Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 14 Dec 2016 15:01:08 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481724280moy2qjhrz2hyy3u.htm/, Retrieved Fri, 01 Nov 2024 04:35:14 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:35:14 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
3	4	3	4	18
5	5	5	4	19
5	4	4	4	18
5	4	4	4	15
4	4	3	4	19
5	5	5	5	19
5	4	3	3	19
5	5	4	1	18
5	4	3	3	20
5	5	5	4	14
5	5	5	5	18
5	5	4	4	19
4	4	3	4	16
3	4	4	3	18
5	5	5	5	18
5	4	3	4	17
5	3	3	5	19
4	4	4	4	19
2	5	1	2	17
5	5	4	5	18
5	5	4	5	16
5	5	4	2	20
4	4	4	3	13
4	5	5	4	19
4	5	4	4	15
5	5	4	5	17
5	5	4	3	17
5	5	4	5	17
5	5	5	5	19
1	1	1	2	18
5	5	4	5	19
4	5	4	3	20
4	4	4	3	16
4	4	4	4	17
5	5	4	4	16
4	4	5	3	16
4	4	4	3	16
5	4	4	4	16
5	5	5	5	17
5	5	5	4	18
2	2	1	2	16
3	3	3	4	16
4	5	3	4	16
5	5	4	4	19
5	5	5	3	16
4	4	4	4	17
5	5	3	4	19
5	5	5	4	17
4	4	4	4	17
5	5	4	5	15
4	5	3	1	16
4	4	4	4	16
3	4	3	3	16
4	4	3	1	17
4	5	4	4	18
5	4	4	4	18
4	5	4	4	18
4	5	4	3	19
4	4	4	4	14
4	3	3	4	13
4	4	4	4	18
2	4	4	3	16
4	5	4	3	15
4	4	3	3	18
5	5	5	5	18
3	3	3	3	16
3	4	3	3	19
5	4	5	4	17
4	3	3	4	17
5	5	5	4	19
4	5	4	5	19
4	3	3	4	20
5	5	3	5	19
5	5	5	4	18
5	4	3	3	16
4	4	3	3	16
5	4	4	4	15
5	5	5	4	20
2	5	4	2	16
5	4	5	5	16
5	5	4	4	20
5	5	5	5	20
5	4	4	2	18
4	4	4	3	15
4	4	4	3	14
5	5	5	5	16
4	4	4	3	14
5	5	5	4	18
5	5	4	4	20
5	4	5	4	20
4	4	4	3	18
5	5	5	5	20
5	5	5	2	14
3	4	2	3	20
5	4	5	4	17
5	5	5	4	20
5	5	5	5	14
4	4	5	4	20
4	4	4	3	19
4	4	4	4	18
5	5	5	3	17
5	5	4	4	17
4	4	2	4	19
3	4	4	4	15
3	4	3	2	18
4	4	5	4	15
4	4	3	3	16
5	5	4	4	16
5	4	4	4	20
4	4	5	4	18
5	5	5	5	20
5	4	4	3	18
4	4	3	3	17
4	4	3	4	19
5	5	4	4	18
5	5	5	5	19
5	5	3	4	17
5	5	3	4	18
4	5	4	4	17
5	4	4	4	16
3	4	4	4	19
5	5	4	3	18
5	4	5	4	17
4	5	4	4	18
5	5	5	5	16
4	4	4	3	20
4	4	4	4	14
4	4	4	3	17
4	4	5	5	13
2	3	2	4	13
4	4	4	3	17
5	4	5	4	18
5	5	5	5	16
4	4	4	2	19
5	4	4	2	17
5	4	4	4	16
5	4	5	4	17
5	5	5	5	17
5	3	5	4	17
5	4	5	4	20
4	4	4	3	14
5	4	4	3	20
3	3	3	2	19
3	4	4	4	16
4	5	4	5	19
4	5	4	4	17
3	5	3	5	19
3	4	3	2	20
5	5	5	4	19
5	5	4	4	19
5	4	4	2	16
5	4	4	4	18
5	5	5	4	16
5	4	5	4	17
5	5	5	4	18
5	4	5	2	16
4	4	4	4	17
4	4	5	3	15
2	4	5	3	18




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
ITH1[t] = -0.348654 + 0.334464ITH2[t] + 0.352526ITH3[t] + 0.151315ITH4[t] + 0.0396807IKSUM[t] + 0.12895`ITH1(t-1)`[t] + 0.0126931`ITH1(t-2)`[t] -0.0192636`ITH1(t-3)`[t] -0.0164317`ITH1(t-4)`[t] + 0.0233105`ITH1(t-5)`[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ITH1[t] =  -0.348654 +  0.334464ITH2[t] +  0.352526ITH3[t] +  0.151315ITH4[t] +  0.0396807IKSUM[t] +  0.12895`ITH1(t-1)`[t] +  0.0126931`ITH1(t-2)`[t] -0.0192636`ITH1(t-3)`[t] -0.0164317`ITH1(t-4)`[t] +  0.0233105`ITH1(t-5)`[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ITH1[t] =  -0.348654 +  0.334464ITH2[t] +  0.352526ITH3[t] +  0.151315ITH4[t] +  0.0396807IKSUM[t] +  0.12895`ITH1(t-1)`[t] +  0.0126931`ITH1(t-2)`[t] -0.0192636`ITH1(t-3)`[t] -0.0164317`ITH1(t-4)`[t] +  0.0233105`ITH1(t-5)`[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ITH1[t] = -0.348654 + 0.334464ITH2[t] + 0.352526ITH3[t] + 0.151315ITH4[t] + 0.0396807IKSUM[t] + 0.12895`ITH1(t-1)`[t] + 0.0126931`ITH1(t-2)`[t] -0.0192636`ITH1(t-3)`[t] -0.0164317`ITH1(t-4)`[t] + 0.0233105`ITH1(t-5)`[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-0.3487 0.8679-4.0170e-01 0.6885 0.3442
ITH2+0.3345 0.09107+3.6720e+00 0.0003378 0.0001689
ITH3+0.3525 0.07165+4.9200e+00 2.331e-06 1.166e-06
ITH4+0.1513 0.06266+2.4150e+00 0.017 0.008499
IKSUM+0.03968 0.03047+1.3020e+00 0.1949 0.09744
`ITH1(t-1)`+0.129 0.06553+1.9680e+00 0.05103 0.02552
`ITH1(t-2)`+0.01269 0.06587+1.9270e-01 0.8475 0.4237
`ITH1(t-3)`-0.01926 0.06543-2.9440e-01 0.7689 0.3844
`ITH1(t-4)`-0.01643 0.06516-2.5220e-01 0.8013 0.4006
`ITH1(t-5)`+0.02331 0.06476+3.5990e-01 0.7194 0.3597

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -0.3487 &  0.8679 & -4.0170e-01 &  0.6885 &  0.3442 \tabularnewline
ITH2 & +0.3345 &  0.09107 & +3.6720e+00 &  0.0003378 &  0.0001689 \tabularnewline
ITH3 & +0.3525 &  0.07165 & +4.9200e+00 &  2.331e-06 &  1.166e-06 \tabularnewline
ITH4 & +0.1513 &  0.06266 & +2.4150e+00 &  0.017 &  0.008499 \tabularnewline
IKSUM & +0.03968 &  0.03047 & +1.3020e+00 &  0.1949 &  0.09744 \tabularnewline
`ITH1(t-1)` & +0.129 &  0.06553 & +1.9680e+00 &  0.05103 &  0.02552 \tabularnewline
`ITH1(t-2)` & +0.01269 &  0.06587 & +1.9270e-01 &  0.8475 &  0.4237 \tabularnewline
`ITH1(t-3)` & -0.01926 &  0.06543 & -2.9440e-01 &  0.7689 &  0.3844 \tabularnewline
`ITH1(t-4)` & -0.01643 &  0.06516 & -2.5220e-01 &  0.8013 &  0.4006 \tabularnewline
`ITH1(t-5)` & +0.02331 &  0.06476 & +3.5990e-01 &  0.7194 &  0.3597 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-0.3487[/C][C] 0.8679[/C][C]-4.0170e-01[/C][C] 0.6885[/C][C] 0.3442[/C][/ROW]
[ROW][C]ITH2[/C][C]+0.3345[/C][C] 0.09107[/C][C]+3.6720e+00[/C][C] 0.0003378[/C][C] 0.0001689[/C][/ROW]
[ROW][C]ITH3[/C][C]+0.3525[/C][C] 0.07165[/C][C]+4.9200e+00[/C][C] 2.331e-06[/C][C] 1.166e-06[/C][/ROW]
[ROW][C]ITH4[/C][C]+0.1513[/C][C] 0.06266[/C][C]+2.4150e+00[/C][C] 0.017[/C][C] 0.008499[/C][/ROW]
[ROW][C]IKSUM[/C][C]+0.03968[/C][C] 0.03047[/C][C]+1.3020e+00[/C][C] 0.1949[/C][C] 0.09744[/C][/ROW]
[ROW][C]`ITH1(t-1)`[/C][C]+0.129[/C][C] 0.06553[/C][C]+1.9680e+00[/C][C] 0.05103[/C][C] 0.02552[/C][/ROW]
[ROW][C]`ITH1(t-2)`[/C][C]+0.01269[/C][C] 0.06587[/C][C]+1.9270e-01[/C][C] 0.8475[/C][C] 0.4237[/C][/ROW]
[ROW][C]`ITH1(t-3)`[/C][C]-0.01926[/C][C] 0.06543[/C][C]-2.9440e-01[/C][C] 0.7689[/C][C] 0.3844[/C][/ROW]
[ROW][C]`ITH1(t-4)`[/C][C]-0.01643[/C][C] 0.06516[/C][C]-2.5220e-01[/C][C] 0.8013[/C][C] 0.4006[/C][/ROW]
[ROW][C]`ITH1(t-5)`[/C][C]+0.02331[/C][C] 0.06476[/C][C]+3.5990e-01[/C][C] 0.7194[/C][C] 0.3597[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-0.3487 0.8679-4.0170e-01 0.6885 0.3442
ITH2+0.3345 0.09107+3.6720e+00 0.0003378 0.0001689
ITH3+0.3525 0.07165+4.9200e+00 2.331e-06 1.166e-06
ITH4+0.1513 0.06266+2.4150e+00 0.017 0.008499
IKSUM+0.03968 0.03047+1.3020e+00 0.1949 0.09744
`ITH1(t-1)`+0.129 0.06553+1.9680e+00 0.05103 0.02552
`ITH1(t-2)`+0.01269 0.06587+1.9270e-01 0.8475 0.4237
`ITH1(t-3)`-0.01926 0.06543-2.9440e-01 0.7689 0.3844
`ITH1(t-4)`-0.01643 0.06516-2.5220e-01 0.8013 0.4006
`ITH1(t-5)`+0.02331 0.06476+3.5990e-01 0.7194 0.3597







Multiple Linear Regression - Regression Statistics
Multiple R 0.6615
R-squared 0.4376
Adjusted R-squared 0.4025
F-TEST (value) 12.45
F-TEST (DF numerator)9
F-TEST (DF denominator)144
p-value 1.799e-14
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.6508
Sum Squared Residuals 60.99

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.6615 \tabularnewline
R-squared &  0.4376 \tabularnewline
Adjusted R-squared &  0.4025 \tabularnewline
