Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 14 Dec 2016 14:23:06 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481721842jw87xpqi5lvseqx.htm/, Retrieved Fri, 01 Nov 2024 03:44:49 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299409, Retrieved Fri, 01 Nov 2024 03:44:49 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact98
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [decomposition by ...] [2016-12-14 13:23:06] [064355853487111be0140b49d1988237] [Current]
Feedback Forum

Post a new message
Dataseries X:
4150
4300
4300
4450
4500
4400
3950
2150
4350
4550
4600
4250
4350
4400
4300
4350
4350
4400
3850
2300
4300
4350
4350
4200
4150
4450
4300
4350
4300
4350
3900
2250
4300
4450
4400
4250
4250
4300
4450
3900
4350
4500
3800
2450
4400
4500
4500
4400
4450
4600
4700
4700
2950
3750
4050
2550
4600
5000
5100
4900
4950
5000
4950
5100
5250
5200
4300
2650
4950
5200
5350
5150
5350
5550
5400
5450
5450
5200
4400
2650
5100
5200
5300
4900
5200
5300
5250
5150
5050
4900
4150
2800
5100
5250
5200
5000
5150
5250
5250
5350
5450
5300
4300
3000
5300
5400
5550
5350
5500
5750
5750
5700
5800
5800
4600
3150
5500
5750
5950
5600
6100
6250
6150
6050
6300
5950




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299409&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299409&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299409&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal12610127
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1261 & 0 & 127 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299409&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1261[/C][C]0[/C][C]127[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299409&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299409&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal12610127
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
141504006.66338943813235.2500469576094058.08656360426-143.336610561871
243004159.4218888039363.0474497473944077.5306614487-140.578111196096
343004184.90761376449318.1176269423664096.97475929314-115.092386235506
444504507.57472536404279.8670658954144112.5582087405557.5747253640393
545004680.24207102819191.616270783864128.14165818795180.242071028187
644004484.41965869171174.0944761716994141.4858651365984.4196586917142
739504219.87220318136-474.7022752665844154.83007208522269.872203181362
821502159.02299455573-2026.336481740074167.313487184349.02299455572756
943504368.17382566078152.0292720557574179.7969022834718.1738256607769
1045504612.44783388388310.7111062584664176.8410598576562.4478338838799
1146004666.72187707005359.3929054981064173.8852174318466.7218770700538
1242504217.88729128156116.912554532624165.20015418582-32.1127087184395
1343504308.23486210259235.2500469576094156.5150909398-41.7651378974069
1444004282.47375920493363.0474497473944154.47879104768-117.526240795069
1543004129.43988190208318.1176269423664152.44249115555-170.56011809792
1643504271.75137171585279.8670658954144148.38156238873-78.2486282841455
1743504364.06309559423191.616270783864144.3206336219114.0630955942315
1844004488.21518869701174.0944761716994137.6903351312988.2151886970141
1938504043.64223862592-474.7022752665844131.06003664067193.642238625918
2023002500.936759712-2026.336481740074125.39972202807200.936759712002
2143004328.23132052877152.0292720557574119.7394074154728.2313205287701
2243504277.46479678673310.7111062584664111.82409695481-72.5352032132723
2343504236.69830800776359.3929054981064103.90878649414-113.301691992244
2442004184.95882114425116.912554532624098.12862432313-15.0411788557476
2541503972.40149089028235.2500469576094092.34846215212-177.598509109725
2644504441.29754159099363.0474497473944095.65500866162-8.70245840901407
2743004182.92081788651318.1176269423664098.96155517112-117.079182113489
2843504311.23532483509279.8670658954144108.8976092695-38.7646751649108
2943004289.55006584827191.616270783864118.83366336787-10.4499341517303
3043504400.04703712008174.0944761716994125.8584867082250.0470371200836
3139004141.81896521802-474.7022752665844132.88331004857241.818965218018
3222502395.79495282464-2026.336481740074130.54152891543145.794952824641
3343004319.77098016195152.0292720557574128.1997477822919.7709801619485
3444504473.01372175391310.7111062584664116.2751719876223.0137217539113
3544004336.25649830894359.3929054981064104.35059619295-63.7435016910558
3642504285.58493636839116.912554532624097.5025090989835.5849363683947
3742504174.09553103737235.2500469576094090.65442200502-75.9044689626276
3843004139.85696398634363.0474497473944097.09558626627-160.143036013661
3944504478.34562253012318.1176269423664103.5367505275128.3456225301197
4039003401.86162326878279.8670658954144118.2713108358-498.138376731218
4143504375.37785807205191.616270783864133.0058711440925.3778580720473
4245004674.20517099731174.0944761716994151.70035283099174.205170997313
4338003904.3074407487-474.7022752665844170.39483451788104.3074407487
4424502732.73183135957-2026.336481740074193.6046503805282.731831359573
4544004431.15626170113152.0292720557574216.8144662431131.1562617011323
4645004478.19952135867310.7111062584664211.08937238287-21.8004786413339
4745004435.24281597927359.3929054981064205.36427852262-64.7571840207302
4844004509.05114794501116.912554532624174.03629752237109.051147945014
4944504522.04163652028235.2500469576094142.7083165221172.0416365202846
5046004703.20022620419363.0474497473944133.75232404842103.200226204187
5147004957.0860414829318.1176269423664124.79633157473257.086041482902
5247004966.96735244962279.8670658954144153.16558165497266.967352449619
5329501526.84889748094191.616270783864181.5348317352-1423.15110251906
5437503100.12647375988174.0944761716994225.77905006842-649.873526240122
5540504304.67900686494-474.7022752665844270.02326840164254.679006864941
5625502799.38017075339-2026.336481740074326.95631098668249.380170753388
5746004664.08137437252152.0292720557574383.8893535717264.0813743725212
5850005223.71005673272310.7111062584664465.57883700881223.710056732719
5951005293.33877405599359.3929054981064547.26832044591193.338774055987
6049005057.17320972578116.912554532624625.9142357416157.173209725775
