9518
9630103303.263503.75-200.493-293.257
9738603839.043532.08306.9620.9564
9835303753.723595.42158.303-223.72
9936104067.753636.25431.497-457.747
10033703626.223676.25-50.0305-256.22
10137003568.073724.58-156.512131.929
10235003378.953765.83-386.882121.049
10341103811.963800.4211.5482298.035
10445904018.843836.67182.173571.16
10536803747.763883.75-135.993-67.7566
10642204033.133923.75109.382186.868
10737403647.963917.92-269.95292.0351
10835503684.513885-200.493-134.507
10941504208.633901.67306.96-58.6269
11041104066.643908.33158.30343.3638
11141604316.913885.42431.497-156.914
11237803818.723868.75-50.0305-38.7195
11331503659.323815.83-156.512-509.321
11432603350.623737.5-386.882-90.6177
11547503686.963675.4211.54821063.04
11641103805.093622.92182.173304.91
11736103425.673561.67-135.993184.327
11838903611.883502.5109.382278.118
11928003205.053475-269.952-405.048
12026103273.673474.17-200.493-663.673
1213600NANA306.96NA
1223400NANA158.303NA
1233400NANA431.497NA
1243120NANA-50.0305NA
1253150NANA-156.512NA
1263240NANA-386.882NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')