F-TEST (value) &  12.45 \tabularnewline
F-TEST (DF numerator) & 9 \tabularnewline
F-TEST (DF denominator) & 144 \tabularnewline
p-value &  1.799e-14 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.6508 \tabularnewline
Sum Squared Residuals &  60.99 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.6615[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.4376[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.4025[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 12.45[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]9[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]144[/C][/ROW]
[ROW][C]p-value[/C][C] 1.799e-14[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.6508[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 60.99[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.6615
R-squared 0.4376
Adjusted R-squared 0.4025
F-TEST (value) 12.45
F-TEST (DF numerator)9
F-TEST (DF denominator)144
p-value 1.799e-14
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.6508
Sum Squared Residuals 60.99







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 5 5.068-0.06752
2 5 3.888 1.112
3 5 4.265 0.7351
4 5 3.957 1.043
5 5 4.87 0.1299
6 5 5.203-0.2034
7 5 4.739 0.2607
8 4 3.933 0.06678
9 3 4.085-1.085
10 5 4.933 0.06718
11 5 3.967 1.033
12 5 3.924 1.076
13 4 4.414-0.4143
14 2 3.124-1.124
15 5 4.451 0.5487
16 5 4.753 0.2473
17 5 4.551 0.4495
18 4 4.041-0.04137
19 4 4.893-0.8929
20 4 4.439-0.4389
21 5 4.689 0.3112
22 5 4.532 0.4684
23 5 4.824 0.1764
24 5 5.236-0.2362
25 1 1.978-0.9782
26 5 4.375 0.6252
27 4 4.577-0.5768
28 4 4.083-0.08254
29 4 4.25-0.2495
30 5 4.405 0.5954
31 4 4.51-0.51
32 4 4.018-0.01787
33 5 4.137 0.8628
34 5 5.147-0.147
35 5 5.088-0.08779
36 2 2.25-0.2497
37 3 3.189-0.1886
38 4 3.972 0.0283
39 5 4.643 0.3573
40 5 4.897 0.1035
41 4 4.308-0.3076
42 5 4.228 0.7724
43 5 4.976 0.02359
44 4 4.345-0.3447
45 5 4.619 0.3807
46 4 3.778 0.2223
47 4 4.176-0.1761
48 3 3.657-0.6567
49 4 3.244 0.7557
50 4 4.581-0.5809
51 5 4.255 0.7449
52 4 4.716-0.7157
53 4 4.448-0.4481
54 4 4.058-0.05786
55 4 3.334 0.666
56 4 4.259-0.2592
57 2 4.005-2.005
58 4 4.042-0.04206
59 4 3.707 0.2934
60 5 5.113-0.1127
61 3 3.48-0.48
62 3 3.609-0.6088
63 5 4.388 0.6122
64 4 3.628 0.3717
65 5 5.034-0.03422
66 4 4.864-0.8641
67 4 3.601 0.3988
68 5 4.413 0.5872
69 5 5.035-0.03536
70 5 3.818 1.182
71 4 3.775 0.225
72 5 4.094 0.9062
73 5 5.119-0.1188
74 2 4.337-2.337
75 5 4.419 0.5808
76 5 4.718 0.2825
77 5 5.341-0.3406
78 5 4.112 0.8882
79 4 4.025-0.02482
80 4 3.926 0.07388
81 5 4.982 0.01759
82 4 4.062-0.06164
83 5 4.959 0.04116
84 5 4.759 0.2406
85 5 4.793 0.2071
86 4 4.23-0.2302
87 5 5.131-0.1305
88 5 4.578 0.4219
89 3 3.607-0.6074
90 5 4.436 0.5635
91 5 5.083-0.08276
92 5 5.083-0.08322
93 4 4.83-0.8299
94 4 4.078-0.0779
95 4 4.223-0.2235
96 5 4.739 0.2613
97 5 4.683 0.3171
98 4 3.712 0.2879
99 3 4.11-1.11
100 3 3.416-0.416
101 4 4.335-0.3346
102 4 3.683 0.3175
103 5 4.527 0.4734
104 5 4.437 0.5627
105 4 4.707-0.7067
106 5 5.147-0.1469
107 5 4.178 0.8222
108 4 3.841 0.1592
109 4 3.94 0.06026
110 5 4.535 0.4654
111 5 5.25-0.2497
112 5 4.343 0.6569
113 5 4.34 0.6598
114 4 4.637-0.6366
115 5 4.157 0.8432
116 3 4.392-1.392
117 5 4.31 0.6904
118 5 4.669 0.331
119 4 4.715-0.7148
120 5 5.028-0.02796
121 4 4.234-0.2338
122 4 4.097-0.0967
123 4 4.049-0.0489
124 4 4.525-0.5249
125 2 3.021-1.021
126 4 3.787 0.213
127 5 4.563 0.437
128 5 5.162-0.1623
129 4 4.147-0.1474
130 5 3.84 1.16
131 5 4.25 0.7503
132 5 4.697 0.3028
133 5 5.18-0.1802
134 5 4.32 0.6798
135 5 4.797 0.203
136 4 4.055-0.05507
137 5 4.164 0.8358
138 3 3.402-0.4025
139 3 4.047-1.047
140 4 4.624-0.6237
141 4 4.521-0.5208
142 3 4.468-1.468
143 3 3.524-0.5242
144 5 4.798 0.2024
145 5 4.746 0.2545
146 5 4.031 0.9688
147 5 4.351 0.6486
148 5 4.926 0.07389
149 5 4.678 0.322
150 5 5.052-0.0521
151 5 4.336 0.6644
152 4 4.325-0.3254
153 4 4.318-0.3183
154 2 4.425-2.425

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  5 &  5.068 & -0.06752 \tabularnewline
2 &  5 &  3.888 &  1.112 \tabularnewline
3 &  5 &  4.265 &  0.7351 \tabularnewline
4 &  5 &  3.957 &  1.043 \tabularnewline
5 &  5 &  4.87 &  0.1299 \tabularnewline
6 &  5 &  5.203 & -0.2034 \tabularnewline
7 &  5 &  4.739 &  0.2607 \tabularnewline
8 &  4 &  3.933 &  0.06678 \tabularnewline
9 &  3 &  4.085 & -1.085 \tabularnewline
10 &  5 &  4.933 &  0.06718 \tabularnewline
11 &  5 &  3.967 &  1.033 \tabularnewline
12 &  5 &  3.924 &  1.076 \tabularnewline
13 &  4 &  4.414 & -0.4143 \tabularnewline
14 &  2 &  3.124 & -1.124 \tabularnewline
15 &  5 &  4.451 &  0.5487 \tabularnewline
16 &  5 &  4.753 &  0.2473 \tabularnewline
17 &  5 &  4.551 &  0.4495 \tabularnewline
18 &  4 &  4.041 & -0.04137 \tabularnewline
19 &  4 &  4.893 & -0.8929 \tabularnewline
20 &  4 &  4.439 & -0.4389 \tabularnewline
21 &  5 &  4.689 &  0.3112 \tabularnewline
22 &  5 &  4.532 &  0.4684 \tabularnewline
23 &  5 &  4.824 &  0.1764 \tabularnewline
24 &  5 &  5.236 & -0.2362 \tabularnewline
25 &  1 &  1.978 & -0.9782 \tabularnewline
26 &  5 &  4.375 &  0.6252 \tabularnewline
27 &  4 &  4.577 & -0.5768 \tabularnewline
28 &  4 &  4.083 & -0.08254 \tabularnewline
29 &  4 &  4.25 & -0.2495 \tabularnewline
30 &  5 &  4.405 &  0.5954 \tabularnewline
31 &  4 &  4.51 & -0.51 \tabularnewline
32 &  4 &  4.018 & -0.01787 \tabularnewline
33 &  5 &  4.137 &  0.8628 \tabularnewline
34 &  5 &  5.147 & -0.147 \tabularnewline
35 &  5 &  5.088 & -0.08779 \tabularnewline
36 &  2 &  2.25 & -0.2497 \tabularnewline
37 &  3 &  3.189 & -0.1886 \tabularnewline
38 &  4 &  3.972 &  0.0283 \tabularnewline
39 &  5 &  4.643 &  0.3573 \tabularnewline
40 &  5 &  4.897 &  0.1035 \tabularnewline
41 &  4 &  4.308 & -0.3076 \tabularnewline
42 &  5 &  4.228 &  0.7724 \tabularnewline
43 &  5 &  4.976 &  0.02359 \tabularnewline
44 &  4 &  4.345 & -0.3447 \tabularnewline
45 &  5 &  4.619 &  0.3807 \tabularnewline
46 &  4 &  3.778 &  0.2223 \tabularnewline
47 &  4 &  4.176 & -0.1761 \tabularnewline
48 &  3 &  3.657 & -0.6567 \tabularnewline
49 &  4 &  3.244 &  0.7557 \tabularnewline
50 &  4 &  4.581 & -0.5809 \tabularnewline
51 &  5 &  4.255 &  0.7449 \tabularnewline
52 &  4 &  4.716 & -0.7157 \tabularnewline
53 &  4 &  4.448 & -0.4481 \tabularnewline
54 &  4 &  4.058 & -0.05786 \tabularnewline
55 &  4 &  3.334 &  0.666 \tabularnewline
56 &  4 &  4.259 & -0.2592 \tabularnewline
57 &  2 &  4.005 & -2.005 \tabularnewline
58 &  4 &  4.042 & -0.04206 \tabularnewline
59 &  4 &  3.707 &  0.2934 \tabularnewline
60 &  5 &  5.113 & -0.1127 \tabularnewline
61 &  3 &  3.48 & -0.48 \tabularnewline
62 &  3 &  3.609 & -0.6088 \tabularnewline