6149504960.18980200509235.2500469576094704.560151037310.1898020050903
6250004899.04997226862363.0474497473944737.90257798399-100.950027731384
6349504810.63736812696318.1176269423664771.24500493068-139.362631873044
6451005129.80099432733279.8670658954144790.3319397772529.8009943273337
6552505498.96485459231191.616270783864809.41887462383248.964854592315
6652005391.43455610116174.0944761716994834.47096772714191.434556101161
6743004215.17921443613-474.7022752665844859.52306083046-84.8207855638721
6826502435.10806374364-2026.336481740074891.22841799643-214.891936256361
6949504825.03695278183152.0292720557574922.93377516241-124.963047218166
7052005138.19471455711310.7111062584664951.09417918442-61.8052854428897
7153505361.35251129546359.3929054981064979.2545832064411.3525112954567
7251505185.57271724445116.912554532624997.5147282229335.5727172444522
7353505448.97507980297235.2500469576095015.7748732394298.9750798029745
7455505712.67770932723363.0474497473945024.27484092538162.677709327229
7554005449.1075644463318.1176269423665032.7748086113449.1075644462981
7654505593.46523690499279.8670658954145026.6676971996143.465236904985
7754505687.82314342828191.616270783865020.56058578786237.823143428276
7852005222.72535766424174.0944761716995003.1801661640722.7253576642352
7944004288.90252872632-474.7022752665844985.79974654027-111.097471273683
8026502361.81028034041-2026.336481740074964.52620139967-288.189719659595
8151005104.71807168518152.0292720557574943.252656259064.71807168517989
8252005165.85586421723310.7111062584664923.4330295243-34.1441357827662
8353005336.99369171236359.3929054981064903.6134027895436.9936917123578
8449004795.13928002055116.912554532624887.94816544683-104.860719979453
8552005292.46702493826235.2500469576094872.2829281041392.4670249382625
8653005371.01514694355363.0474497473944865.9374033090671.015146943545
8752505322.29049454364318.1176269423664859.5918785139972.2904945436421
8851505163.40935588139279.8670658954144856.723578223213.4093558813893
8950505054.52845128374191.616270783864853.85527793244.52845128373974
9049004773.30082573161174.0944761716994852.60469809669-126.699174268391
9141503923.3481570056-474.7022752665844851.35411826098-226.651842994401
9228002772.80548262861-2026.336481740074853.53099911146-27.1945173713884
9351005192.26284798231152.0292720557574855.7078799619392.2628479823097
9452505316.42105626674310.7111062584664872.867837474866.4210562667358
9552005150.57929951423359.3929054981064890.02779498766-49.420700485769
9650004968.91339421978116.912554532624914.1740512476-31.0866057802195
9751505126.42964553486235.2500469576094938.32030750753-23.5703544651433
9852505178.87522908983363.0474497473944958.07732116278-71.1247709101744
9952505204.04803823961318.1176269423664977.83433481803-45.951961760391
10053505423.23185949324279.8670658954144996.9010746113473.2318594932422
10154505692.41591481148191.616270783865015.96781440466242.415914811477
10253005382.73737164237174.0944761716995043.1681521859382.7373716423708
10343004004.33378529939-474.7022752665845070.3684899672-295.666214700614
10430002924.26015957279-2026.336481740075102.07632216729-75.7398404272144
10553005314.18657357687152.0292720557575133.7841543673714.1865735768697
10654005319.03879191759310.7111062584665170.25010182394-80.9612080824108
10755505533.89104522138359.3929054981065206.71604928052-16.1089547786214
10853505340.8490206615116.912554532625242.23842480588-9.15097933850211
10955005486.98915271114235.2500469576095277.76080033125-13.010847288856
11057505832.37369158609363.0474497473945304.5788586665182.3736915860936
11157505850.48545605586318.1176269423665331.39691700178100.485456055857
11257005768.41905446426279.8670658954145351.7138796403368.4190544642606
11358006036.35288693727191.616270783865372.03084227887236.352886937267
11458006027.49523599379174.0944761716995398.41028783451227.495235993789
11546004249.91254187643-474.7022752665845424.78973339015-350.087458123568
11631502868.8584321102-2026.336481740075457.47804962987-281.141567889799
11755005357.80436207465152.0292720557575490.16636586959-142.195637925346
11857505649.64174328803310.7111062584665539.64715045351-100.358256711972
11959505951.47915946447359.3929054981065589.127935037421.47915946447301
12056005445.21704229388116.912554532625637.8704031735-154.782957706122
12161006278.13708173281235.2500469576095686.61287130958178.13708173281
12262506398.2540571179363.0474497473945738.69849313471148.2540571179
12361506191.0982580978318.1176269423665790.7841149598341.0982580978034
12460505974.57422592323279.8670658954145845.55870818135-75.425774076768
12563006508.05042781326191.616270783865900.33330140288208.050427813264
12659505769.7089950143174.0944761716995956.196528814-180.291004985703

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 4150 & 4006.66338943813 & 235.250046957609 & 4058.08656360426 & -143.336610561871 \tabularnewline
2 & 4300 & 4159.4218888039 & 363.047449747394 & 4077.5306614487 & -140.578111196096 \tabularnewline
3 & 4300 & 4184.90761376449 & 318.117626942366 & 4096.97475929314 & -115.092386235506 \tabularnewline
4 & 4450 & 4507.57472536404 & 279.867065895414 & 4112.55820874055 & 57.5747253640393 \tabularnewline
5 & 4500 & 4680.24207102819 & 191.61627078386 & 4128.14165818795 & 180.242071028187 \tabularnewline
6 & 4400 & 4484.41965869171 & 174.094476171699 & 4141.48586513659 & 84.4196586917142 \tabularnewline
7 & 3950 & 4219.87220318136 & -474.702275266584 & 4154.83007208522 & 269.872203181362 \tabularnewline
8 & 2150 & 2159.02299455573 & -2026.33648174007 & 4167.31348718434 & 9.02299455572756 \tabularnewline
9 & 4350 & 4368.17382566078 & 152.029272055757 & 4179.79690228347 & 18.1738256607769 \tabularnewline
10 & 4550 & 4612.44783388388 & 310.711106258466 & 4176.84105985765 & 62.4478338838799 \tabularnewline
11 & 4600 & 4666.72187707005 & 359.392905498106 & 4173.88521743184 & 66.7218770700538 \tabularnewline
12 & 4250 & 4217.88729128156 & 116.91255453262 & 4165.20015418582 & -32.1127087184395 \tabularnewline
13 & 4350 & 4308.23486210259 & 235.250046957609 & 4156.5150909398 & -41.7651378974069 \tabularnewline
