Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationTue, 13 Dec 2016 16:30:13 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t1481643062qcd4czc18cwqdyy.htm/, Retrieved Fri, 01 Nov 2024 03:31:32 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299155, Retrieved Fri, 01 Nov 2024 03:31:32 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact65
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [Structural Time S...] [2016-12-13 15:30:13] [94c1b173d9287822f5e2740a4a602bdd] [Current]
Feedback Forum

Post a new message
Dataseries X:
2880
2160
2040
2360
2160
3300
2700
3900
4620
3860
4040
3460
2820
2040
2100
1820
1840
2680
3060
3540
4700
4880
3960
2440
2440
2340
2340
2220
1560
2940
2280
2400
2700
3100
3160
3520
2300
2680
2140
2320
1940
2260
2300
2980
2800
3060
3140
2740
2480
1720
2060
1920
2000
2820
2440
2700
2880
3100
3060
2040
1880
2180
1820
1700
1700
1680
2240
2400
2920
3380
2700
1900
1960
2040
1860
1720
2340
2060
2200
2520
2700
2000
2120
1780
1820
1480
1780
1600
1720
2100
2000
2420
2660
3140
2280
2220
1860
1980
1520
1540
1660
2500
1660
2220
2160
2540
2540
2340




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time5 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299155&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]5 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299155&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299155&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
128802880000
221602220.21273242883-37.0988141100351-37.7121568471626-0.874018005373299
320402086.81227552964-38.0273016692239-38.0942100552482-0.20914975939091
423602365.73527437358-36.3404409138364-34.70480622397760.690552152952606
521602209.01754666954-36.9405524229841-38.0106706449663-0.262285258572179
633003229.85849265297-31.7158997384647-26.580968384572.30474345494295
727002776.05245502518-33.789855811412-37.456803672973-0.919660817437494
839003823.87008560652-28.5014263228847-22.77181610674222.35661132857335
946204571.82955684918-24.7234627281171-22.82897280663271.69174031255727
1038603946.59193372705-27.6311882255362-31.6809268350729-1.30837800108129
1140404053.1273958985-26.9846757323723-25.39561971429560.29231457464171
1234603536.59853595309-29.3323428602231-31.8344255757589-1.06658074361433
1328202882.521349750320.350326508121615-5.11179515452642-1.6544956341589
1420402113.20282893457-19.188446974669-22.5687862539358-1.41887346775705
1521002116.34870548548-19.0827252825377-18.37278301547960.0485274649768968
1618201860.09879013054-19.6681096148164-18.4934288738478-0.516193895455307
1718401862.73922930076-19.6161185469311-24.77180294886230.0485553868102639
1826802612.33446439375-17.8303341107363-2.419043693758991.67421366238725
1930603041.89093884608-16.7940008490467-22.65336887779920.973749851679244
2035403507.14162028869-15.6799422129764-11.06182886225881.04918142548402
2147004598.90077515506-13.12625283493930.1978297094259512.41036207041925
2248804872.5163444085-12.4659671035857-18.64208249291240.624098926235524
2339604053.4208057203-14.335685870776-19.9267845051582-1.75567719589411
2424402599.05951496604-17.4217729840254-27.8502161853055-3.13389622360415
2524402329.24883756162-11.8125595253176133.829103290274-0.607230625882841
2623402352.53766047832-11.2401833383133-15.16484673011980.0691208933084135
2723402347.4203088186-11.2195394983068-7.973825022698890.0133037214700762
2822202238.66260234898-11.3778965191846-9.80780958762399-0.212227587342119
2915601643.370312897-12.2758428591069-30.3561697974991-1.27050882693527
3029402811.6722422416-10.457625447292821.14264222088342.56875054580415
3122802350.90028878815-11.1506314836482-30.0161243175701-0.979811617911427
3224002406.60527376662-11.0478950361046-12.67511469448380.14546694088811
3327002673.31761139328-10.62162649551581.464450665400370.604360677934326
3431003071.24567865476-9.99364195025117-8.338036087837630.888940386239645
3531603155.50896304599-9.8455566035122-4.066595714101960.205096065001479
3635203501.66247364811-9.40206623839769-13.98590414587610.774446888936978