63 &  5 &  4.388 &  0.6122 \tabularnewline
64 &  4 &  3.628 &  0.3717 \tabularnewline
65 &  5 &  5.034 & -0.03422 \tabularnewline
66 &  4 &  4.864 & -0.8641 \tabularnewline
67 &  4 &  3.601 &  0.3988 \tabularnewline
68 &  5 &  4.413 &  0.5872 \tabularnewline
69 &  5 &  5.035 & -0.03536 \tabularnewline
70 &  5 &  3.818 &  1.182 \tabularnewline
71 &  4 &  3.775 &  0.225 \tabularnewline
72 &  5 &  4.094 &  0.9062 \tabularnewline
73 &  5 &  5.119 & -0.1188 \tabularnewline
74 &  2 &  4.337 & -2.337 \tabularnewline
75 &  5 &  4.419 &  0.5808 \tabularnewline
76 &  5 &  4.718 &  0.2825 \tabularnewline
77 &  5 &  5.341 & -0.3406 \tabularnewline
78 &  5 &  4.112 &  0.8882 \tabularnewline
79 &  4 &  4.025 & -0.02482 \tabularnewline
80 &  4 &  3.926 &  0.07388 \tabularnewline
81 &  5 &  4.982 &  0.01759 \tabularnewline
82 &  4 &  4.062 & -0.06164 \tabularnewline
83 &  5 &  4.959 &  0.04116 \tabularnewline
84 &  5 &  4.759 &  0.2406 \tabularnewline
85 &  5 &  4.793 &  0.2071 \tabularnewline
86 &  4 &  4.23 & -0.2302 \tabularnewline
87 &  5 &  5.131 & -0.1305 \tabularnewline
88 &  5 &  4.578 &  0.4219 \tabularnewline
89 &  3 &  3.607 & -0.6074 \tabularnewline
90 &  5 &  4.436 &  0.5635 \tabularnewline
91 &  5 &  5.083 & -0.08276 \tabularnewline
92 &  5 &  5.083 & -0.08322 \tabularnewline
93 &  4 &  4.83 & -0.8299 \tabularnewline
94 &  4 &  4.078 & -0.0779 \tabularnewline
95 &  4 &  4.223 & -0.2235 \tabularnewline
96 &  5 &  4.739 &  0.2613 \tabularnewline
97 &  5 &  4.683 &  0.3171 \tabularnewline
98 &  4 &  3.712 &  0.2879 \tabularnewline
99 &  3 &  4.11 & -1.11 \tabularnewline
100 &  3 &  3.416 & -0.416 \tabularnewline
101 &  4 &  4.335 & -0.3346 \tabularnewline
102 &  4 &  3.683 &  0.3175 \tabularnewline
103 &  5 &  4.527 &  0.4734 \tabularnewline
104 &  5 &  4.437 &  0.5627 \tabularnewline
105 &  4 &  4.707 & -0.7067 \tabularnewline
106 &  5 &  5.147 & -0.1469 \tabularnewline
107 &  5 &  4.178 &  0.8222 \tabularnewline
108 &  4 &  3.841 &  0.1592 \tabularnewline
109 &  4 &  3.94 &  0.06026 \tabularnewline
110 &  5 &  4.535 &  0.4654 \tabularnewline
111 &  5 &  5.25 & -0.2497 \tabularnewline
112 &  5 &  4.343 &  0.6569 \tabularnewline
113 &  5 &  4.34 &  0.6598 \tabularnewline
114 &  4 &  4.637 & -0.6366 \tabularnewline
115 &  5 &  4.157 &  0.8432 \tabularnewline
116 &  3 &  4.392 & -1.392 \tabularnewline
117 &  5 &  4.31 &  0.6904 \tabularnewline
118 &  5 &  4.669 &  0.331 \tabularnewline
119 &  4 &  4.715 & -0.7148 \tabularnewline
120 &  5 &  5.028 & -0.02796 \tabularnewline
121 &  4 &  4.234 & -0.2338 \tabularnewline
122 &  4 &  4.097 & -0.0967 \tabularnewline
123 &  4 &  4.049 & -0.0489 \tabularnewline
124 &  4 &  4.525 & -0.5249 \tabularnewline
125 &  2 &  3.021 & -1.021 \tabularnewline
126 &  4 &  3.787 &  0.213 \tabularnewline
127 &  5 &  4.563 &  0.437 \tabularnewline
128 &  5 &  5.162 & -0.1623 \tabularnewline
129 &  4 &  4.147 & -0.1474 \tabularnewline
130 &  5 &  3.84 &  1.16 \tabularnewline
131 &  5 &  4.25 &  0.7503 \tabularnewline
132 &  5 &  4.697 &  0.3028 \tabularnewline
133 &  5 &  5.18 & -0.1802 \tabularnewline
134 &  5 &  4.32 &  0.6798 \tabularnewline
135 &  5 &  4.797 &  0.203 \tabularnewline
136 &  4 &  4.055 & -0.05507 \tabularnewline
137 &  5 &  4.164 &  0.8358 \tabularnewline
138 &  3 &  3.402 & -0.4025 \tabularnewline
139 &  3 &  4.047 & -1.047 \tabularnewline
140 &  4 &  4.624 & -0.6237 \tabularnewline
141 &  4 &  4.521 & -0.5208 \tabularnewline
142 &  3 &  4.468 & -1.468 \tabularnewline
143 &  3 &  3.524 & -0.5242 \tabularnewline
144 &  5 &  4.798 &  0.2024 \tabularnewline
145 &  5 &  4.746 &  0.2545 \tabularnewline
146 &  5 &  4.031 &  0.9688 \tabularnewline
147 &  5 &  4.351 &  0.6486 \tabularnewline
148 &  5 &  4.926 &  0.07389 \tabularnewline
149 &  5 &  4.678 &  0.322 \tabularnewline
150 &  5 &  5.052 & -0.0521 \tabularnewline
151 &  5 &  4.336 &  0.6644 \tabularnewline
152 &  4 &  4.325 & -0.3254 \tabularnewline
153 &  4 &  4.318 & -0.3183 \tabularnewline
154 &  2 &  4.425 & -2.425 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 5[/C][C] 5.068[/C][C]-0.06752[/C][/ROW]
[ROW][C]2[/C][C] 5[/C][C] 3.888[/C][C] 1.112[/C][/ROW]
[ROW][C]3[/C][C] 5[/C][C] 4.265[/C][C] 0.7351[/C][/ROW]
[ROW][C]4[/C][C] 5[/C][C] 3.957[/C][C] 1.043[/C][/ROW]
[ROW][C]5[/C][C] 5[/C][C] 4.87[/C][C] 0.1299[/C][/ROW]
[ROW][C]6[/C][C] 5[/C][C] 5.203[/C][C]-0.2034[/C][/ROW]
[ROW][C]7[/C][C] 5[/C][C] 4.739[/C][C] 0.2607[/C][/ROW]
[ROW][C]8[/C][C] 4[/C][C] 3.933[/C][C] 0.06678[/C][/ROW]
[ROW][C]9[/C][C] 3[/C][C] 4.085[/C][C]-1.085[/C][/ROW]
[ROW][C]10[/C][C] 5[/C][C] 4.933[/C][C] 0.06718[/C][/ROW]
[ROW][C]11[/C][C] 5[/C][C] 3.967[/C][C] 1.033[/C][/ROW]
[ROW][C]12[/C][C] 5[/C][C] 3.924[/C][C] 1.076[/C][/ROW]
[ROW][C]13[/C][C] 4[/C][C] 4.414[/C][C]-0.4143[/C][/ROW]
[ROW][C]14[/C][C] 2[/C][C] 3.124[/C][C]-1.124[/C][/ROW]
[ROW][C]15[/C][C] 5[/C][C] 4.451[/C][C] 0.5487[/C][/ROW]
[ROW][C]16[/C][C] 5[/C][C] 4.753[/C][C] 0.2473[/C][/ROW]
[ROW][C]17[/C][C] 5[/C][C] 4.551[/C][C] 0.4495[/C][/ROW]
[ROW][C]18[/C][C] 4[/C][C] 4.041[/C][C]-0.04137[/C][/ROW]
[ROW][C]19[/C][C] 4[/C][C] 4.893[/C][C]-0.8929[/C][/ROW]
[ROW][C]20[/C][C] 4[/C][C] 4.439[/C][C]-0.4389[/C][/ROW]
[ROW][C]21[/C][C] 5[/C][C] 4.689[/C][C] 0.3112[/C][/ROW]
[ROW][C]22[/C][C] 5[/C][C] 4.532[/C][C] 0.4684[/C][/ROW]
[ROW][C]23[/C][C] 5[/C][C] 4.824[/C][C] 0.1764[/C][/ROW]
[ROW][C]24[/C][C] 5[/C][C] 5.236[/C][C]-0.2362[/C][/ROW]
[ROW][C]25[/C][C] 1[/C][C] 1.978[/C][C]-0.9782[/C][/ROW]
[ROW][C]26[/C][C] 5[/C][C] 4.375[/C][C] 0.6252[/C][/ROW]
[ROW][C]27[/C][C] 4[/C][C] 4.577[/C][C]-0.5768[/C][/ROW]
[ROW][C]28[/C][C] 4[/C][C] 4.083[/C][C]-0.08254[/C][/ROW]
[ROW][C]29[/C][C] 4[/C][C] 4.25[/C][C]-0.2495[/C][/ROW]
[ROW][C]30[/C][C] 5[/C][C] 4.405[/C][C] 0.5954[/C][/ROW]
[ROW][C]31[/C][C] 4[/C][C] 4.51[/C][C]-0.51[/C][/ROW]
[ROW][C]32[/C][C] 4[/C][C] 4.018[/C][C]-0.01787[/C][/ROW]
[ROW][C]33[/C][C] 5[/C][C] 4.137[/C][C] 0.8628[/C][/ROW]
[ROW][C]34[/C][C] 5[/C][C] 5.147[/C][C]-0.147[/C][/ROW]
[ROW][C]35[/C][C] 5[/C][C] 5.088[/C][C]-0.08779[/C][/ROW]
[ROW][C]36[/C][C] 2[/C][C] 2.25[/C][C]-0.2497[/C][/ROW]
[ROW][C]37[/C][C] 3[/C][C] 3.189[/C][C]-0.1886[/C][/ROW]
[ROW][C]38[/C][C] 4[/C][C] 3.972[/C][C] 0.0283[/C][/ROW]
[ROW][C]39[/C][C] 5[/C][C] 4.643[/C][C] 0.3573[/C][/ROW]
[ROW][C]40[/C][C] 5[/C][C] 4.897[/C][C] 0.1035[/C][/ROW]
[ROW][C]41[/C][C] 4[/C][C] 4.308[/C][C]-0.3076[/C][/ROW]
[ROW][C]42[/C][C] 5[/C][C] 4.228[/C][C] 0.7724[/C][/ROW]
[ROW][C]43[/C][C] 5[/C][C] 4.976[/C][C] 0.02359[/C][/ROW]
[ROW][C]44[/C][C] 4[/C][C] 4.345[/C][C]-0.3447[/C][/ROW]
[ROW][C]45[/C][C] 5[/C][C] 4.619[/C][C] 0.3807[/C][/ROW]