14 & 4400 & 4282.47375920493 & 363.047449747394 & 4154.47879104768 & -117.526240795069 \tabularnewline
15 & 4300 & 4129.43988190208 & 318.117626942366 & 4152.44249115555 & -170.56011809792 \tabularnewline
16 & 4350 & 4271.75137171585 & 279.867065895414 & 4148.38156238873 & -78.2486282841455 \tabularnewline
17 & 4350 & 4364.06309559423 & 191.61627078386 & 4144.32063362191 & 14.0630955942315 \tabularnewline
18 & 4400 & 4488.21518869701 & 174.094476171699 & 4137.69033513129 & 88.2151886970141 \tabularnewline
19 & 3850 & 4043.64223862592 & -474.702275266584 & 4131.06003664067 & 193.642238625918 \tabularnewline
20 & 2300 & 2500.936759712 & -2026.33648174007 & 4125.39972202807 & 200.936759712002 \tabularnewline
21 & 4300 & 4328.23132052877 & 152.029272055757 & 4119.73940741547 & 28.2313205287701 \tabularnewline
22 & 4350 & 4277.46479678673 & 310.711106258466 & 4111.82409695481 & -72.5352032132723 \tabularnewline
23 & 4350 & 4236.69830800776 & 359.392905498106 & 4103.90878649414 & -113.301691992244 \tabularnewline
24 & 4200 & 4184.95882114425 & 116.91255453262 & 4098.12862432313 & -15.0411788557476 \tabularnewline
25 & 4150 & 3972.40149089028 & 235.250046957609 & 4092.34846215212 & -177.598509109725 \tabularnewline
26 & 4450 & 4441.29754159099 & 363.047449747394 & 4095.65500866162 & -8.70245840901407 \tabularnewline
27 & 4300 & 4182.92081788651 & 318.117626942366 & 4098.96155517112 & -117.079182113489 \tabularnewline
28 & 4350 & 4311.23532483509 & 279.867065895414 & 4108.8976092695 & -38.7646751649108 \tabularnewline
29 & 4300 & 4289.55006584827 & 191.61627078386 & 4118.83366336787 & -10.4499341517303 \tabularnewline
30 & 4350 & 4400.04703712008 & 174.094476171699 & 4125.85848670822 & 50.0470371200836 \tabularnewline
31 & 3900 & 4141.81896521802 & -474.702275266584 & 4132.88331004857 & 241.818965218018 \tabularnewline
32 & 2250 & 2395.79495282464 & -2026.33648174007 & 4130.54152891543 & 145.794952824641 \tabularnewline
33 & 4300 & 4319.77098016195 & 152.029272055757 & 4128.19974778229 & 19.7709801619485 \tabularnewline
34 & 4450 & 4473.01372175391 & 310.711106258466 & 4116.27517198762 & 23.0137217539113 \tabularnewline
35 & 4400 & 4336.25649830894 & 359.392905498106 & 4104.35059619295 & -63.7435016910558 \tabularnewline
36 & 4250 & 4285.58493636839 & 116.91255453262 & 4097.50250909898 & 35.5849363683947 \tabularnewline
37 & 4250 & 4174.09553103737 & 235.250046957609 & 4090.65442200502 & -75.9044689626276 \tabularnewline
38 & 4300 & 4139.85696398634 & 363.047449747394 & 4097.09558626627 & -160.143036013661 \tabularnewline
39 & 4450 & 4478.34562253012 & 318.117626942366 & 4103.53675052751 & 28.3456225301197 \tabularnewline
40 & 3900 & 3401.86162326878 & 279.867065895414 & 4118.2713108358 & -498.138376731218 \tabularnewline
41 & 4350 & 4375.37785807205 & 191.61627078386 & 4133.00587114409 & 25.3778580720473 \tabularnewline
42 & 4500 & 4674.20517099731 & 174.094476171699 & 4151.70035283099 & 174.205170997313 \tabularnewline
43 & 3800 & 3904.3074407487 & -474.702275266584 & 4170.39483451788 & 104.3074407487 \tabularnewline
44 & 2450 & 2732.73183135957 & -2026.33648174007 & 4193.6046503805 & 282.731831359573 \tabularnewline
45 & 4400 & 4431.15626170113 & 152.029272055757 & 4216.81446624311 & 31.1562617011323 \tabularnewline
46 & 4500 & 4478.19952135867 & 310.711106258466 & 4211.08937238287 & -21.8004786413339 \tabularnewline
47 & 4500 & 4435.24281597927 & 359.392905498106 & 4205.36427852262 & -64.7571840207302 \tabularnewline
48 & 4400 & 4509.05114794501 & 116.91255453262 & 4174.03629752237 & 109.051147945014 \tabularnewline
49 & 4450 & 4522.04163652028 & 235.250046957609 & 4142.70831652211 & 72.0416365202846 \tabularnewline
50 & 4600 & 4703.20022620419 & 363.047449747394 & 4133.75232404842 & 103.200226204187 \tabularnewline
51 & 4700 & 4957.0860414829 & 318.117626942366 & 4124.79633157473 & 257.086041482902 \tabularnewline
52 & 4700 & 4966.96735244962 & 279.867065895414 & 4153.16558165497 & 266.967352449619 \tabularnewline
53 & 2950 & 1526.84889748094 & 191.61627078386 & 4181.5348317352 & -1423.15110251906 \tabularnewline
54 & 3750 & 3100.12647375988 & 174.094476171699 & 4225.77905006842 & -649.873526240122 \tabularnewline
55 & 4050 & 4304.67900686494 & -474.702275266584 & 4270.02326840164 & 254.679006864941 \tabularnewline
56 & 2550 & 2799.38017075339 & -2026.33648174007 & 4326.95631098668 & 249.380170753388 \tabularnewline
57 & 4600 & 4664.08137437252 & 152.029272055757 & 4383.88935357172 & 64.0813743725212 \tabularnewline
58 & 5000 & 5223.71005673272 & 310.711106258466 & 4465.57883700881 & 223.710056732719 \tabularnewline
59 & 5100 & 5293.33877405599 & 359.392905498106 & 4547.26832044591 & 193.338774055987 \tabularnewline
60 & 4900 & 5057.17320972578 & 116.91255453262 & 4625.9142357416 & 157.173209725775 \tabularnewline
61 & 4950 & 4960.18980200509 & 235.250046957609 & 4704.5601510373 & 10.1898020050903 \tabularnewline
62 & 5000 & 4899.04997226862 & 363.047449747394 & 4737.90257798399 & -100.950027731384 \tabularnewline
63 & 4950 & 4810.63736812696 & 318.117626942366 & 4771.24500493068 & -139.362631873044 \tabularnewline
64 & 5100 & 5129.80099432733 & 279.867065895414 & 4790.33193977725 & 29.8009943273337 \tabularnewline
65 & 5250 & 5498.96485459231 & 191.61627078386 & 4809.41887462383 & 248.964854592315 \tabularnewline
66 & 5200 & 5391.43455610116 & 174.094476171699 & 4834.47096772714 & 191.434556101161 \tabularnewline
67 & 4300 & 4215.17921443613 & -474.702275266584 & 4859.52306083046 & -84.8207855638721 \tabularnewline
68 & 2650 & 2435.10806374364 & -2026.33648174007 & 4891.22841799643 & -214.891936256361 \tabularnewline
69 & 4950 & 4825.03695278183 & 152.029272055757 & 4922.93377516241 & -124.963047218166 \tabularnewline
70 & 5200 & 5138.19471455711 & 310.711106258466 & 4951.09417918442 & -61.8052854428897 \tabularnewline
71 & 5350 & 5361.35251129546 & 359.392905498106 & 4979.25458320644 & 11.3525112954567 \tabularnewline
72 & 5150 & 5185.57271724445 & 116.91255453262 & 4997.51472822293 & 35.5727172444522 \tabularnewline
