Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 14 Dec 2016 14:16:47 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481721622azdfa5b0ghwgcbl.htm/, Retrieved Fri, 01 Nov 2024 03:43:44 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299403, Retrieved Fri, 01 Nov 2024 03:43:44 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact88
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-14 13:16:47] [df90c754990be6fd2b18fcd529010a59] [Current]
Feedback Forum

Post a new message
Dataseries X:
2160
2660
3680
3380
3600
3940
3080
2680
2920
2660
2360
2440
2660
3000
4140
3580
3960
4280
3000
3620
4280
4500
4360
3840
4620
4700
5280
4700
5340
5200
3880
4920
4600
5360
4960
4060
4880
4980
5440
5320
5960
5460
3780
5220
5920
6060
5100
4400
5480
5240
5160
5620
5440
5460
4680
4940
5900
5580
4480
4600
5540
5800
6460
6100
6080
6080
4860
5740
5980
6660
5520
5360
5900
6360
7280
6220
6660
6860
4460
6360
6480
6800
6460
6060
6760
6860
7320
6680
7220
7160
4100
6560
5780
5500
5800
5300
4240
5620
7100
5960
7360
7420
4760
6040
5940
6720
4700
3100
3880
3540
4160
5260
6040
5800
4180
5120
5980
6940
5440
4360
4640
5540
6840
6340
6620
6680




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299403&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299403&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299403&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.256829-2.87140.002401
2-0.202326-2.26210.01271
30.0151340.16920.432954
4-0.136101-1.52170.065311
50.1899782.1240.01782
6-0.102285-1.14360.127492
70.1527281.70760.045101
8-0.117553-1.31430.095579
9-0.07935-0.88720.188349
10-0.118591-1.32590.093647
11-0.139539-1.56010.060633
120.6337517.08560
13-0.203964-2.28040.012139
14-0.037998-0.42480.335847
15-0.09887-1.10540.135555
16-0.106538-1.19110.117928
170.247012.76170.003309
18-0.129639-1.44940.074864
190.1272571.42280.078647
20-0.03157-0.3530.362357
21-0.082106-0.9180.1802