[ROW][C]46[/C][C] 4[/C][C] 3.778[/C][C] 0.2223[/C][/ROW]
[ROW][C]47[/C][C] 4[/C][C] 4.176[/C][C]-0.1761[/C][/ROW]
[ROW][C]48[/C][C] 3[/C][C] 3.657[/C][C]-0.6567[/C][/ROW]
[ROW][C]49[/C][C] 4[/C][C] 3.244[/C][C] 0.7557[/C][/ROW]
[ROW][C]50[/C][C] 4[/C][C] 4.581[/C][C]-0.5809[/C][/ROW]
[ROW][C]51[/C][C] 5[/C][C] 4.255[/C][C] 0.7449[/C][/ROW]
[ROW][C]52[/C][C] 4[/C][C] 4.716[/C][C]-0.7157[/C][/ROW]
[ROW][C]53[/C][C] 4[/C][C] 4.448[/C][C]-0.4481[/C][/ROW]
[ROW][C]54[/C][C] 4[/C][C] 4.058[/C][C]-0.05786[/C][/ROW]
[ROW][C]55[/C][C] 4[/C][C] 3.334[/C][C] 0.666[/C][/ROW]
[ROW][C]56[/C][C] 4[/C][C] 4.259[/C][C]-0.2592[/C][/ROW]
[ROW][C]57[/C][C] 2[/C][C] 4.005[/C][C]-2.005[/C][/ROW]
[ROW][C]58[/C][C] 4[/C][C] 4.042[/C][C]-0.04206[/C][/ROW]
[ROW][C]59[/C][C] 4[/C][C] 3.707[/C][C] 0.2934[/C][/ROW]
[ROW][C]60[/C][C] 5[/C][C] 5.113[/C][C]-0.1127[/C][/ROW]
[ROW][C]61[/C][C] 3[/C][C] 3.48[/C][C]-0.48[/C][/ROW]
[ROW][C]62[/C][C] 3[/C][C] 3.609[/C][C]-0.6088[/C][/ROW]
[ROW][C]63[/C][C] 5[/C][C] 4.388[/C][C] 0.6122[/C][/ROW]
[ROW][C]64[/C][C] 4[/C][C] 3.628[/C][C] 0.3717[/C][/ROW]
[ROW][C]65[/C][C] 5[/C][C] 5.034[/C][C]-0.03422[/C][/ROW]
[ROW][C]66[/C][C] 4[/C][C] 4.864[/C][C]-0.8641[/C][/ROW]
[ROW][C]67[/C][C] 4[/C][C] 3.601[/C][C] 0.3988[/C][/ROW]
[ROW][C]68[/C][C] 5[/C][C] 4.413[/C][C] 0.5872[/C][/ROW]
[ROW][C]69[/C][C] 5[/C][C] 5.035[/C][C]-0.03536[/C][/ROW]
[ROW][C]70[/C][C] 5[/C][C] 3.818[/C][C] 1.182[/C][/ROW]
[ROW][C]71[/C][C] 4[/C][C] 3.775[/C][C] 0.225[/C][/ROW]
[ROW][C]72[/C][C] 5[/C][C] 4.094[/C][C] 0.9062[/C][/ROW]
[ROW][C]73[/C][C] 5[/C][C] 5.119[/C][C]-0.1188[/C][/ROW]
[ROW][C]74[/C][C] 2[/C][C] 4.337[/C][C]-2.337[/C][/ROW]
[ROW][C]75[/C][C] 5[/C][C] 4.419[/C][C] 0.5808[/C][/ROW]
[ROW][C]76[/C][C] 5[/C][C] 4.718[/C][C] 0.2825[/C][/ROW]
[ROW][C]77[/C][C] 5[/C][C] 5.341[/C][C]-0.3406[/C][/ROW]
[ROW][C]78[/C][C] 5[/C][C] 4.112[/C][C] 0.8882[/C][/ROW]
[ROW][C]79[/C][C] 4[/C][C] 4.025[/C][C]-0.02482[/C][/ROW]
[ROW][C]80[/C][C] 4[/C][C] 3.926[/C][C] 0.07388[/C][/ROW]
[ROW][C]81[/C][C] 5[/C][C] 4.982[/C][C] 0.01759[/C][/ROW]
[ROW][C]82[/C][C] 4[/C][C] 4.062[/C][C]-0.06164[/C][/ROW]
[ROW][C]83[/C][C] 5[/C][C] 4.959[/C][C] 0.04116[/C][/ROW]
[ROW][C]84[/C][C] 5[/C][C] 4.759[/C][C] 0.2406[/C][/ROW]
[ROW][C]85[/C][C] 5[/C][C] 4.793[/C][C] 0.2071[/C][/ROW]
[ROW][C]86[/C][C] 4[/C][C] 4.23[/C][C]-0.2302[/C][/ROW]
[ROW][C]87[/C][C] 5[/C][C] 5.131[/C][C]-0.1305[/C][/ROW]
[ROW][C]88[/C][C] 5[/C][C] 4.578[/C][C] 0.4219[/C][/ROW]
[ROW][C]89[/C][C] 3[/C][C] 3.607[/C][C]-0.6074[/C][/ROW]
[ROW][C]90[/C][C] 5[/C][C] 4.436[/C][C] 0.5635[/C][/ROW]
[ROW][C]91[/C][C] 5[/C][C] 5.083[/C][C]-0.08276[/C][/ROW]
[ROW][C]92[/C][C] 5[/C][C] 5.083[/C][C]-0.08322[/C][/ROW]
[ROW][C]93[/C][C] 4[/C][C] 4.83[/C][C]-0.8299[/C][/ROW]
[ROW][C]94[/C][C] 4[/C][C] 4.078[/C][C]-0.0779[/C][/ROW]
[ROW][C]95[/C][C] 4[/C][C] 4.223[/C][C]-0.2235[/C][/ROW]
[ROW][C]96[/C][C] 5[/C][C] 4.739[/C][C] 0.2613[/C][/ROW]
[ROW][C]97[/C][C] 5[/C][C] 4.683[/C][C] 0.3171[/C][/ROW]
[ROW][C]98[/C][C] 4[/C][C] 3.712[/C][C] 0.2879[/C][/ROW]
[ROW][C]99[/C][C] 3[/C][C] 4.11[/C][C]-1.11[/C][/ROW]
[ROW][C]100[/C][C] 3[/C][C] 3.416[/C][C]-0.416[/C][/ROW]
[ROW][C]101[/C][C] 4[/C][C] 4.335[/C][C]-0.3346[/C][/ROW]
[ROW][C]102[/C][C] 4[/C][C] 3.683[/C][C] 0.3175[/C][/ROW]
[ROW][C]103[/C][C] 5[/C][C] 4.527[/C][C] 0.4734[/C][/ROW]
[ROW][C]104[/C][C] 5[/C][C] 4.437[/C][C] 0.5627[/C][/ROW]
[ROW][C]105[/C][C] 4[/C][C] 4.707[/C][C]-0.7067[/C][/ROW]
[ROW][C]106[/C][C] 5[/C][C] 5.147[/C][C]-0.1469[/C][/ROW]
[ROW][C]107[/C][C] 5[/C][C] 4.178[/C][C] 0.8222[/C][/ROW]
[ROW][C]108[/C][C] 4[/C][C] 3.841[/C][C] 0.1592[/C][/ROW]
[ROW][C]109[/C][C] 4[/C][C] 3.94[/C][C] 0.06026[/C][/ROW]
[ROW][C]110[/C][C] 5[/C][C] 4.535[/C][C] 0.4654[/C][/ROW]
[ROW][C]111[/C][C] 5[/C][C] 5.25[/C][C]-0.2497[/C][/ROW]
[ROW][C]112[/C][C] 5[/C][C] 4.343[/C][C] 0.6569[/C][/ROW]
[ROW][C]113[/C][C] 5[/C][C] 4.34[/C][C] 0.6598[/C][/ROW]
[ROW][C]114[/C][C] 4[/C][C] 4.637[/C][C]-0.6366[/C][/ROW]
[ROW][C]115[/C][C] 5[/C][C] 4.157[/C][C] 0.8432[/C][/ROW]
[ROW][C]116[/C][C] 3[/C][C] 4.392[/C][C]-1.392[/C][/ROW]
[ROW][C]117[/C][C] 5[/C][C] 4.31[/C][C] 0.6904[/C][/ROW]
[ROW][C]118[/C][C] 5[/C][C] 4.669[/C][C] 0.331[/C][/ROW]
[ROW][C]119[/C][C] 4[/C][C] 4.715[/C][C]-0.7148[/C][/ROW]
[ROW][C]120[/C][C] 5[/C][C] 5.028[/C][C]-0.02796[/C][/ROW]
[ROW][C]121[/C][C] 4[/C][C] 4.234[/C][C]-0.2338[/C][/ROW]
[ROW][C]122[/C][C] 4[/C][C] 4.097[/C][C]-0.0967[/C][/ROW]
[ROW][C]123[/C][C] 4[/C][C] 4.049[/C][C]-0.0489[/C][/ROW]
[ROW][C]124[/C][C] 4[/C][C] 4.525[/C][C]-0.5249[/C][/ROW]
[ROW][C]125[/C][C] 2[/C][C] 3.021[/C][C]-1.021[/C][/ROW]
[ROW][C]126[/C][C] 4[/C][C] 3.787[/C][C] 0.213[/C][/ROW]
[ROW][C]127[/C][C] 5[/C][C] 4.563[/C][C] 0.437[/C][/ROW]
[ROW][C]128[/C][C] 5[/C][C] 5.162[/C][C]-0.1623[/C][/ROW]
[ROW][C]129[/C][C] 4[/C][C] 4.147[/C][C]-0.1474[/C][/ROW]
[ROW][C]130[/C][C] 5[/C][C] 3.84[/C][C] 1.16[/C][/ROW]
[ROW][C]131[/C][C] 5[/C][C] 4.25[/C][C] 0.7503[/C][/ROW]
[ROW][C]132[/C][C] 5[/C][C] 4.697[/C][C] 0.3028[/C][/ROW]
[ROW][C]133[/C][C] 5[/C][C] 5.18[/C][C]-0.1802[/C][/ROW]
[ROW][C]134[/C][C] 5[/C][C] 4.32[/C][C] 0.6798[/C][/ROW]
[ROW][C]135[/C][C] 5[/C][C] 4.797[/C][C] 0.203[/C][/ROW]
[ROW][C]136[/C][C] 4[/C][C] 4.055[/C][C]-0.05507[/C][/ROW]
[ROW][C]137[/C][C] 5[/C][C] 4.164[/C][C] 0.8358[/C][/ROW]
[ROW][C]138[/C][C] 3[/C][C] 3.402[/C][C]-0.4025[/C][/ROW]
[ROW][C]139[/C][C] 3[/C][C] 4.047[/C][C]-1.047[/C][/ROW]
[ROW][C]140[/C][C] 4[/C][C] 4.624[/C][C]-0.6237[/C][/ROW]
[ROW][C]141[/C][C] 4[/C][C] 4.521[/C][C]-0.5208[/C][/ROW]
[ROW][C]142[/C][C] 3[/C][C] 4.468[/C][C]-1.468[/C][/ROW]
[ROW][C]143[/C][C] 3[/C][C] 3.524[/C][C]-0.5242[/C][/ROW]
[ROW][C]144[/C][C] 5[/C][C] 4.798[/C][C] 0.2024[/C][/ROW]
[ROW][C]145[/C][C] 5[/C][C] 4.746[/C][C] 0.2545[/C][/ROW]
[ROW][C]146[/C][C] 5[/C][C] 4.031[/C][C] 0.9688[/C][/ROW]
[ROW][C]147[/C][C] 5[/C][C] 4.351[/C][C] 0.6486[/C][/ROW]
[ROW][C]148[/C][C] 5[/C][C] 4.926[/C][C] 0.07389[/C][/ROW]
[ROW][C]149[/C][C] 5[/C][C] 4.678[/C][C] 0.322[/C][/ROW]
[ROW][C]150[/C][C] 5[/C][C] 5.052[/C][C]-0.0521[/C][/ROW]
[ROW][C]151[/C][C] 5[/C][C] 4.336[/C][C] 0.6644[/C][/ROW]
[ROW][C]152[/C][C] 4[/C][C] 4.325[/C][C]-0.3254[/C][/ROW]
[ROW][C]153[/C][C] 4[/C][C] 4.318[/C][C]-0.3183[/C][/ROW]
[ROW][C]154[/C][C] 2[/C][C] 4.425[/C][C]-2.425[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 5 5.068-0.06752
2 5 3.888 1.112
3 5 4.265 0.7351
4 5 3.957 1.043
5 5 4.87 0.1299
6 5 5.203-0.2034
7 5 4.739 0.2607
8 4 3.933 0.06678
9 3 4.085-1.085
10 5 4.933 0.06718
11 5 3.967 1.033
12 5 3.924 1.076
13 4 4.414-0.4143
14 2 3.124-1.124
15 5 4.451 0.5487
16 5 4.753 0.2473
17 5 4.551 0.4495
18 4 4.041-0.04137
19 4 4.893-0.8929
20 4 4.439-0.4389