73 & 5350 & 5448.97507980297 & 235.250046957609 & 5015.77487323942 & 98.9750798029745 \tabularnewline
74 & 5550 & 5712.67770932723 & 363.047449747394 & 5024.27484092538 & 162.677709327229 \tabularnewline
75 & 5400 & 5449.1075644463 & 318.117626942366 & 5032.77480861134 & 49.1075644462981 \tabularnewline
76 & 5450 & 5593.46523690499 & 279.867065895414 & 5026.6676971996 & 143.465236904985 \tabularnewline
77 & 5450 & 5687.82314342828 & 191.61627078386 & 5020.56058578786 & 237.823143428276 \tabularnewline
78 & 5200 & 5222.72535766424 & 174.094476171699 & 5003.18016616407 & 22.7253576642352 \tabularnewline
79 & 4400 & 4288.90252872632 & -474.702275266584 & 4985.79974654027 & -111.097471273683 \tabularnewline
80 & 2650 & 2361.81028034041 & -2026.33648174007 & 4964.52620139967 & -288.189719659595 \tabularnewline
81 & 5100 & 5104.71807168518 & 152.029272055757 & 4943.25265625906 & 4.71807168517989 \tabularnewline
82 & 5200 & 5165.85586421723 & 310.711106258466 & 4923.4330295243 & -34.1441357827662 \tabularnewline
83 & 5300 & 5336.99369171236 & 359.392905498106 & 4903.61340278954 & 36.9936917123578 \tabularnewline
84 & 4900 & 4795.13928002055 & 116.91255453262 & 4887.94816544683 & -104.860719979453 \tabularnewline
85 & 5200 & 5292.46702493826 & 235.250046957609 & 4872.28292810413 & 92.4670249382625 \tabularnewline
86 & 5300 & 5371.01514694355 & 363.047449747394 & 4865.93740330906 & 71.015146943545 \tabularnewline
87 & 5250 & 5322.29049454364 & 318.117626942366 & 4859.59187851399 & 72.2904945436421 \tabularnewline
88 & 5150 & 5163.40935588139 & 279.867065895414 & 4856.7235782232 & 13.4093558813893 \tabularnewline
89 & 5050 & 5054.52845128374 & 191.61627078386 & 4853.8552779324 & 4.52845128373974 \tabularnewline
90 & 4900 & 4773.30082573161 & 174.094476171699 & 4852.60469809669 & -126.699174268391 \tabularnewline
91 & 4150 & 3923.3481570056 & -474.702275266584 & 4851.35411826098 & -226.651842994401 \tabularnewline
92 & 2800 & 2772.80548262861 & -2026.33648174007 & 4853.53099911146 & -27.1945173713884 \tabularnewline
93 & 5100 & 5192.26284798231 & 152.029272055757 & 4855.70787996193 & 92.2628479823097 \tabularnewline
94 & 5250 & 5316.42105626674 & 310.711106258466 & 4872.8678374748 & 66.4210562667358 \tabularnewline
95 & 5200 & 5150.57929951423 & 359.392905498106 & 4890.02779498766 & -49.420700485769 \tabularnewline
96 & 5000 & 4968.91339421978 & 116.91255453262 & 4914.1740512476 & -31.0866057802195 \tabularnewline
97 & 5150 & 5126.42964553486 & 235.250046957609 & 4938.32030750753 & -23.5703544651433 \tabularnewline
98 & 5250 & 5178.87522908983 & 363.047449747394 & 4958.07732116278 & -71.1247709101744 \tabularnewline
99 & 5250 & 5204.04803823961 & 318.117626942366 & 4977.83433481803 & -45.951961760391 \tabularnewline
100 & 5350 & 5423.23185949324 & 279.867065895414 & 4996.90107461134 & 73.2318594932422 \tabularnewline
101 & 5450 & 5692.41591481148 & 191.61627078386 & 5015.96781440466 & 242.415914811477 \tabularnewline
102 & 5300 & 5382.73737164237 & 174.094476171699 & 5043.16815218593 & 82.7373716423708 \tabularnewline
103 & 4300 & 4004.33378529939 & -474.702275266584 & 5070.3684899672 & -295.666214700614 \tabularnewline
104 & 3000 & 2924.26015957279 & -2026.33648174007 & 5102.07632216729 & -75.7398404272144 \tabularnewline
105 & 5300 & 5314.18657357687 & 152.029272055757 & 5133.78415436737 & 14.1865735768697 \tabularnewline
106 & 5400 & 5319.03879191759 & 310.711106258466 & 5170.25010182394 & -80.9612080824108 \tabularnewline
107 & 5550 & 5533.89104522138 & 359.392905498106 & 5206.71604928052 & -16.1089547786214 \tabularnewline
108 & 5350 & 5340.8490206615 & 116.91255453262 & 5242.23842480588 & -9.15097933850211 \tabularnewline
109 & 5500 & 5486.98915271114 & 235.250046957609 & 5277.76080033125 & -13.010847288856 \tabularnewline
110 & 5750 & 5832.37369158609 & 363.047449747394 & 5304.57885866651 & 82.3736915860936 \tabularnewline
111 & 5750 & 5850.48545605586 & 318.117626942366 & 5331.39691700178 & 100.485456055857 \tabularnewline
112 & 5700 & 5768.41905446426 & 279.867065895414 & 5351.71387964033 & 68.4190544642606 \tabularnewline
113 & 5800 & 6036.35288693727 & 191.61627078386 & 5372.03084227887 & 236.352886937267 \tabularnewline
114 & 5800 & 6027.49523599379 & 174.094476171699 & 5398.41028783451 & 227.495235993789 \tabularnewline
115 & 4600 & 4249.91254187643 & -474.702275266584 & 5424.78973339015 & -350.087458123568 \tabularnewline
116 & 3150 & 2868.8584321102 & -2026.33648174007 & 5457.47804962987 & -281.141567889799 \tabularnewline
117 & 5500 & 5357.80436207465 & 152.029272055757 & 5490.16636586959 & -142.195637925346 \tabularnewline
118 & 5750 & 5649.64174328803 & 310.711106258466 & 5539.64715045351 & -100.358256711972 \tabularnewline
119 & 5950 & 5951.47915946447 & 359.392905498106 & 5589.12793503742 & 1.47915946447301 \tabularnewline
120 & 5600 & 5445.21704229388 & 116.91255453262 & 5637.8704031735 & -154.782957706122 \tabularnewline
121 & 6100 & 6278.13708173281 & 235.250046957609 & 5686.61287130958 & 178.13708173281 \tabularnewline
122 & 6250 & 6398.2540571179 & 363.047449747394 & 5738.69849313471 & 148.2540571179 \tabularnewline
123 & 6150 & 6191.0982580978 & 318.117626942366 & 5790.78411495983 & 41.0982580978034 \tabularnewline
124 & 6050 & 5974.57422592323 & 279.867065895414 & 5845.55870818135 & -75.425774076768 \tabularnewline
125 & 6300 & 6508.05042781326 & 191.61627078386 & 5900.33330140288 & 208.050427813264 \tabularnewline
126 & 5950 & 5769.7089950143 & 174.094476171699 & 5956.196528814 & -180.291004985703 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299409&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]4150[/C][C]4006.66338943813[/C][C]235.250046957609[/C][C]4058.08656360426[/C][C]-143.336610561871[/C][/ROW]
[ROW][C]2[/C][C]4300[/C][C]4159.4218888039[/C][C]363.047449747394[/C][C]4077.5306614487[/C][C]-140.578111196096[/C][/ROW]
[ROW][C]3[/C][C]4300[/C][C]4184.90761376449[/C][C]318.117626942366[/C][C]4096.97475929314[/C][C]-115.092386235506[/C][/ROW]
[ROW][C]4[/C][C]4450[/C][C]4507.57472536404[/C][C]279.867065895414[/C][C]4112.55820874055[/C][C]57.5747253640393[/C][/ROW]