3723002460.093277412245.39761602781483-66.0255968175877-2.39991989613384
3826802658.990445181247.701756453025415.695074986200930.392354937061631
3921402182.489546749996.358542680154621.15197472999727-1.05199395848748
4023202287.322111848886.4796021267257723.76720333915140.214234033294388
4119402000.470989227726.13931526865451-33.9265054699141-0.638147990531457
4222602194.066525711046.3586028490584548.97017370035970.407813846249695
4323002302.198274257836.47774990653505-11.40791316402460.221408811793924
4429802912.02503264027.1833714372427813.37680925250331.31259294339459
4528002801.797469335537.046151100980178.82726235676694-0.25542887978339
4630603027.228620589917.3029278742241713.00932129166220.475102791537141
4731403125.403749271787.4138399502216.373018725769810.19770525322
4827402767.283798957717.136463798555385.79679752856777-0.795022430425544
4924802603.851058495228.91902616645142-108.349808695973-0.389598523291783
5017201790.285981057211.27373952922423-3.14500477712268-1.69587064765233
5120602034.285650031611.870492887630233.902469197423250.527288889031294
5219201910.822447211011.7438161946776520.4851809152519-0.272647240956333
5320002026.961719161461.85143057406212-37.28307970913150.248849025716417
5428202700.178595510932.4935598101350559.2485893273241.46043989974963
5524402493.662457102952.29308240988514-34.8049876799044-0.454664161349101
5627002668.101653017912.458081500200516.36682101801750.374473711757541
5728802859.130529701342.638839584957813.85606177692320.410202946315894
5831003072.525962681142.843406791366518.458965911417660.458469959249396
5930603057.440851336592.825145783224834.17672768384809-0.039003203264102
6020402138.920001164232.42131192896997-15.7860359068301-2.00365213943796
6118801940.110255688084.05431149522887-41.8686462677518-0.454587772309675
6221802162.363121019985.70308433295432-0.5254557616585510.4548353069717
6318201847.108132793364.973854535489831.65394544467704-0.697134715714891
6417001691.633034032244.8326742497821522.8046578085391-0.349019446679779
6517001741.639789890034.86874422119873-45.70494743684750.0982637877222629
6616801627.299606678574.771109529854963.4275496962112-0.259304240362398
6722402207.505064615755.24511269131329-19.28588351357851.25168804560131
6824002369.901644189575.3745117977688315.95698773550510.341836648290481
6929202863.722122193115.7772145054685712.3247832014141.06247142359807
7033803324.094672419566.1599178168197414.9983056409820.988856938631406
7127002745.962099547795.64249772861776.61667750711738-1.27106038269039
7219001992.51639262465.48581400192575-24.2034915270018-1.65068528123166
7319602013.33970329865.38541316588436-54.72686175969260.034386783544408
7420402032.303759377515.471112417855376.550898583700420.0285236105858671
7518601873.693155260495.118142979330990.974139056470269-0.356335693738427
7617201715.691728644254.987691093341218.9525431276339-0.354817749491256
7723402309.148236249815.39943615905979-21.98290976291561.28000693507088
7820602044.004560472115.2036529338095440.2848799682812-0.588465539285969
7922002200.322037962015.314061384074-13.88896257673250.328691184773149
8025202482.07757692925.5160626481587813.10365945317750.601294099410746
8127002681.550366624845.658240911718851.036309732313670.421880640855902
8220002052.655626754415.178687109717774.31420376289949-1.38026673230955
8321202088.114093766455.2025623374402129.16733625300730.0658678961324197
8417801834.754228882855.19469523146702-31.5388147596819-0.562247787512893
8518201867.612279916675.04492019559653-50.10900520295910.0616796466015099
8614801509.842558911643.094940565149591.05296483813862-0.766521238645307
8717801743.656642342623.5714948954474415.7643657966180.500970515659535
8816001615.790782891873.47274682176182-4.01425397963727-0.285896340179673
8917201722.654982078113.53768527869753-11.91958707556760.224886284263379
9021002028.131382004623.7350938581869744.81378727737120.656737379899061
9120002025.713747052283.73101303045393-25.1624461988377-0.0133825766655478
9224202375.629136550653.9608606082098313.35185882242590.75297286880043
9326602619.377235539844.1210215208091319.13722339161940.521554379839377