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.256829 & -2.8714 & 0.002401 \tabularnewline
2 & -0.202326 & -2.2621 & 0.01271 \tabularnewline
3 & 0.015134 & 0.1692 & 0.432954 \tabularnewline
4 & -0.136101 & -1.5217 & 0.065311 \tabularnewline
5 & 0.189978 & 2.124 & 0.01782 \tabularnewline
6 & -0.102285 & -1.1436 & 0.127492 \tabularnewline
7 & 0.152728 & 1.7076 & 0.045101 \tabularnewline
8 & -0.117553 & -1.3143 & 0.095579 \tabularnewline
9 & -0.07935 & -0.8872 & 0.188349 \tabularnewline
10 & -0.118591 & -1.3259 & 0.093647 \tabularnewline
11 & -0.139539 & -1.5601 & 0.060633 \tabularnewline
12 & 0.633751 & 7.0856 & 0 \tabularnewline
13 & -0.203964 & -2.2804 & 0.012139 \tabularnewline
14 & -0.037998 & -0.4248 & 0.335847 \tabularnewline
15 & -0.09887 & -1.1054 & 0.135555 \tabularnewline
16 & -0.106538 & -1.1911 & 0.117928 \tabularnewline
17 & 0.24701 & 2.7617 & 0.003309 \tabularnewline
18 & -0.129639 & -1.4494 & 0.074864 \tabularnewline
19 & 0.127257 & 1.4228 & 0.078647 \tabularnewline
20 & -0.03157 & -0.353 & 0.362357 \tabularnewline
21 & -0.082106 & -0.918 & 0.1802 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299403&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.256829[/C][C]-2.8714[/C][C]0.002401[/C][/ROW]
[ROW][C]2[/C][C]-0.202326[/C][C]-2.2621[/C][C]0.01271[/C][/ROW]
[ROW][C]3[/C][C]0.015134[/C][C]0.1692[/C][C]0.432954[/C][/ROW]
[ROW][C]4[/C][C]-0.136101[/C][C]-1.5217[/C][C]0.065311[/C][/ROW]
[ROW][C]5[/C][C]0.189978[/C][C]2.124[/C][C]0.01782[/C][/ROW]
[ROW][C]6[/C][C]-0.102285[/C][C]-1.1436[/C][C]0.127492[/C][/ROW]
[ROW][C]7[/C][C]0.152728[/C][C]1.7076[/C][C]0.045101[/C][/ROW]
[ROW][C]8[/C][C]-0.117553[/C][C]-1.3143[/C][C]0.095579[/C][/ROW]
[ROW][C]9[/C][C]-0.07935[/C][C]-0.8872[/C][C]0.188349[/C][/ROW]
[ROW][C]10[/C][C]-0.118591[/C][C]-1.3259[/C][C]0.093647[/C][/ROW]
[ROW][C]11[/C][C]-0.139539[/C][C]-1.5601[/C][C]0.060633[/C][/ROW]
[ROW][C]12[/C][C]0.633751[/C][C]7.0856[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]-0.203964[/C][C]-2.2804[/C][C]0.012139[/C][/ROW]
[ROW][C]14[/C][C]-0.037998[/C][C]-0.4248[/C][C]0.335847[/C][/ROW]
[ROW][C]15[/C][C]-0.09887[/C][C]-1.1054[/C][C]0.135555[/C][/ROW]
[ROW][C]16[/C][C]-0.106538[/C][C]-1.1911[/C][C]0.117928[/C][/ROW]
[ROW][C]17[/C][C]0.24701[/C][C]2.7617[/C][C]0.003309[/C][/ROW]
[ROW][C]18[/C][C]-0.129639[/C][C]-1.4494[/C][C]0.074864[/C][/ROW]
[ROW][C]19[/C][C]0.127257[/C][C]1.4228[/C][C]0.078647[/C][/ROW]
[ROW][C]20[/C][C]-0.03157[/C][C]-0.353[/C][C]0.362357[/C][/ROW]
[ROW][C]21[/C][C]-0.082106[/C][C]-0.918[/C][C]0.1802[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299403&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299403&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.256829-2.87140.002401
2-0.202326-2.26210.01271
30.0151340.16920.432954
4-0.136101-1.52170.065311
50.1899782.1240.01782
6-0.102285-1.14360.127492
70.1527281.70760.045101
8-0.117553-1.31430.095579
9-0.07935-0.88720.188349
10-0.118591-1.32590.093647
11-0.139539-1.56010.060633
120.6337517.08560
13-0.203964-2.28040.012139
14-0.037998-0.42480.335847
15-0.09887-1.10540.135555
16-0.106538-1.19110.117928
170.247012.76170.003309
18-0.129639-1.44940.074864
190.1272571.42280.078647
20-0.03157-0.3530.362357
21-0.082106-0.9180.1802







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.256829-2.87140.002401
2-0.287233-3.21140.00084
3-0.146473-1.63760.052009
4-0.281413-3.14630.001034
50.0220510.24650.402834
6-0.166344-1.85980.032634
70.1538841.72050.04391
8-0.117718-1.31610.09527
9-0.020011-0.22370.411668
10-0.352992-3.94666.6e-05
11-0.392993-4.39381.2e-05
120.3614024.04064.6e-05
130.0158610.17730.429767
140.2818343.1510.001018
15-0.148016-1.65490.05023
160.042540.47560.317591
17-0.053187-0.59470.276576
18-0.008731-0.09760.461196
19-0.075216-0.84090.200995
200.12811.43220.07729
210.100131.11950.132538