[ROW][C]5[/C][C]4500[/C][C]4680.24207102819[/C][C]191.61627078386[/C][C]4128.14165818795[/C][C]180.242071028187[/C][/ROW]
[ROW][C]6[/C][C]4400[/C][C]4484.41965869171[/C][C]174.094476171699[/C][C]4141.48586513659[/C][C]84.4196586917142[/C][/ROW]
[ROW][C]7[/C][C]3950[/C][C]4219.87220318136[/C][C]-474.702275266584[/C][C]4154.83007208522[/C][C]269.872203181362[/C][/ROW]
[ROW][C]8[/C][C]2150[/C][C]2159.02299455573[/C][C]-2026.33648174007[/C][C]4167.31348718434[/C][C]9.02299455572756[/C][/ROW]
[ROW][C]9[/C][C]4350[/C][C]4368.17382566078[/C][C]152.029272055757[/C][C]4179.79690228347[/C][C]18.1738256607769[/C][/ROW]
[ROW][C]10[/C][C]4550[/C][C]4612.44783388388[/C][C]310.711106258466[/C][C]4176.84105985765[/C][C]62.4478338838799[/C][/ROW]
[ROW][C]11[/C][C]4600[/C][C]4666.72187707005[/C][C]359.392905498106[/C][C]4173.88521743184[/C][C]66.7218770700538[/C][/ROW]
[ROW][C]12[/C][C]4250[/C][C]4217.88729128156[/C][C]116.91255453262[/C][C]4165.20015418582[/C][C]-32.1127087184395[/C][/ROW]
[ROW][C]13[/C][C]4350[/C][C]4308.23486210259[/C][C]235.250046957609[/C][C]4156.5150909398[/C][C]-41.7651378974069[/C][/ROW]
[ROW][C]14[/C][C]4400[/C][C]4282.47375920493[/C][C]363.047449747394[/C][C]4154.47879104768[/C][C]-117.526240795069[/C][/ROW]
[ROW][C]15[/C][C]4300[/C][C]4129.43988190208[/C][C]318.117626942366[/C][C]4152.44249115555[/C][C]-170.56011809792[/C][/ROW]
[ROW][C]16[/C][C]4350[/C][C]4271.75137171585[/C][C]279.867065895414[/C][C]4148.38156238873[/C][C]-78.2486282841455[/C][/ROW]
[ROW][C]17[/C][C]4350[/C][C]4364.06309559423[/C][C]191.61627078386[/C][C]4144.32063362191[/C][C]14.0630955942315[/C][/ROW]
[ROW][C]18[/C][C]4400[/C][C]4488.21518869701[/C][C]174.094476171699[/C][C]4137.69033513129[/C][C]88.2151886970141[/C][/ROW]
[ROW][C]19[/C][C]3850[/C][C]4043.64223862592[/C][C]-474.702275266584[/C][C]4131.06003664067[/C][C]193.642238625918[/C][/ROW]
[ROW][C]20[/C][C]2300[/C][C]2500.936759712[/C][C]-2026.33648174007[/C][C]4125.39972202807[/C][C]200.936759712002[/C][/ROW]
[ROW][C]21[/C][C]4300[/C][C]4328.23132052877[/C][C]152.029272055757[/C][C]4119.73940741547[/C][C]28.2313205287701[/C][/ROW]
[ROW][C]22[/C][C]4350[/C][C]4277.46479678673[/C][C]310.711106258466[/C][C]4111.82409695481[/C][C]-72.5352032132723[/C][/ROW]
[ROW][C]23[/C][C]4350[/C][C]4236.69830800776[/C][C]359.392905498106[/C][C]4103.90878649414[/C][C]-113.301691992244[/C][/ROW]
[ROW][C]24[/C][C]4200[/C][C]4184.95882114425[/C][C]116.91255453262[/C][C]4098.12862432313[/C][C]-15.0411788557476[/C][/ROW]
[ROW][C]25[/C][C]4150[/C][C]3972.40149089028[/C][C]235.250046957609[/C][C]4092.34846215212[/C][C]-177.598509109725[/C][/ROW]
[ROW][C]26[/C][C]4450[/C][C]4441.29754159099[/C][C]363.047449747394[/C][C]4095.65500866162[/C][C]-8.70245840901407[/C][/ROW]
[ROW][C]27[/C][C]4300[/C][C]4182.92081788651[/C][C]318.117626942366[/C][C]4098.96155517112[/C][C]-117.079182113489[/C][/ROW]
[ROW][C]28[/C][C]4350[/C][C]4311.23532483509[/C][C]279.867065895414[/C][C]4108.8976092695[/C][C]-38.7646751649108[/C][/ROW]
[ROW][C]29[/C][C]4300[/C][C]4289.55006584827[/C][C]191.61627078386[/C][C]4118.83366336787[/C][C]-10.4499341517303[/C][/ROW]
[ROW][C]30[/C][C]4350[/C][C]4400.04703712008[/C][C]174.094476171699[/C][C]4125.85848670822[/C][C]50.0470371200836[/C][/ROW]
[ROW][C]31[/C][C]3900[/C][C]4141.81896521802[/C][C]-474.702275266584[/C][C]4132.88331004857[/C][C]241.818965218018[/C][/ROW]
[ROW][C]32[/C][C]2250[/C][C]2395.79495282464[/C][C]-2026.33648174007[/C][C]4130.54152891543[/C][C]145.794952824641[/C][/ROW]
[ROW][C]33[/C][C]4300[/C][C]4319.77098016195[/C][C]152.029272055757[/C][C]4128.19974778229[/C][C]19.7709801619485[/C][/ROW]
[ROW][C]34[/C][C]4450[/C][C]4473.01372175391[/C][C]310.711106258466[/C][C]4116.27517198762[/C][C]23.0137217539113[/C][/ROW]
[ROW][C]35[/C][C]4400[/C][C]4336.25649830894[/C][C]359.392905498106[/C][C]4104.35059619295[/C][C]-63.7435016910558[/C][/ROW]
[ROW][C]36[/C][C]4250[/C][C]4285.58493636839[/C][C]116.91255453262[/C][C]4097.50250909898[/C][C]35.5849363683947[/C][/ROW]
[ROW][C]37[/C][C]4250[/C][C]4174.09553103737[/C][C]235.250046957609[/C][C]4090.65442200502[/C][C]-75.9044689626276[/C][/ROW]
[ROW][C]38[/C][C]4300[/C][C]4139.85696398634[/C][C]363.047449747394[/C][C]4097.09558626627[/C][C]-160.143036013661[/C][/ROW]
[ROW][C]39[/C][C]4450[/C][C]4478.34562253012[/C][C]318.117626942366[/C][C]4103.53675052751[/C][C]28.3456225301197[/C][/ROW]
[ROW][C]40[/C][C]3900[/C][C]3401.86162326878[/C][C]279.867065895414[/C][C]4118.2713108358[/C][C]-498.138376731218[/C][/ROW]
[ROW][C]41[/C][C]4350[/C][C]4375.37785807205[/C][C]191.61627078386[/C][C]4133.00587114409[/C][C]25.3778580720473[/C][/ROW]
[ROW][C]42[/C][C]4500[/C][C]4674.20517099731[/C][C]174.094476171699[/C][C]4151.70035283099[/C][C]174.205170997313[/C][/ROW]
[ROW][C]43[/C][C]3800[/C][C]3904.3074407487[/C][C]-474.702275266584[/C][C]4170.39483451788[/C][C]104.3074407487[/C][/ROW]
[ROW][C]44[/C][C]2450[/C][C]2732.73183135957[/C][C]-2026.33648174007[/C][C]4193.6046503805[/C][C]282.731831359573[/C][/ROW]
[ROW][C]45[/C][C]4400[/C][C]4431.15626170113[/C][C]152.029272055757[/C][C]4216.81446624311[/C][C]31.1562617011323[/C][/ROW]
[ROW][C]46[/C][C]4500[/C][C]4478.19952135867[/C][C]310.711106258466[/C][C]4211.08937238287[/C][C]-21.8004786413339[/C][/ROW]
[ROW][C]47[/C][C]4500[/C][C]4435.24281597927[/C][C]359.392905498106[/C][C]4205.36427852262[/C][C]-64.7571840207302[/C][/ROW]
[ROW][C]48[/C][C]4400[/C][C]4509.05114794501[/C][C]116.91255453262[/C][C]4174.03629752237[/C][C]109.051147945014[/C][/ROW]
[ROW][C]49[/C][C]4450[/C][C]4522.04163652028[/C][C]235.250046957609[/C][C]4142.70831652211[/C][C]72.0416365202846[/C][/ROW]
[ROW][C]50[/C][C]4600[/C][C]4703.20022620419[/C][C]363.047449747394[/C][C]4133.75232404842[/C][C]103.200226204187[/C][/ROW]
[ROW][C]51[/C][C]4700[/C][C]4957.0860414829[/C][C]318.117626942366[/C][C]4124.79633157473[/C][C]257.086041482902[/C][/ROW]
[ROW][C]52[/C][C]4700[/C][C]4966.96735244962[/C][C]279.867065895414[/C][C]4153.16558165497[/C][C]266.967352449619[/C][/ROW]
[ROW][C]53[/C][C]2950[/C][C]1526.84889748094[/C][C]191.61627078386[/C][C]4181.5348317352[/C][C]-1423.15110251906[/C][/ROW]