9431403085.948703126994.442601113155812.61450130731.00589307227414
9522802339.836731019263.908519826438637.4171900351546-1.63264151678429
9622202257.679864239343.91765686246505-29.9676464745701-0.187151944604567
9718601939.807989585815.38393508747685-50.8201223888619-0.714460925894923
9819801979.673483566375.54407178099099-2.630646834681290.0731729229954308
9915201550.636852117374.675301226317168.05259949689212-0.943474398139677
10015401541.68136216524.66543650490585-0.46214844566717-0.0296485546827011
10116601663.447951416324.7327488434846-13.92349061343210.254701858757307
10225002367.657213295325.1527253080734269.77207526334481.52137935846641
10316601770.762662615664.7839855559723-56.9081668520127-1.30946422892992
10422202159.919185470045.0200134907490525.6978842918550.836017425305912
10521602159.981630619075.016939260084610.461834071039184-0.0107828661043767
10625402470.684575884495.2160388654279841.97108403703530.664900641283624
10725402527.091280836935.249144337468548.329405565275140.111349343916096
10823402381.196763495495.28133577475917-27.6757790879381-0.32867654319218

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 2880 & 2880 & 0 & 0 & 0 \tabularnewline
2 & 2160 & 2220.21273242883 & -37.0988141100351 & -37.7121568471626 & -0.874018005373299 \tabularnewline
3 & 2040 & 2086.81227552964 & -38.0273016692239 & -38.0942100552482 & -0.20914975939091 \tabularnewline
4 & 2360 & 2365.73527437358 & -36.3404409138364 & -34.7048062239776 & 0.690552152952606 \tabularnewline
5 & 2160 & 2209.01754666954 & -36.9405524229841 & -38.0106706449663 & -0.262285258572179 \tabularnewline
6 & 3300 & 3229.85849265297 & -31.7158997384647 & -26.58096838457 & 2.30474345494295 \tabularnewline
7 & 2700 & 2776.05245502518 & -33.789855811412 & -37.456803672973 & -0.919660817437494 \tabularnewline
8 & 3900 & 3823.87008560652 & -28.5014263228847 & -22.7718161067422 & 2.35661132857335 \tabularnewline
9 & 4620 & 4571.82955684918 & -24.7234627281171 & -22.8289728066327 & 1.69174031255727 \tabularnewline
10 & 3860 & 3946.59193372705 & -27.6311882255362 & -31.6809268350729 & -1.30837800108129 \tabularnewline
11 & 4040 & 4053.1273958985 & -26.9846757323723 & -25.3956197142956 & 0.29231457464171 \tabularnewline
12 & 3460 & 3536.59853595309 & -29.3323428602231 & -31.8344255757589 & -1.06658074361433 \tabularnewline
13 & 2820 & 2882.52134975032 & 0.350326508121615 & -5.11179515452642 & -1.6544956341589 \tabularnewline
14 & 2040 & 2113.20282893457 & -19.188446974669 & -22.5687862539358 & -1.41887346775705 \tabularnewline
15 & 2100 & 2116.34870548548 & -19.0827252825377 & -18.3727830154796 & 0.0485274649768968 \tabularnewline
16 & 1820 & 1860.09879013054 & -19.6681096148164 & -18.4934288738478 & -0.516193895455307 \tabularnewline
17 & 1840 & 1862.73922930076 & -19.6161185469311 & -24.7718029488623 & 0.0485553868102639 \tabularnewline
18 & 2680 & 2612.33446439375 & -17.8303341107363 & -2.41904369375899 & 1.67421366238725 \tabularnewline
19 & 3060 & 3041.89093884608 & -16.7940008490467 & -22.6533688777992 & 0.973749851679244 \tabularnewline
20 & 3540 & 3507.14162028869 & -15.6799422129764 & -11.0618288622588 & 1.04918142548402 \tabularnewline
21 & 4700 & 4598.90077515506 & -13.1262528349393 & 0.197829709425951 & 2.41036207041925 \tabularnewline
22 & 4880 & 4872.5163444085 & -12.4659671035857 & -18.6420824929124 & 0.624098926235524 \tabularnewline
23 & 3960 & 4053.4208057203 & -14.335685870776 & -19.9267845051582 & -1.75567719589411 \tabularnewline
24 & 2440 & 2599.05951496604 & -17.4217729840254 & -27.8502161853055 & -3.13389622360415 \tabularnewline
25 & 2440 & 2329.24883756162 & -11.8125595253176 & 133.829103290274 & -0.607230625882841 \tabularnewline
26 & 2340 & 2352.53766047832 & -11.2401833383133 & -15.1648467301198 & 0.0691208933084135 \tabularnewline
27 & 2340 & 2347.4203088186 & -11.2195394983068 & -7.97382502269889 & 0.0133037214700762 \tabularnewline
28 & 2220 & 2238.66260234898 & -11.3778965191846 & -9.80780958762399 & -0.212227587342119 \tabularnewline