21 5 4.689 0.3112
22 5 4.532 0.4684
23 5 4.824 0.1764
24 5 5.236-0.2362
25 1 1.978-0.9782
26 5 4.375 0.6252
27 4 4.577-0.5768
28 4 4.083-0.08254
29 4 4.25-0.2495
30 5 4.405 0.5954
31 4 4.51-0.51
32 4 4.018-0.01787
33 5 4.137 0.8628
34 5 5.147-0.147
35 5 5.088-0.08779
36 2 2.25-0.2497
37 3 3.189-0.1886
38 4 3.972 0.0283
39 5 4.643 0.3573
40 5 4.897 0.1035
41 4 4.308-0.3076
42 5 4.228 0.7724
43 5 4.976 0.02359
44 4 4.345-0.3447
45 5 4.619 0.3807
46 4 3.778 0.2223
47 4 4.176-0.1761
48 3 3.657-0.6567
49 4 3.244 0.7557
50 4 4.581-0.5809
51 5 4.255 0.7449
52 4 4.716-0.7157
53 4 4.448-0.4481
54 4 4.058-0.05786
55 4 3.334 0.666
56 4 4.259-0.2592
57 2 4.005-2.005
58 4 4.042-0.04206
59 4 3.707 0.2934
60 5 5.113-0.1127
61 3 3.48-0.48
62 3 3.609-0.6088
63 5 4.388 0.6122
64 4 3.628 0.3717
65 5 5.034-0.03422
66 4 4.864-0.8641
67 4 3.601 0.3988
68 5 4.413 0.5872
69 5 5.035-0.03536
70 5 3.818 1.182
71 4 3.775 0.225
72 5 4.094 0.9062
73 5 5.119-0.1188
74 2 4.337-2.337
75 5 4.419 0.5808
76 5 4.718 0.2825
77 5 5.341-0.3406
78 5 4.112 0.8882
79 4 4.025-0.02482
80 4 3.926 0.07388
81 5 4.982 0.01759
82 4 4.062-0.06164
83 5 4.959 0.04116
84 5 4.759 0.2406
85 5 4.793 0.2071
86 4 4.23-0.2302
87 5 5.131-0.1305
88 5 4.578 0.4219
89 3 3.607-0.6074
90 5 4.436 0.5635
91 5 5.083-0.08276
92 5 5.083-0.08322
93 4 4.83-0.8299
94 4 4.078-0.0779
95 4 4.223-0.2235
96 5 4.739 0.2613
97 5 4.683 0.3171
98 4 3.712 0.2879
99 3 4.11-1.11
100 3 3.416-0.416
101 4 4.335-0.3346
102 4 3.683 0.3175
103 5 4.527 0.4734
104 5 4.437 0.5627
105 4 4.707-0.7067
106 5 5.147-0.1469
107 5 4.178 0.8222
108 4 3.841 0.1592
109 4 3.94 0.06026
110 5 4.535 0.4654
111 5 5.25-0.2497
112 5 4.343 0.6569
113 5 4.34 0.6598
114 4 4.637-0.6366
115 5 4.157 0.8432
116 3 4.392-1.392
117 5 4.31 0.6904
118 5 4.669 0.331
119 4 4.715-0.7148
120 5 5.028-0.02796
121 4 4.234-0.2338
122 4 4.097-0.0967
123 4 4.049-0.0489
124 4 4.525-0.5249
125 2 3.021-1.021
126 4 3.787 0.213
127 5 4.563 0.437
128 5 5.162-0.1623
129 4 4.147-0.1474
130 5 3.84 1.16
131 5 4.25 0.7503
132 5 4.697 0.3028
133 5 5.18-0.1802
134 5 4.32 0.6798
135 5 4.797 0.203
136 4 4.055-0.05507
137 5 4.164 0.8358
138 3 3.402-0.4025
139 3 4.047-1.047
140 4 4.624-0.6237
141 4 4.521-0.5208
142 3 4.468-1.468
143 3 3.524-0.5242
144 5 4.798 0.2024
145 5 4.746 0.2545
146 5 4.031 0.9688
147 5 4.351 0.6486
148 5 4.926 0.07389
149 5 4.678 0.322
150 5 5.052-0.0521
151 5 4.336 0.6644
152 4 4.325-0.3254
153 4 4.318-0.3183
154 2 4.425-2.425







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
13 0.7125 0.5749 0.2875
14 0.7812 0.4376 0.2188
15 0.8125 0.375 0.1875
16 0.8587 0.2826 0.1413
17 0.8174 0.3651 0.1826
18 0.7669 0.4661 0.2331
19 0.7035 0.5931 0.2965
20 0.657 0.6859 0.343
21 0.5718 0.8563 0.4282
22 0.489 0.9781 0.511
23 0.4105 0.821 0.5895
24 0.3419 0.6838 0.6581
25 0.3829 0.7658 0.6171
26 0.3688 0.7376 0.6312
27 0.3996 0.7992 0.6004
28 0.3914 0.7829 0.6086
29 0.3698 0.7396 0.6302
30 0.5978 0.8043 0.4022
31 0.5534 0.8932 0.4466
32 0.4915 0.983 0.5085
33 0.5825 0.835 0.4175
34 0.5343 0.9314 0.4657
35 0.482 0.964 0.518
36 0.4224 0.8449 0.5776
37 0.3637 0.7273 0.6363
38 0.3112 0.6223 0.6888
39 0.2766 0.5532 0.7234
40 0.2304 0.4607 0.7696
41 0.1934 0.3868 0.8066
42 0.1991 0.3983 0.8009
43 0.1633 0.3266 0.8367
44 0.1453 0.2906 0.8547
45 0.1186 0.2372 0.8814
46 0.1048 0.2097 0.8952
47 0.08346 0.1669 0.9165
48 0.08479 0.1696 0.9152
49 0.1112 0.2225 0.8888
50 0.1261 0.2522 0.8739
51 0.1263 0.2527 0.8737
52 0.1487 0.2974 0.8513
53 0.1352 0.2704 0.8648
54 0.1095 0.2191 0.8905
55 0.1094 0.2188 0.8906
56 0.09228 0.1846 0.9077
57 0.3893 0.7787 0.6107
58 0.3408 0.6817 0.6592
59 0.3072 0.6144 0.6928
60 0.2751 0.5502 0.7249
61 0.257 0.5141 0.743
62 0.2452 0.4904 0.7548
63 0.2665 0.533 0.7335
64 0.2382 0.4764 0.7618
65 0.2018 0.4035 0.7982
66 0.2358 0.4716 0.7642
67 0.2161 0.4322 0.7839
68 0.2038 0.4076 0.7962
69 0.1704 0.3408 0.8296
70 0.2476 0.4951 0.7524
71 0.2154 0.4307 0.7846
72 0.2512 0.5024 0.7488
73 0.2142 0.4284 0.7858
74 0.7761 0.4478 0.2239
75 0.79 0.42 0.21
76 0.7618 0.4764 0.2382
77 0.7411 0.5178 0.2589
78 0.7705 0.459 0.2295
79 0.7531 0.4938 0.2469
80 0.713 0.574 0.287
81 0.6728 0.6545 0.3272
82 0.6282 0.7436 0.3718
83 0.5812 0.8375 0.4188
84 0.5378 0.9243 0.4622
85 0.4987 0.9974 0.5013
86 0.4575 0.9151 0.5425
87 0.4107 0.8214 0.5893
88 0.3863 0.7725 0.6137
89 0.3729 0.7459 0.6271
90 0.3871 0.7743 0.6129
91 0.3426 0.6852 0.6574
92 0.2994 0.5987 0.7006
93 0.3173 0.6346 0.6827
94 0.2764 0.5528 0.7236
95 0.2412 0.4823 0.7588
96 0.2075 0.415 0.7925
97 0.1784 0.3568 0.8216
98 0.1566 0.3132 0.8434
99 0.2281 0.4562 0.7719
100 0.2073 0.4145 0.7927
101 0.1795 0.359 0.8205
102 0.1656 0.3311 0.8344
103 0.1497 0.2993 0.8503
104 0.1417 0.2835 0.8583
105 0.1619 0.3238 0.8381
106 0.1332 0.2664 0.8668
107 0.1451 0.2902 0.8549
108 0.1214 0.2429 0.8786
109 0.1014 0.2028 0.8986
110 0.09205 0.1841 0.9079
111 0.07359 0.1472 0.9264
112 0.08675 0.1735 0.9133
113 0.09825 0.1965 0.9018
114 0.09298 0.186 0.907
115 0.1356 0.2711 0.8644
116 0.2068 0.4136 0.7932
117 0.3135 0.627 0.6865
118 0.2704 0.5408 0.7296
119 0.2591 0.5181 0.7409
120 0.2155 0.431 0.7845
121 0.228 0.456 0.772
122 0.1969 0.3938 0.8031
123 0.1663 0.3327 0.8337
124 0.149 0.298 0.851
125 0.1406 0.2812 0.8594
126 0.1574 0.3147 0.8426
127 0.1558 0.3115 0.8442
128 0.1217 0.2435 0.8783
129 0.1034 0.2069 0.8966
130 0.09528 0.1906 0.9047
131 0.1029 0.2058 0.8971
132 0.07352 0.147 0.9265
133 0.04961 0.09923 0.9504
134 0.03933 0.07865 0.9607
135 0.02413 0.04826 0.9759
136 0.01463 0.02925 0.9854
137 0.05726 0.1145 0.9427
138 0.03904 0.07809 0.961
139 0.02986 0.05972 0.9701
140 0.03344 0.06689 0.9666
141 0.0153 0.0306 0.9847

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
13 &  0.7125 &  0.5749 &  0.2875 \tabularnewline
14 &  0.7812 &  0.4376 &  0.2188 \tabularnewline
15 &  0.8125 &  0.375 &  0.1875 \tabularnewline
16 &  0.8587 &  0.2826 &  0.1413 \tabularnewline
17 &  0.8174 &  0.3651 &  0.1826 \tabularnewline
18 &  0.7669 &  0.4661 &  0.2331 \tabularnewline
19 &  0.7035 &  0.5931 &  0.2965 \tabularnewline
20 &  0.657 &  0.6859 &  0.343 \tabularnewline
21 &  0.5718 &  0.8563 &  0.4282 \tabularnewline
22 &  0.489 &  0.9781 &  0.511 \tabularnewline
23 &  0.4105 &  0.821 &  0.5895 \tabularnewline
24 &  0.3419 &  0.6838 &  0.6581 \tabularnewline
25 &  0.3829 &  0.7658 &  0.6171 \tabularnewline
26 &  0.3688 &  0.7376 &  0.6312 \tabularnewline
27 &  0.3996 &  0.7992 &  0.6004 \tabularnewline
28 &  0.3914 &  0.7829 &  0.6086 \tabularnewline
29 &  0.3698 &  0.7396 &  0.6302 \tabularnewline
30 &  0.5978 &  0.8043 &  0.4022 \tabularnewline
31 &  0.5534 &  0.8932 &  0.4466 \tabularnewline