[ROW][C]54[/C][C]3750[/C][C]3100.12647375988[/C][C]174.094476171699[/C][C]4225.77905006842[/C][C]-649.873526240122[/C][/ROW]
[ROW][C]55[/C][C]4050[/C][C]4304.67900686494[/C][C]-474.702275266584[/C][C]4270.02326840164[/C][C]254.679006864941[/C][/ROW]
[ROW][C]56[/C][C]2550[/C][C]2799.38017075339[/C][C]-2026.33648174007[/C][C]4326.95631098668[/C][C]249.380170753388[/C][/ROW]
[ROW][C]57[/C][C]4600[/C][C]4664.08137437252[/C][C]152.029272055757[/C][C]4383.88935357172[/C][C]64.0813743725212[/C][/ROW]
[ROW][C]58[/C][C]5000[/C][C]5223.71005673272[/C][C]310.711106258466[/C][C]4465.57883700881[/C][C]223.710056732719[/C][/ROW]
[ROW][C]59[/C][C]5100[/C][C]5293.33877405599[/C][C]359.392905498106[/C][C]4547.26832044591[/C][C]193.338774055987[/C][/ROW]
[ROW][C]60[/C][C]4900[/C][C]5057.17320972578[/C][C]116.91255453262[/C][C]4625.9142357416[/C][C]157.173209725775[/C][/ROW]
[ROW][C]61[/C][C]4950[/C][C]4960.18980200509[/C][C]235.250046957609[/C][C]4704.5601510373[/C][C]10.1898020050903[/C][/ROW]
[ROW][C]62[/C][C]5000[/C][C]4899.04997226862[/C][C]363.047449747394[/C][C]4737.90257798399[/C][C]-100.950027731384[/C][/ROW]
[ROW][C]63[/C][C]4950[/C][C]4810.63736812696[/C][C]318.117626942366[/C][C]4771.24500493068[/C][C]-139.362631873044[/C][/ROW]
[ROW][C]64[/C][C]5100[/C][C]5129.80099432733[/C][C]279.867065895414[/C][C]4790.33193977725[/C][C]29.8009943273337[/C][/ROW]
[ROW][C]65[/C][C]5250[/C][C]5498.96485459231[/C][C]191.61627078386[/C][C]4809.41887462383[/C][C]248.964854592315[/C][/ROW]
[ROW][C]66[/C][C]5200[/C][C]5391.43455610116[/C][C]174.094476171699[/C][C]4834.47096772714[/C][C]191.434556101161[/C][/ROW]
[ROW][C]67[/C][C]4300[/C][C]4215.17921443613[/C][C]-474.702275266584[/C][C]4859.52306083046[/C][C]-84.8207855638721[/C][/ROW]
[ROW][C]68[/C][C]2650[/C][C]2435.10806374364[/C][C]-2026.33648174007[/C][C]4891.22841799643[/C][C]-214.891936256361[/C][/ROW]
[ROW][C]69[/C][C]4950[/C][C]4825.03695278183[/C][C]152.029272055757[/C][C]4922.93377516241[/C][C]-124.963047218166[/C][/ROW]
[ROW][C]70[/C][C]5200[/C][C]5138.19471455711[/C][C]310.711106258466[/C][C]4951.09417918442[/C][C]-61.8052854428897[/C][/ROW]
[ROW][C]71[/C][C]5350[/C][C]5361.35251129546[/C][C]359.392905498106[/C][C]4979.25458320644[/C][C]11.3525112954567[/C][/ROW]
[ROW][C]72[/C][C]5150[/C][C]5185.57271724445[/C][C]116.91255453262[/C][C]4997.51472822293[/C][C]35.5727172444522[/C][/ROW]
[ROW][C]73[/C][C]5350[/C][C]5448.97507980297[/C][C]235.250046957609[/C][C]5015.77487323942[/C][C]98.9750798029745[/C][/ROW]
[ROW][C]74[/C][C]5550[/C][C]5712.67770932723[/C][C]363.047449747394[/C][C]5024.27484092538[/C][C]162.677709327229[/C][/ROW]
[ROW][C]75[/C][C]5400[/C][C]5449.1075644463[/C][C]318.117626942366[/C][C]5032.77480861134[/C][C]49.1075644462981[/C][/ROW]
[ROW][C]76[/C][C]5450[/C][C]5593.46523690499[/C][C]279.867065895414[/C][C]5026.6676971996[/C][C]143.465236904985[/C][/ROW]
[ROW][C]77[/C][C]5450[/C][C]5687.82314342828[/C][C]191.61627078386[/C][C]5020.56058578786[/C][C]237.823143428276[/C][/ROW]
[ROW][C]78[/C][C]5200[/C][C]5222.72535766424[/C][C]174.094476171699[/C][C]5003.18016616407[/C][C]22.7253576642352[/C][/ROW]
[ROW][C]79[/C][C]4400[/C][C]4288.90252872632[/C][C]-474.702275266584[/C][C]4985.79974654027[/C][C]-111.097471273683[/C][/ROW]
[ROW][C]80[/C][C]2650[/C][C]2361.81028034041[/C][C]-2026.33648174007[/C][C]4964.52620139967[/C][C]-288.189719659595[/C][/ROW]
[ROW][C]81[/C][C]5100[/C][C]5104.71807168518[/C][C]152.029272055757[/C][C]4943.25265625906[/C][C]4.71807168517989[/C][/ROW]
[ROW][C]82[/C][C]5200[/C][C]5165.85586421723[/C][C]310.711106258466[/C][C]4923.4330295243[/C][C]-34.1441357827662[/C][/ROW]
[ROW][C]83[/C][C]5300[/C][C]5336.99369171236[/C][C]359.392905498106[/C][C]4903.61340278954[/C][C]36.9936917123578[/C][/ROW]
[ROW][C]84[/C][C]4900[/C][C]4795.13928002055[/C][C]116.91255453262[/C][C]4887.94816544683[/C][C]-104.860719979453[/C][/ROW]
[ROW][C]85[/C][C]5200[/C][C]5292.46702493826[/C][C]235.250046957609[/C][C]4872.28292810413[/C][C]92.4670249382625[/C][/ROW]
[ROW][C]86[/C][C]5300[/C][C]5371.01514694355[/C][C]363.047449747394[/C][C]4865.93740330906[/C][C]71.015146943545[/C][/ROW]
[ROW][C]87[/C][C]5250[/C][C]5322.29049454364[/C][C]318.117626942366[/C][C]4859.59187851399[/C][C]72.2904945436421[/C][/ROW]
[ROW][C]88[/C][C]5150[/C][C]5163.40935588139[/C][C]279.867065895414[/C][C]4856.7235782232[/C][C]13.4093558813893[/C][/ROW]
[ROW][C]89[/C][C]5050[/C][C]5054.52845128374[/C][C]191.61627078386[/C][C]4853.8552779324[/C][C]4.52845128373974[/C][/ROW]
[ROW][C]90[/C][C]4900[/C][C]4773.30082573161[/C][C]174.094476171699[/C][C]4852.60469809669[/C][C]-126.699174268391[/C][/ROW]
[ROW][C]91[/C][C]4150[/C][C]3923.3481570056[/C][C]-474.702275266584[/C][C]4851.35411826098[/C][C]-226.651842994401[/C][/ROW]
[ROW][C]92[/C][C]2800[/C][C]2772.80548262861[/C][C]-2026.33648174007[/C][C]4853.53099911146[/C][C]-27.1945173713884[/C][/ROW]
[ROW][C]93[/C][C]5100[/C][C]5192.26284798231[/C][C]152.029272055757[/C][C]4855.70787996193[/C][C]92.2628479823097[/C][/ROW]
[ROW][C]94[/C][C]5250[/C][C]5316.42105626674[/C][C]310.711106258466[/C][C]4872.8678374748[/C][C]66.4210562667358[/C][/ROW]
[ROW][C]95[/C][C]5200[/C][C]5150.57929951423[/C][C]359.392905498106[/C][C]4890.02779498766[/C][C]-49.420700485769[/C][/ROW]
[ROW][C]96[/C][C]5000[/C][C]4968.91339421978[/C][C]116.91255453262[/C][C]4914.1740512476[/C][C]-31.0866057802195[/C][/ROW]
[ROW][C]97[/C][C]5150[/C][C]5126.42964553486[/C][C]235.250046957609[/C][C]4938.32030750753[/C][C]-23.5703544651433[/C][/ROW]
[ROW][C]98[/C][C]5250[/C][C]5178.87522908983[/C][C]363.047449747394[/C][C]4958.07732116278[/C][C]-71.1247709101744[/C][/ROW]
[ROW][C]99[/C][C]5250[/C][C]5204.04803823961[/C][C]318.117626942366[/C][C]4977.83433481803[/C][C]-45.951961760391[/C][/ROW]
[ROW][C]100[/C][C]5350[/C][C]5423.23185949324[/C][C]279.867065895414[/C][C]4996.90107461134[/C][C]73.2318594932422[/C][/ROW]
[ROW][C]101[/C][C]5450[/C][C]5692.41591481148[/C][C]191.61627078386[/C][C]5015.96781440466[/C][C]242.415914811477[/C][/ROW]
[ROW][C]102[/C][C]5300[/C][C]5382.73737164237[/C][C]174.094476171699[/C][C]5043.16815218593[/C][C]82.7373716423708[/C][/ROW]