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.256829 & -2.8714 & 0.002401 \tabularnewline
2 & -0.287233 & -3.2114 & 0.00084 \tabularnewline
3 & -0.146473 & -1.6376 & 0.052009 \tabularnewline
4 & -0.281413 & -3.1463 & 0.001034 \tabularnewline
5 & 0.022051 & 0.2465 & 0.402834 \tabularnewline
6 & -0.166344 & -1.8598 & 0.032634 \tabularnewline
7 & 0.153884 & 1.7205 & 0.04391 \tabularnewline
8 & -0.117718 & -1.3161 & 0.09527 \tabularnewline
9 & -0.020011 & -0.2237 & 0.411668 \tabularnewline
10 & -0.352992 & -3.9466 & 6.6e-05 \tabularnewline
11 & -0.392993 & -4.3938 & 1.2e-05 \tabularnewline
12 & 0.361402 & 4.0406 & 4.6e-05 \tabularnewline
13 & 0.015861 & 0.1773 & 0.429767 \tabularnewline
14 & 0.281834 & 3.151 & 0.001018 \tabularnewline
15 & -0.148016 & -1.6549 & 0.05023 \tabularnewline
16 & 0.04254 & 0.4756 & 0.317591 \tabularnewline
17 & -0.053187 & -0.5947 & 0.276576 \tabularnewline
18 & -0.008731 & -0.0976 & 0.461196 \tabularnewline
19 & -0.075216 & -0.8409 & 0.200995 \tabularnewline
20 & 0.1281 & 1.4322 & 0.07729 \tabularnewline
21 & 0.10013 & 1.1195 & 0.132538 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299403&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.256829[/C][C]-2.8714[/C][C]0.002401[/C][/ROW]
[ROW][C]2[/C][C]-0.287233[/C][C]-3.2114[/C][C]0.00084[/C][/ROW]
[ROW][C]3[/C][C]-0.146473[/C][C]-1.6376[/C][C]0.052009[/C][/ROW]
[ROW][C]4[/C][C]-0.281413[/C][C]-3.1463[/C][C]0.001034[/C][/ROW]
[ROW][C]5[/C][C]0.022051[/C][C]0.2465[/C][C]0.402834[/C][/ROW]
[ROW][C]6[/C][C]-0.166344[/C][C]-1.8598[/C][C]0.032634[/C][/ROW]
[ROW][C]7[/C][C]0.153884[/C][C]1.7205[/C][C]0.04391[/C][/ROW]
[ROW][C]8[/C][C]-0.117718[/C][C]-1.3161[/C][C]0.09527[/C][/ROW]
[ROW][C]9[/C][C]-0.020011[/C][C]-0.2237[/C][C]0.411668[/C][/ROW]
[ROW][C]10[/C][C]-0.352992[/C][C]-3.9466[/C][C]6.6e-05[/C][/ROW]
[ROW][C]11[/C][C]-0.392993[/C][C]-4.3938[/C][C]1.2e-05[/C][/ROW]
[ROW][C]12[/C][C]0.361402[/C][C]4.0406[/C][C]4.6e-05[/C][/ROW]
[ROW][C]13[/C][C]0.015861[/C][C]0.1773[/C][C]0.429767[/C][/ROW]
[ROW][C]14[/C][C]0.281834[/C][C]3.151[/C][C]0.001018[/C][/ROW]
[ROW][C]15[/C][C]-0.148016[/C][C]-1.6549[/C][C]0.05023[/C][/ROW]
[ROW][C]16[/C][C]0.04254[/C][C]0.4756[/C][C]0.317591[/C][/ROW]
[ROW][C]17[/C][C]-0.053187[/C][C]-0.5947[/C][C]0.276576[/C][/ROW]
[ROW][C]18[/C][C]-0.008731[/C][C]-0.0976[/C][C]0.461196[/C][/ROW]
[ROW][C]19[/C][C]-0.075216[/C][C]-0.8409[/C][C]0.200995[/C][/ROW]
[ROW][C]20[/C][C]0.1281[/C][C]1.4322[/C][C]0.07729[/C][/ROW]
[ROW][C]21[/C][C]0.10013[/C][C]1.1195[/C][C]0.132538[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299403&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299403&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.256829-2.87140.002401
2-0.287233-3.21140.00084
3-0.146473-1.63760.052009
4-0.281413-3.14630.001034
50.0220510.24650.402834
6-0.166344-1.85980.032634
70.1538841.72050.04391
8-0.117718-1.31610.09527
9-0.020011-0.22370.411668
10-0.352992-3.94666.6e-05
11-0.392993-4.39381.2e-05
120.3614024.04064.6e-05
130.0158610.17730.429767
140.2818343.1510.001018
15-0.148016-1.65490.05023
160.042540.47560.317591
17-0.053187-0.59470.276576
18-0.008731-0.09760.461196
19-0.075216-0.84090.200995
200.12811.43220.07729
210.100131.11950.132538



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 4 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 4 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')