32 &  0.4915 &  0.983 &  0.5085 \tabularnewline
33 &  0.5825 &  0.835 &  0.4175 \tabularnewline
34 &  0.5343 &  0.9314 &  0.4657 \tabularnewline
35 &  0.482 &  0.964 &  0.518 \tabularnewline
36 &  0.4224 &  0.8449 &  0.5776 \tabularnewline
37 &  0.3637 &  0.7273 &  0.6363 \tabularnewline
38 &  0.3112 &  0.6223 &  0.6888 \tabularnewline
39 &  0.2766 &  0.5532 &  0.7234 \tabularnewline
40 &  0.2304 &  0.4607 &  0.7696 \tabularnewline
41 &  0.1934 &  0.3868 &  0.8066 \tabularnewline
42 &  0.1991 &  0.3983 &  0.8009 \tabularnewline
43 &  0.1633 &  0.3266 &  0.8367 \tabularnewline
44 &  0.1453 &  0.2906 &  0.8547 \tabularnewline
45 &  0.1186 &  0.2372 &  0.8814 \tabularnewline
46 &  0.1048 &  0.2097 &  0.8952 \tabularnewline
47 &  0.08346 &  0.1669 &  0.9165 \tabularnewline
48 &  0.08479 &  0.1696 &  0.9152 \tabularnewline
49 &  0.1112 &  0.2225 &  0.8888 \tabularnewline
50 &  0.1261 &  0.2522 &  0.8739 \tabularnewline
51 &  0.1263 &  0.2527 &  0.8737 \tabularnewline
52 &  0.1487 &  0.2974 &  0.8513 \tabularnewline
53 &  0.1352 &  0.2704 &  0.8648 \tabularnewline
54 &  0.1095 &  0.2191 &  0.8905 \tabularnewline
55 &  0.1094 &  0.2188 &  0.8906 \tabularnewline
56 &  0.09228 &  0.1846 &  0.9077 \tabularnewline
57 &  0.3893 &  0.7787 &  0.6107 \tabularnewline
58 &  0.3408 &  0.6817 &  0.6592 \tabularnewline
59 &  0.3072 &  0.6144 &  0.6928 \tabularnewline
60 &  0.2751 &  0.5502 &  0.7249 \tabularnewline
61 &  0.257 &  0.5141 &  0.743 \tabularnewline
62 &  0.2452 &  0.4904 &  0.7548 \tabularnewline
63 &  0.2665 &  0.533 &  0.7335 \tabularnewline
64 &  0.2382 &  0.4764 &  0.7618 \tabularnewline
65 &  0.2018 &  0.4035 &  0.7982 \tabularnewline
66 &  0.2358 &  0.4716 &  0.7642 \tabularnewline
67 &  0.2161 &  0.4322 &  0.7839 \tabularnewline
68 &  0.2038 &  0.4076 &  0.7962 \tabularnewline
69 &  0.1704 &  0.3408 &  0.8296 \tabularnewline
70 &  0.2476 &  0.4951 &  0.7524 \tabularnewline
71 &  0.2154 &  0.4307 &  0.7846 \tabularnewline
72 &  0.2512 &  0.5024 &  0.7488 \tabularnewline
73 &  0.2142 &  0.4284 &  0.7858 \tabularnewline
74 &  0.7761 &  0.4478 &  0.2239 \tabularnewline
75 &  0.79 &  0.42 &  0.21 \tabularnewline
76 &  0.7618 &  0.4764 &  0.2382 \tabularnewline
77 &  0.7411 &  0.5178 &  0.2589 \tabularnewline
78 &  0.7705 &  0.459 &  0.2295 \tabularnewline
79 &  0.7531 &  0.4938 &  0.2469 \tabularnewline
80 &  0.713 &  0.574 &  0.287 \tabularnewline
81 &  0.6728 &  0.6545 &  0.3272 \tabularnewline
82 &  0.6282 &  0.7436 &  0.3718 \tabularnewline
83 &  0.5812 &  0.8375 &  0.4188 \tabularnewline
84 &  0.5378 &  0.9243 &  0.4622 \tabularnewline
85 &  0.4987 &  0.9974 &  0.5013 \tabularnewline
86 &  0.4575 &  0.9151 &  0.5425 \tabularnewline
87 &  0.4107 &  0.8214 &  0.5893 \tabularnewline
88 &  0.3863 &  0.7725 &  0.6137 \tabularnewline
89 &  0.3729 &  0.7459 &  0.6271 \tabularnewline
90 &  0.3871 &  0.7743 &  0.6129 \tabularnewline
91 &  0.3426 &  0.6852 &  0.6574 \tabularnewline
92 &  0.2994 &  0.5987 &  0.7006 \tabularnewline
93 &  0.3173 &  0.6346 &  0.6827 \tabularnewline
94 &  0.2764 &  0.5528 &  0.7236 \tabularnewline
95 &  0.2412 &  0.4823 &  0.7588 \tabularnewline
96 &  0.2075 &  0.415 &  0.7925 \tabularnewline
97 &  0.1784 &  0.3568 &  0.8216 \tabularnewline
98 &  0.1566 &  0.3132 &  0.8434 \tabularnewline
99 &  0.2281 &  0.4562 &  0.7719 \tabularnewline
100 &  0.2073 &  0.4145 &  0.7927 \tabularnewline
101 &  0.1795 &  0.359 &  0.8205 \tabularnewline
102 &  0.1656 &  0.3311 &  0.8344 \tabularnewline
103 &  0.1497 &  0.2993 &  0.8503 \tabularnewline
104 &  0.1417 &  0.2835 &  0.8583 \tabularnewline
105 &  0.1619 &  0.3238 &  0.8381 \tabularnewline
106 &  0.1332 &  0.2664 &  0.8668 \tabularnewline
107 &  0.1451 &  0.2902 &  0.8549 \tabularnewline
108 &  0.1214 &  0.2429 &  0.8786 \tabularnewline
109 &  0.1014 &  0.2028 &  0.8986 \tabularnewline
110 &  0.09205 &  0.1841 &  0.9079 \tabularnewline
111 &  0.07359 &  0.1472 &  0.9264 \tabularnewline
112 &  0.08675 &  0.1735 &  0.9133 \tabularnewline
113 &  0.09825 &  0.1965 &  0.9018 \tabularnewline
114 &  0.09298 &  0.186 &  0.907 \tabularnewline
115 &  0.1356 &  0.2711 &  0.8644 \tabularnewline
116 &  0.2068 &  0.4136 &  0.7932 \tabularnewline
117 &  0.3135 &  0.627 &  0.6865 \tabularnewline
118 &  0.2704 &  0.5408 &  0.7296 \tabularnewline
119 &  0.2591 &  0.5181 &  0.7409 \tabularnewline
120 &  0.2155 &  0.431 &  0.7845 \tabularnewline
121 &  0.228 &  0.456 &  0.772 \tabularnewline
122 &  0.1969 &  0.3938 &  0.8031 \tabularnewline
123 &  0.1663 &  0.3327 &  0.8337 \tabularnewline
124 &  0.149 &  0.298 &  0.851 \tabularnewline
125 &  0.1406 &  0.2812 &  0.8594 \tabularnewline
126 &  0.1574 &  0.3147 &  0.8426 \tabularnewline
127 &  0.1558 &  0.3115 &  0.8442 \tabularnewline
128 &  0.1217 &  0.2435 &  0.8783 \tabularnewline
129 &  0.1034 &  0.2069 &  0.8966 \tabularnewline
130 &  0.09528 &  0.1906 &  0.9047 \tabularnewline
131 &  0.1029 &  0.2058 &  0.8971 \tabularnewline
132 &  0.07352 &  0.147 &  0.9265 \tabularnewline
133 &  0.04961 &  0.09923 &  0.9504 \tabularnewline
134 &  0.03933 &  0.07865 &  0.9607 \tabularnewline
135 &  0.02413 &  0.04826 &  0.9759 \tabularnewline
136 &  0.01463 &  0.02925 &  0.9854 \tabularnewline
137 &  0.05726 &  0.1145 &  0.9427 \tabularnewline
138 &  0.03904 &  0.07809 &  0.961 \tabularnewline
139 &  0.02986 &  0.05972 &  0.9701 \tabularnewline
140 &  0.03344 &  0.06689 &  0.9666 \tabularnewline
141 &  0.0153 &  0.0306 &  0.9847 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]13[/C][C] 0.7125[/C][C] 0.5749[/C][C] 0.2875[/C][/ROW]
[ROW][C]14[/C][C] 0.7812[/C][C] 0.4376[/C][C] 0.2188[/C][/ROW]
[ROW][C]15[/C][C] 0.8125[/C][C] 0.375[/C][C] 0.1875[/C][/ROW]
[ROW][C]16[/C][C] 0.8587[/C][C] 0.2826[/C][C] 0.1413[/C][/ROW]
[ROW][C]17[/C][C] 0.8174[/C][C] 0.3651[/C][C] 0.1826[/C][/ROW]
[ROW][C]18[/C][C] 0.7669[/C][C] 0.4661[/C][C] 0.2331[/C][/ROW]
[ROW][C]19[/C][C] 0.7035[/C][C] 0.5931[/C][C] 0.2965[/C][/ROW]
[ROW][C]20[/C][C] 0.657[/C][C] 0.6859[/C][C] 0.343[/C][/ROW]
[ROW][C]21[/C][C] 0.5718[/C][C] 0.8563[/C][C] 0.4282[/C][/ROW]
[ROW][C]22[/C][C] 0.489[/C][C] 0.9781[/C][C] 0.511[/C][/ROW]
[ROW][C]23[/C][C] 0.4105[/C][C] 0.821[/C][C] 0.5895[/C][/ROW]
[ROW][C]24[/C][C] 0.3419[/C][C] 0.6838[/C][C] 0.6581[/C][/ROW]
[ROW][C]25[/C][C] 0.3829[/C][C] 0.7658[/C][C] 0.6171[/C][/ROW]
[ROW][C]26[/C][C] 0.3688[/C][C] 0.7376[/C][C] 0.6312[/C][/ROW]
[ROW][C]27[/C][C] 0.3996[/C][C] 0.7992[/C][C] 0.6004[/C][/ROW]
[ROW][C]28[/C][C] 0.3914[/C][C] 0.7829[/C][C] 0.6086[/C][/ROW]
[ROW][C]29[/C][C] 0.3698[/C][C] 0.7396[/C][C] 0.6302[/C][/ROW]
[ROW][C]30[/C][C] 0.5978[/C][C] 0.8043[/C][C] 0.4022[/C][/ROW]