[ROW][C]103[/C][C]4300[/C][C]4004.33378529939[/C][C]-474.702275266584[/C][C]5070.3684899672[/C][C]-295.666214700614[/C][/ROW]
[ROW][C]104[/C][C]3000[/C][C]2924.26015957279[/C][C]-2026.33648174007[/C][C]5102.07632216729[/C][C]-75.7398404272144[/C][/ROW]
[ROW][C]105[/C][C]5300[/C][C]5314.18657357687[/C][C]152.029272055757[/C][C]5133.78415436737[/C][C]14.1865735768697[/C][/ROW]
[ROW][C]106[/C][C]5400[/C][C]5319.03879191759[/C][C]310.711106258466[/C][C]5170.25010182394[/C][C]-80.9612080824108[/C][/ROW]
[ROW][C]107[/C][C]5550[/C][C]5533.89104522138[/C][C]359.392905498106[/C][C]5206.71604928052[/C][C]-16.1089547786214[/C][/ROW]
[ROW][C]108[/C][C]5350[/C][C]5340.8490206615[/C][C]116.91255453262[/C][C]5242.23842480588[/C][C]-9.15097933850211[/C][/ROW]
[ROW][C]109[/C][C]5500[/C][C]5486.98915271114[/C][C]235.250046957609[/C][C]5277.76080033125[/C][C]-13.010847288856[/C][/ROW]
[ROW][C]110[/C][C]5750[/C][C]5832.37369158609[/C][C]363.047449747394[/C][C]5304.57885866651[/C][C]82.3736915860936[/C][/ROW]
[ROW][C]111[/C][C]5750[/C][C]5850.48545605586[/C][C]318.117626942366[/C][C]5331.39691700178[/C][C]100.485456055857[/C][/ROW]
[ROW][C]112[/C][C]5700[/C][C]5768.41905446426[/C][C]279.867065895414[/C][C]5351.71387964033[/C][C]68.4190544642606[/C][/ROW]
[ROW][C]113[/C][C]5800[/C][C]6036.35288693727[/C][C]191.61627078386[/C][C]5372.03084227887[/C][C]236.352886937267[/C][/ROW]
[ROW][C]114[/C][C]5800[/C][C]6027.49523599379[/C][C]174.094476171699[/C][C]5398.41028783451[/C][C]227.495235993789[/C][/ROW]
[ROW][C]115[/C][C]4600[/C][C]4249.91254187643[/C][C]-474.702275266584[/C][C]5424.78973339015[/C][C]-350.087458123568[/C][/ROW]
[ROW][C]116[/C][C]3150[/C][C]2868.8584321102[/C][C]-2026.33648174007[/C][C]5457.47804962987[/C][C]-281.141567889799[/C][/ROW]
[ROW][C]117[/C][C]5500[/C][C]5357.80436207465[/C][C]152.029272055757[/C][C]5490.16636586959[/C][C]-142.195637925346[/C][/ROW]
[ROW][C]118[/C][C]5750[/C][C]5649.64174328803[/C][C]310.711106258466[/C][C]5539.64715045351[/C][C]-100.358256711972[/C][/ROW]
[ROW][C]119[/C][C]5950[/C][C]5951.47915946447[/C][C]359.392905498106[/C][C]5589.12793503742[/C][C]1.47915946447301[/C][/ROW]
[ROW][C]120[/C][C]5600[/C][C]5445.21704229388[/C][C]116.91255453262[/C][C]5637.8704031735[/C][C]-154.782957706122[/C][/ROW]
[ROW][C]121[/C][C]6100[/C][C]6278.13708173281[/C][C]235.250046957609[/C][C]5686.61287130958[/C][C]178.13708173281[/C][/ROW]
[ROW][C]122[/C][C]6250[/C][C]6398.2540571179[/C][C]363.047449747394[/C][C]5738.69849313471[/C][C]148.2540571179[/C][/ROW]
[ROW][C]123[/C][C]6150[/C][C]6191.0982580978[/C][C]318.117626942366[/C][C]5790.78411495983[/C][C]41.0982580978034[/C][/ROW]
[ROW][C]124[/C][C]6050[/C][C]5974.57422592323[/C][C]279.867065895414[/C][C]5845.55870818135[/C][C]-75.425774076768[/C][/ROW]
[ROW][C]125[/C][C]6300[/C][C]6508.05042781326[/C][C]191.61627078386[/C][C]5900.33330140288[/C][C]208.050427813264[/C][/ROW]
[ROW][C]126[/C][C]5950[/C][C]5769.7089950143[/C][C]174.094476171699[/C][C]5956.196528814[/C][C]-180.291004985703[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299409&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299409&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
141504006.66338943813235.2500469576094058.08656360426-143.336610561871
243004159.4218888039363.0474497473944077.5306614487-140.578111196096
343004184.90761376449318.1176269423664096.97475929314-115.092386235506
444504507.57472536404279.8670658954144112.5582087405557.5747253640393
545004680.24207102819191.616270783864128.14165818795180.242071028187
644004484.41965869171174.0944761716994141.4858651365984.4196586917142
739504219.87220318136-474.7022752665844154.83007208522269.872203181362
821502159.02299455573-2026.336481740074167.313487184349.02299455572756
943504368.17382566078152.0292720557574179.7969022834718.1738256607769
1045504612.44783388388310.7111062584664176.8410598576562.4478338838799
1146004666.72187707005359.3929054981064173.8852174318466.7218770700538
1242504217.88729128156116.912554532624165.20015418582-32.1127087184395
1343504308.23486210259235.2500469576094156.5150909398-41.7651378974069
1444004282.47375920493363.0474497473944154.47879104768-117.526240795069
1543004129.43988190208318.1176269423664152.44249115555-170.56011809792
1643504271.75137171585279.8670658954144148.38156238873-78.2486282841455
1743504364.06309559423191.616270783864144.3206336219114.0630955942315
1844004488.21518869701174.0944761716994137.6903351312988.2151886970141
1938504043.64223862592-474.7022752665844131.06003664067193.642238625918
2023002500.936759712-2026.336481740074125.39972202807200.936759712002
2143004328.23132052877152.0292720557574119.7394074154728.2313205287701
2243504277.46479678673310.7111062584664111.82409695481-72.5352032132723
2343504236.69830800776359.3929054981064103.90878649414-113.301691992244
2442004184.95882114425116.912554532624098.12862432313-15.0411788557476
2541503972.40149089028235.2500469576094092.34846215212-177.598509109725
2644504441.29754159099363.0474497473944095.65500866162-8.70245840901407
2743004182.92081788651318.1176269423664098.96155517112-117.079182113489
2843504311.23532483509279.8670658954144108.8976092695-38.7646751649108
2943004289.55006584827191.616270783864118.83366336787-10.4499341517303
3043504400.04703712008174.0944761716994125.8584867082250.0470371200836
3139004141.81896521802-474.7022752665844132.88331004857241.818965218018
3222502395.79495282464-2026.336481740074130.54152891543145.794952824641
3343004319.77098016195152.0292720557574128.1997477822919.7709801619485
3444504473.01372175391310.7111062584664116.2751719876223.0137217539113
3544004336.25649830894359.3929054981064104.35059619295-63.7435016910558
3642504285.58493636839116.912554532624097.5025090989835.5849363683947
3742504174.09553103737235.2500469576094090.65442200502-75.9044689626276
3843004139.85696398634363.0474497473944097.09558626627-160.143036013661
3944504478.34562253012318.1176269423664103.5367505275128.3456225301197
4039003401.86162326878279.8670658954144118.2713108358-498.138376731218
4143504375.37785807205191.616270783864133.0058711440925.3778580720473