[ROW][C]31[/C][C] 0.5534[/C][C] 0.8932[/C][C] 0.4466[/C][/ROW]
[ROW][C]32[/C][C] 0.4915[/C][C] 0.983[/C][C] 0.5085[/C][/ROW]
[ROW][C]33[/C][C] 0.5825[/C][C] 0.835[/C][C] 0.4175[/C][/ROW]
[ROW][C]34[/C][C] 0.5343[/C][C] 0.9314[/C][C] 0.4657[/C][/ROW]
[ROW][C]35[/C][C] 0.482[/C][C] 0.964[/C][C] 0.518[/C][/ROW]
[ROW][C]36[/C][C] 0.4224[/C][C] 0.8449[/C][C] 0.5776[/C][/ROW]
[ROW][C]37[/C][C] 0.3637[/C][C] 0.7273[/C][C] 0.6363[/C][/ROW]
[ROW][C]38[/C][C] 0.3112[/C][C] 0.6223[/C][C] 0.6888[/C][/ROW]
[ROW][C]39[/C][C] 0.2766[/C][C] 0.5532[/C][C] 0.7234[/C][/ROW]
[ROW][C]40[/C][C] 0.2304[/C][C] 0.4607[/C][C] 0.7696[/C][/ROW]
[ROW][C]41[/C][C] 0.1934[/C][C] 0.3868[/C][C] 0.8066[/C][/ROW]
[ROW][C]42[/C][C] 0.1991[/C][C] 0.3983[/C][C] 0.8009[/C][/ROW]
[ROW][C]43[/C][C] 0.1633[/C][C] 0.3266[/C][C] 0.8367[/C][/ROW]
[ROW][C]44[/C][C] 0.1453[/C][C] 0.2906[/C][C] 0.8547[/C][/ROW]
[ROW][C]45[/C][C] 0.1186[/C][C] 0.2372[/C][C] 0.8814[/C][/ROW]
[ROW][C]46[/C][C] 0.1048[/C][C] 0.2097[/C][C] 0.8952[/C][/ROW]
[ROW][C]47[/C][C] 0.08346[/C][C] 0.1669[/C][C] 0.9165[/C][/ROW]
[ROW][C]48[/C][C] 0.08479[/C][C] 0.1696[/C][C] 0.9152[/C][/ROW]
[ROW][C]49[/C][C] 0.1112[/C][C] 0.2225[/C][C] 0.8888[/C][/ROW]
[ROW][C]50[/C][C] 0.1261[/C][C] 0.2522[/C][C] 0.8739[/C][/ROW]
[ROW][C]51[/C][C] 0.1263[/C][C] 0.2527[/C][C] 0.8737[/C][/ROW]
[ROW][C]52[/C][C] 0.1487[/C][C] 0.2974[/C][C] 0.8513[/C][/ROW]
[ROW][C]53[/C][C] 0.1352[/C][C] 0.2704[/C][C] 0.8648[/C][/ROW]
[ROW][C]54[/C][C] 0.1095[/C][C] 0.2191[/C][C] 0.8905[/C][/ROW]
[ROW][C]55[/C][C] 0.1094[/C][C] 0.2188[/C][C] 0.8906[/C][/ROW]
[ROW][C]56[/C][C] 0.09228[/C][C] 0.1846[/C][C] 0.9077[/C][/ROW]
[ROW][C]57[/C][C] 0.3893[/C][C] 0.7787[/C][C] 0.6107[/C][/ROW]
[ROW][C]58[/C][C] 0.3408[/C][C] 0.6817[/C][C] 0.6592[/C][/ROW]
[ROW][C]59[/C][C] 0.3072[/C][C] 0.6144[/C][C] 0.6928[/C][/ROW]
[ROW][C]60[/C][C] 0.2751[/C][C] 0.5502[/C][C] 0.7249[/C][/ROW]
[ROW][C]61[/C][C] 0.257[/C][C] 0.5141[/C][C] 0.743[/C][/ROW]
[ROW][C]62[/C][C] 0.2452[/C][C] 0.4904[/C][C] 0.7548[/C][/ROW]
[ROW][C]63[/C][C] 0.2665[/C][C] 0.533[/C][C] 0.7335[/C][/ROW]
[ROW][C]64[/C][C] 0.2382[/C][C] 0.4764[/C][C] 0.7618[/C][/ROW]
[ROW][C]65[/C][C] 0.2018[/C][C] 0.4035[/C][C] 0.7982[/C][/ROW]
[ROW][C]66[/C][C] 0.2358[/C][C] 0.4716[/C][C] 0.7642[/C][/ROW]
[ROW][C]67[/C][C] 0.2161[/C][C] 0.4322[/C][C] 0.7839[/C][/ROW]
[ROW][C]68[/C][C] 0.2038[/C][C] 0.4076[/C][C] 0.7962[/C][/ROW]
[ROW][C]69[/C][C] 0.1704[/C][C] 0.3408[/C][C] 0.8296[/C][/ROW]
[ROW][C]70[/C][C] 0.2476[/C][C] 0.4951[/C][C] 0.7524[/C][/ROW]
[ROW][C]71[/C][C] 0.2154[/C][C] 0.4307[/C][C] 0.7846[/C][/ROW]
[ROW][C]72[/C][C] 0.2512[/C][C] 0.5024[/C][C] 0.7488[/C][/ROW]
[ROW][C]73[/C][C] 0.2142[/C][C] 0.4284[/C][C] 0.7858[/C][/ROW]
[ROW][C]74[/C][C] 0.7761[/C][C] 0.4478[/C][C] 0.2239[/C][/ROW]
[ROW][C]75[/C][C] 0.79[/C][C] 0.42[/C][C] 0.21[/C][/ROW]
[ROW][C]76[/C][C] 0.7618[/C][C] 0.4764[/C][C] 0.2382[/C][/ROW]
[ROW][C]77[/C][C] 0.7411[/C][C] 0.5178[/C][C] 0.2589[/C][/ROW]
[ROW][C]78[/C][C] 0.7705[/C][C] 0.459[/C][C] 0.2295[/C][/ROW]
[ROW][C]79[/C][C] 0.7531[/C][C] 0.4938[/C][C] 0.2469[/C][/ROW]
[ROW][C]80[/C][C] 0.713[/C][C] 0.574[/C][C] 0.287[/C][/ROW]
[ROW][C]81[/C][C] 0.6728[/C][C] 0.6545[/C][C] 0.3272[/C][/ROW]
[ROW][C]82[/C][C] 0.6282[/C][C] 0.7436[/C][C] 0.3718[/C][/ROW]
[ROW][C]83[/C][C] 0.5812[/C][C] 0.8375[/C][C] 0.4188[/C][/ROW]
[ROW][C]84[/C][C] 0.5378[/C][C] 0.9243[/C][C] 0.4622[/C][/ROW]
[ROW][C]85[/C][C] 0.4987[/C][C] 0.9974[/C][C] 0.5013[/C][/ROW]
[ROW][C]86[/C][C] 0.4575[/C][C] 0.9151[/C][C] 0.5425[/C][/ROW]
[ROW][C]87[/C][C] 0.4107[/C][C] 0.8214[/C][C] 0.5893[/C][/ROW]
[ROW][C]88[/C][C] 0.3863[/C][C] 0.7725[/C][C] 0.6137[/C][/ROW]
[ROW][C]89[/C][C] 0.3729[/C][C] 0.7459[/C][C] 0.6271[/C][/ROW]
[ROW][C]90[/C][C] 0.3871[/C][C] 0.7743[/C][C] 0.6129[/C][/ROW]
[ROW][C]91[/C][C] 0.3426[/C][C] 0.6852[/C][C] 0.6574[/C][/ROW]
[ROW][C]92[/C][C] 0.2994[/C][C] 0.5987[/C][C] 0.7006[/C][/ROW]
[ROW][C]93[/C][C] 0.3173[/C][C] 0.6346[/C][C] 0.6827[/C][/ROW]
[ROW][C]94[/C][C] 0.2764[/C][C] 0.5528[/C][C] 0.7236[/C][/ROW]
[ROW][C]95[/C][C] 0.2412[/C][C] 0.4823[/C][C] 0.7588[/C][/ROW]
[ROW][C]96[/C][C] 0.2075[/C][C] 0.415[/C][C] 0.7925[/C][/ROW]
[ROW][C]97[/C][C] 0.1784[/C][C] 0.3568[/C][C] 0.8216[/C][/ROW]
[ROW][C]98[/C][C] 0.1566[/C][C] 0.3132[/C][C] 0.8434[/C][/ROW]
[ROW][C]99[/C][C] 0.2281[/C][C] 0.4562[/C][C] 0.7719[/C][/ROW]
[ROW][C]100[/C][C] 0.2073[/C][C] 0.4145[/C][C] 0.7927[/C][/ROW]
[ROW][C]101[/C][C] 0.1795[/C][C] 0.359[/C][C] 0.8205[/C][/ROW]
[ROW][C]102[/C][C] 0.1656[/C][C] 0.3311[/C][C] 0.8344[/C][/ROW]
[ROW][C]103[/C][C] 0.1497[/C][C] 0.2993[/C][C] 0.8503[/C][/ROW]
[ROW][C]104[/C][C] 0.1417[/C][C] 0.2835[/C][C] 0.8583[/C][/ROW]
[ROW][C]105[/C][C] 0.1619[/C][C] 0.3238[/C][C] 0.8381[/C][/ROW]
[ROW][C]106[/C][C] 0.1332[/C][C] 0.2664[/C][C] 0.8668[/C][/ROW]
[ROW][C]107[/C][C] 0.1451[/C][C] 0.2902[/C][C] 0.8549[/C][/ROW]
[ROW][C]108[/C][C] 0.1214[/C][C] 0.2429[/C][C] 0.8786[/C][/ROW]
[ROW][C]109[/C][C] 0.1014[/C][C] 0.2028[/C][C] 0.8986[/C][/ROW]
[ROW][C]110[/C][C] 0.09205[/C][C] 0.1841[/C][C] 0.9079[/C][/ROW]
[ROW][C]111[/C][C] 0.07359[/C][C] 0.1472[/C][C] 0.9264[/C][/ROW]
[ROW][C]112[/C][C] 0.08675[/C][C] 0.1735[/C][C] 0.9133[/C][/ROW]
[ROW][C]113[/C][C] 0.09825[/C][C] 0.1965[/C][C] 0.9018[/C][/ROW]
[ROW][C]114[/C][C] 0.09298[/C][C] 0.186[/C][C] 0.907[/C][/ROW]
[ROW][C]115[/C][C] 0.1356[/C][C] 0.2711[/C][C] 0.8644[/C][/ROW]
[ROW][C]116[/C][C] 0.2068[/C][C] 0.4136[/C][C] 0.7932[/C][/ROW]
[ROW][C]117[/C][C] 0.3135[/C][C] 0.627[/C][C] 0.6865[/C][/ROW]
[ROW][C]118[/C][C] 0.2704[/C][C] 0.5408[/C][C] 0.7296[/C][/ROW]
[ROW][C]119[/C][C] 0.2591[/C][C] 0.5181[/C][C] 0.7409[/C][/ROW]
[ROW][C]120[/C][C] 0.2155[/C][C] 0.431[/C][C] 0.7845[/C][/ROW]
[ROW][C]121[/C][C] 0.228[/C][C] 0.456[/C][C] 0.772[/C][/ROW]
[ROW][C]122[/C][C] 0.1969[/C][C] 0.3938[/C][C] 0.8031[/C][/ROW]
[ROW][C]123[/C][C] 0.1663[/C][C] 0.3327[/C][C] 0.8337[/C][/ROW]
[ROW][C]124[/C][C] 0.149[/C][C] 0.298[/C][C] 0.851[/C][/ROW]
[ROW][C]125[/C][C] 0.1406[/C][C] 0.2812[/C][C] 0.8594[/C][/ROW]
[ROW][C]126[/C][C] 0.1574[/C][C] 0.3147[/C][C] 0.8426[/C][/ROW]
[ROW][C]127[/C][C] 0.1558[/C][C] 0.3115[/C][C] 0.8442[/C][/ROW]
[ROW][C]128[/C][C] 0.1217[/C][C] 0.2435[/C][C] 0.8783[/C][/ROW]
[ROW][C]129[/C][C] 0.1034[/C][C] 0.2069[/C][C] 0.8966[/C][/ROW]
[ROW][C]130[/C][C] 0.09528[/C][C] 0.1906[/C][C] 0.9047[/C][/ROW]
[ROW][C]131[/C][C] 0.1029[/C][C] 0.2058[/C][C] 0.8971[/C][/ROW]
[ROW][C]132[/C][C] 0.07352[/C][C] 0.147[/C][C] 0.9265[/C][/ROW]
[ROW][C]133[/C][C] 0.04961[/C][C] 0.09923[/C][C] 0.9504[/C][/ROW]
[ROW][C]134[/C][C] 0.03933[/C][C] 0.07865[/C][C] 0.9607[/C][/ROW]
[ROW][C]135[/C][C] 0.02413[/C][C] 0.04826[/C][C] 0.9759[/C][/ROW]