4245004674.20517099731174.0944761716994151.70035283099174.205170997313
4338003904.3074407487-474.7022752665844170.39483451788104.3074407487
4424502732.73183135957-2026.336481740074193.6046503805282.731831359573
4544004431.15626170113152.0292720557574216.8144662431131.1562617011323
4645004478.19952135867310.7111062584664211.08937238287-21.8004786413339
4745004435.24281597927359.3929054981064205.36427852262-64.7571840207302
4844004509.05114794501116.912554532624174.03629752237109.051147945014
4944504522.04163652028235.2500469576094142.7083165221172.0416365202846
5046004703.20022620419363.0474497473944133.75232404842103.200226204187
5147004957.0860414829318.1176269423664124.79633157473257.086041482902
5247004966.96735244962279.8670658954144153.16558165497266.967352449619
5329501526.84889748094191.616270783864181.5348317352-1423.15110251906
5437503100.12647375988174.0944761716994225.77905006842-649.873526240122
5540504304.67900686494-474.7022752665844270.02326840164254.679006864941
5625502799.38017075339-2026.336481740074326.95631098668249.380170753388
5746004664.08137437252152.0292720557574383.8893535717264.0813743725212
5850005223.71005673272310.7111062584664465.57883700881223.710056732719
5951005293.33877405599359.3929054981064547.26832044591193.338774055987
6049005057.17320972578116.912554532624625.9142357416157.173209725775
6149504960.18980200509235.2500469576094704.560151037310.1898020050903
6250004899.04997226862363.0474497473944737.90257798399-100.950027731384
6349504810.63736812696318.1176269423664771.24500493068-139.362631873044
6451005129.80099432733279.8670658954144790.3319397772529.8009943273337
6552505498.96485459231191.616270783864809.41887462383248.964854592315
6652005391.43455610116174.0944761716994834.47096772714191.434556101161
6743004215.17921443613-474.7022752665844859.52306083046-84.8207855638721
6826502435.10806374364-2026.336481740074891.22841799643-214.891936256361
6949504825.03695278183152.0292720557574922.93377516241-124.963047218166
7052005138.19471455711310.7111062584664951.09417918442-61.8052854428897
7153505361.35251129546359.3929054981064979.2545832064411.3525112954567
7251505185.57271724445116.912554532624997.5147282229335.5727172444522
7353505448.97507980297235.2500469576095015.7748732394298.9750798029745
7455505712.67770932723363.0474497473945024.27484092538162.677709327229
7554005449.1075644463318.1176269423665032.7748086113449.1075644462981
7654505593.46523690499279.8670658954145026.6676971996143.465236904985
7754505687.82314342828191.616270783865020.56058578786237.823143428276
7852005222.72535766424174.0944761716995003.1801661640722.7253576642352
7944004288.90252872632-474.7022752665844985.79974654027-111.097471273683
8026502361.81028034041-2026.336481740074964.52620139967-288.189719659595
8151005104.71807168518152.0292720557574943.252656259064.71807168517989
8252005165.85586421723310.7111062584664923.4330295243-34.1441357827662
8353005336.99369171236359.3929054981064903.6134027895436.9936917123578
8449004795.13928002055116.912554532624887.94816544683-104.860719979453
8552005292.46702493826235.2500469576094872.2829281041392.4670249382625
8653005371.01514694355363.0474497473944865.9374033090671.015146943545
8752505322.29049454364318.1176269423664859.5918785139972.2904945436421
8851505163.40935588139279.8670658954144856.723578223213.4093558813893
8950505054.52845128374191.616270783864853.85527793244.52845128373974
9049004773.30082573161174.0944761716994852.60469809669-126.699174268391
9141503923.3481570056-474.7022752665844851.35411826098-226.651842994401
9228002772.80548262861-2026.336481740074853.53099911146-27.1945173713884
9351005192.26284798231152.0292720557574855.7078799619392.2628479823097
9452505316.42105626674310.7111062584664872.867837474866.4210562667358
9552005150.57929951423359.3929054981064890.02779498766-49.420700485769
9650004968.91339421978116.912554532624914.1740512476-31.0866057802195
9751505126.42964553486235.2500469576094938.32030750753-23.5703544651433
9852505178.87522908983363.0474497473944958.07732116278-71.1247709101744
9952505204.04803823961318.1176269423664977.83433481803-45.951961760391
10053505423.23185949324279.8670658954144996.9010746113473.2318594932422
10154505692.41591481148191.616270783865015.96781440466242.415914811477
10253005382.73737164237174.0944761716995043.1681521859382.7373716423708
10343004004.33378529939-474.7022752665845070.3684899672-295.666214700614
10430002924.26015957279-2026.336481740075102.07632216729-75.7398404272144
10553005314.18657357687152.0292720557575133.7841543673714.1865735768697
10654005319.03879191759310.7111062584665170.25010182394-80.9612080824108
10755505533.89104522138359.3929054981065206.71604928052-16.1089547786214
10853505340.8490206615116.912554532625242.23842480588-9.15097933850211
10955005486.98915271114235.2500469576095277.76080033125-13.010847288856
11057505832.37369158609363.0474497473945304.5788586665182.3736915860936
11157505850.48545605586318.1176269423665331.39691700178100.485456055857
11257005768.41905446426279.8670658954145351.7138796403368.4190544642606
11358006036.35288693727191.616270783865372.03084227887236.352886937267
11458006027.49523599379174.0944761716995398.41028783451227.495235993789
11546004249.91254187643-474.7022752665845424.78973339015-350.087458123568
11631502868.8584321102-2026.336481740075457.47804962987-281.141567889799
11755005357.80436207465152.0292720557575490.16636586959-142.195637925346
11857505649.64174328803310.7111062584665539.64715045351-100.358256711972
11959505951.47915946447359.3929054981065589.127935037421.47915946447301
12056005445.21704229388116.912554532625637.8704031735-154.782957706122
12161006278.13708173281235.2500469576095686.61287130958178.13708173281
12262506398.2540571179363.0474497473945738.69849313471148.2540571179
12361506191.0982580978318.1176269423665790.7841149598341.0982580978034
12460505974.57422592323279.8670658954145845.55870818135-75.425774076768
12563006508.05042781326191.616270783865900.33330140288208.050427813264
12659505769.7089950143174.0944761716995956.196528814-180.291004985703



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')