[ROW][C]136[/C][C] 0.01463[/C][C] 0.02925[/C][C] 0.9854[/C][/ROW]
[ROW][C]137[/C][C] 0.05726[/C][C] 0.1145[/C][C] 0.9427[/C][/ROW]
[ROW][C]138[/C][C] 0.03904[/C][C] 0.07809[/C][C] 0.961[/C][/ROW]
[ROW][C]139[/C][C] 0.02986[/C][C] 0.05972[/C][C] 0.9701[/C][/ROW]
[ROW][C]140[/C][C] 0.03344[/C][C] 0.06689[/C][C] 0.9666[/C][/ROW]
[ROW][C]141[/C][C] 0.0153[/C][C] 0.0306[/C][C] 0.9847[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
13 0.7125 0.5749 0.2875
14 0.7812 0.4376 0.2188
15 0.8125 0.375 0.1875
16 0.8587 0.2826 0.1413
17 0.8174 0.3651 0.1826
18 0.7669 0.4661 0.2331
19 0.7035 0.5931 0.2965
20 0.657 0.6859 0.343
21 0.5718 0.8563 0.4282
22 0.489 0.9781 0.511
23 0.4105 0.821 0.5895
24 0.3419 0.6838 0.6581
25 0.3829 0.7658 0.6171
26 0.3688 0.7376 0.6312
27 0.3996 0.7992 0.6004
28 0.3914 0.7829 0.6086
29 0.3698 0.7396 0.6302
30 0.5978 0.8043 0.4022
31 0.5534 0.8932 0.4466
32 0.4915 0.983 0.5085
33 0.5825 0.835 0.4175
34 0.5343 0.9314 0.4657
35 0.482 0.964 0.518
36 0.4224 0.8449 0.5776
37 0.3637 0.7273 0.6363
38 0.3112 0.6223 0.6888
39 0.2766 0.5532 0.7234
40 0.2304 0.4607 0.7696
41 0.1934 0.3868 0.8066
42 0.1991 0.3983 0.8009
43 0.1633 0.3266 0.8367
44 0.1453 0.2906 0.8547
45 0.1186 0.2372 0.8814
46 0.1048 0.2097 0.8952
47 0.08346 0.1669 0.9165
48 0.08479 0.1696 0.9152
49 0.1112 0.2225 0.8888
50 0.1261 0.2522 0.8739
51 0.1263 0.2527 0.8737
52 0.1487 0.2974 0.8513
53 0.1352 0.2704 0.8648
54 0.1095 0.2191 0.8905
55 0.1094 0.2188 0.8906
56 0.09228 0.1846 0.9077
57 0.3893 0.7787 0.6107
58 0.3408 0.6817 0.6592
59 0.3072 0.6144 0.6928
60 0.2751 0.5502 0.7249
61 0.257 0.5141 0.743
62 0.2452 0.4904 0.7548
63 0.2665 0.533 0.7335
64 0.2382 0.4764 0.7618
65 0.2018 0.4035 0.7982
66 0.2358 0.4716 0.7642
67 0.2161 0.4322 0.7839
68 0.2038 0.4076 0.7962
69 0.1704 0.3408 0.8296
70 0.2476 0.4951 0.7524
71 0.2154 0.4307 0.7846
72 0.2512 0.5024 0.7488
73 0.2142 0.4284 0.7858
74 0.7761 0.4478 0.2239
75 0.79 0.42 0.21
76 0.7618 0.4764 0.2382
77 0.7411 0.5178 0.2589
78 0.7705 0.459 0.2295
79 0.7531 0.4938 0.2469
80 0.713 0.574 0.287
81 0.6728 0.6545 0.3272
82 0.6282 0.7436 0.3718
83 0.5812 0.8375 0.4188
84 0.5378 0.9243 0.4622
85 0.4987 0.9974 0.5013
86 0.4575 0.9151 0.5425
87 0.4107 0.8214 0.5893
88 0.3863 0.7725 0.6137
89 0.3729 0.7459 0.6271
90 0.3871 0.7743 0.6129
91 0.3426 0.6852 0.6574
92 0.2994 0.5987 0.7006
93 0.3173 0.6346 0.6827
94 0.2764 0.5528 0.7236
95 0.2412 0.4823 0.7588
96 0.2075 0.415 0.7925
97 0.1784 0.3568 0.8216
98 0.1566 0.3132 0.8434
99 0.2281 0.4562 0.7719
100 0.2073 0.4145 0.7927
101 0.1795 0.359 0.8205
102 0.1656 0.3311 0.8344
103 0.1497 0.2993 0.8503
104 0.1417 0.2835 0.8583
105 0.1619 0.3238 0.8381
106 0.1332 0.2664 0.8668
107 0.1451 0.2902 0.8549
108 0.1214 0.2429 0.8786
109 0.1014 0.2028 0.8986
110 0.09205 0.1841 0.9079
111 0.07359 0.1472 0.9264
112 0.08675 0.1735 0.9133
113 0.09825 0.1965 0.9018
114 0.09298 0.186 0.907
115 0.1356 0.2711 0.8644
116 0.2068 0.4136 0.7932
117 0.3135 0.627 0.6865
118 0.2704 0.5408 0.7296
119 0.2591 0.5181 0.7409
120 0.2155 0.431 0.7845
121 0.228 0.456 0.772
122 0.1969 0.3938 0.8031
123 0.1663 0.3327 0.8337
124 0.149 0.298 0.851
125 0.1406 0.2812 0.8594
126 0.1574 0.3147 0.8426
127 0.1558 0.3115 0.8442
128 0.1217 0.2435 0.8783
129 0.1034 0.2069 0.8966
130 0.09528 0.1906 0.9047
131 0.1029 0.2058 0.8971
132 0.07352 0.147 0.9265
133 0.04961 0.09923 0.9504
134 0.03933 0.07865 0.9607
135 0.02413 0.04826 0.9759
136 0.01463 0.02925 0.9854
137 0.05726 0.1145 0.9427
138 0.03904 0.07809 0.961
139 0.02986 0.05972 0.9701
140 0.03344 0.06689 0.9666
141 0.0153 0.0306 0.9847







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level30.0232558OK
10% type I error level80.0620155OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 3 & 0.0232558 & OK \tabularnewline
10% type I error level & 8 & 0.0620155 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]3[/C][C]0.0232558[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]8[/C][C]0.0620155[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level30.0232558OK
10% type I error level80.0620155OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.4694, df1 = 2, df2 = 142, p-value = 0.0338
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3351, df1 = 18, df2 = 126, p-value = 0.1773
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.4779, df1 = 2, df2 = 142, p-value = 0.6211

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.4694, df1 = 2, df2 = 142, p-value = 0.0338
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3351, df1 = 18, df2 = 126, p-value = 0.1773
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.4779, df1 = 2, df2 = 142, p-value = 0.6211
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.4694, df1 = 2, df2 = 142, p-value = 0.0338
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3351, df1 = 18, df2 = 126, p-value = 0.1773
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.4779, df1 = 2, df2 = 142, p-value = 0.6211
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.4694, df1 = 2, df2 = 142, p-value = 0.0338
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3351, df1 = 18, df2 = 126, p-value = 0.1773
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.4779, df1 = 2, df2 = 142, p-value = 0.6211







Variance Inflation Factors (Multicollinearity)
> vif
       ITH2        ITH3        ITH4       IKSUM `ITH1(t-1)` `ITH1(t-2)` 
   1.397461    1.404727    1.244711    1.065544    1.045168    1.058944 
`ITH1(t-3)` `ITH1(t-4)` `ITH1(t-5)` 
   1.047730    1.038997    1.040432 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
       ITH2        ITH3        ITH4       IKSUM `ITH1(t-1)` `ITH1(t-2)` 
   1.397461    1.404727    1.244711    1.065544    1.045168    1.058944 
`ITH1(t-3)` `ITH1(t-4)` `ITH1(t-5)` 
   1.047730    1.038997    1.040432 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
       ITH2        ITH3        ITH4       IKSUM `ITH1(t-1)` `ITH1(t-2)` 
   1.397461    1.404727    1.244711    1.065544    1.045168    1.058944 
`ITH1(t-3)` `ITH1(t-4)` `ITH1(t-5)` 
   1.047730    1.038997    1.040432 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
       ITH2        ITH3        ITH4       IKSUM `ITH1(t-1)` `ITH1(t-2)` 
   1.397461    1.404727    1.244711    1.065544    1.045168    1.058944 
`ITH1(t-3)` `ITH1(t-4)` `ITH1(t-5)` 
   1.047730    1.038997    1.040432 



Parameters (Session):
par1 = 112221 ; par2 = 22111Do not include Seasonal Dummies ; par3 = TRUETRUETRUENo Linear TrendTRUENo Linear Trend ; par4 = 5 ; par5 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 5 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')