29 & 1560 & 1643.370312897 & -12.2758428591069 & -30.3561697974991 & -1.27050882693527 \tabularnewline
30 & 2940 & 2811.6722422416 & -10.4576254472928 & 21.1426422208834 & 2.56875054580415 \tabularnewline
31 & 2280 & 2350.90028878815 & -11.1506314836482 & -30.0161243175701 & -0.979811617911427 \tabularnewline
32 & 2400 & 2406.60527376662 & -11.0478950361046 & -12.6751146944838 & 0.14546694088811 \tabularnewline
33 & 2700 & 2673.31761139328 & -10.6216264955158 & 1.46445066540037 & 0.604360677934326 \tabularnewline
34 & 3100 & 3071.24567865476 & -9.99364195025117 & -8.33803608783763 & 0.888940386239645 \tabularnewline
35 & 3160 & 3155.50896304599 & -9.8455566035122 & -4.06659571410196 & 0.205096065001479 \tabularnewline
36 & 3520 & 3501.66247364811 & -9.40206623839769 & -13.9859041458761 & 0.774446888936978 \tabularnewline
37 & 2300 & 2460.09327741224 & 5.39761602781483 & -66.0255968175877 & -2.39991989613384 \tabularnewline
38 & 2680 & 2658.99044518124 & 7.70175645302541 & 5.69507498620093 & 0.392354937061631 \tabularnewline
39 & 2140 & 2182.48954674999 & 6.35854268015462 & 1.15197472999727 & -1.05199395848748 \tabularnewline
40 & 2320 & 2287.32211184888 & 6.47960212672577 & 23.7672033391514 & 0.214234033294388 \tabularnewline
41 & 1940 & 2000.47098922772 & 6.13931526865451 & -33.9265054699141 & -0.638147990531457 \tabularnewline
42 & 2260 & 2194.06652571104 & 6.35860284905845 & 48.9701737003597 & 0.407813846249695 \tabularnewline
43 & 2300 & 2302.19827425783 & 6.47774990653505 & -11.4079131640246 & 0.221408811793924 \tabularnewline
44 & 2980 & 2912.0250326402 & 7.18337143724278 & 13.3768092525033 & 1.31259294339459 \tabularnewline
45 & 2800 & 2801.79746933553 & 7.04615110098017 & 8.82726235676694 & -0.25542887978339 \tabularnewline
46 & 3060 & 3027.22862058991 & 7.30292787422417 & 13.0093212916622 & 0.475102791537141 \tabularnewline
47 & 3140 & 3125.40374927178 & 7.413839950221 & 6.37301872576981 & 0.19770525322 \tabularnewline
48 & 2740 & 2767.28379895771 & 7.13646379855538 & 5.79679752856777 & -0.795022430425544 \tabularnewline
49 & 2480 & 2603.85105849522 & 8.91902616645142 & -108.349808695973 & -0.389598523291783 \tabularnewline
50 & 1720 & 1790.28598105721 & 1.27373952922423 & -3.14500477712268 & -1.69587064765233 \tabularnewline
51 & 2060 & 2034.28565003161 & 1.87049288763023 & 3.90246919742325 & 0.527288889031294 \tabularnewline
52 & 1920 & 1910.82244721101 & 1.74381619467765 & 20.4851809152519 & -0.272647240956333 \tabularnewline
53 & 2000 & 2026.96171916146 & 1.85143057406212 & -37.2830797091315 & 0.248849025716417 \tabularnewline
54 & 2820 & 2700.17859551093 & 2.49355981013505 & 59.248589327324 & 1.46043989974963 \tabularnewline
55 & 2440 & 2493.66245710295 & 2.29308240988514 & -34.8049876799044 & -0.454664161349101 \tabularnewline
56 & 2700 & 2668.10165301791 & 2.4580815002005 & 16.3668210180175 & 0.374473711757541 \tabularnewline
57 & 2880 & 2859.13052970134 & 2.63883958495781 & 3.8560617769232 & 0.410202946315894 \tabularnewline
58 & 3100 & 3072.52596268114 & 2.84340679136651 & 8.45896591141766 & 0.458469959249396 \tabularnewline
59 & 3060 & 3057.44085133659 & 2.82514578322483 & 4.17672768384809 & -0.039003203264102 \tabularnewline
60 & 2040 & 2138.92000116423 & 2.42131192896997 & -15.7860359068301 & -2.00365213943796 \tabularnewline
61 & 1880 & 1940.11025568808 & 4.05431149522887 & -41.8686462677518 & -0.454587772309675 \tabularnewline
62 & 2180 & 2162.36312101998 & 5.70308433295432 & -0.525455761658551 & 0.4548353069717 \tabularnewline
63 & 1820 & 1847.10813279336 & 4.97385453548983 & 1.65394544467704 & -0.697134715714891 \tabularnewline
64 & 1700 & 1691.63303403224 & 4.83267424978215 & 22.8046578085391 & -0.349019446679779 \tabularnewline
65 & 1700 & 1741.63978989003 & 4.86874422119873 & -45.7049474368475 & 0.0982637877222629 \tabularnewline
66 & 1680 & 1627.29960667857 & 4.7711095298549 & 63.4275496962112 & -0.259304240362398 \tabularnewline
67 & 2240 & 2207.50506461575 & 5.24511269131329 & -19.2858835135785 & 1.25168804560131 \tabularnewline
68 & 2400 & 2369.90164418957 & 5.37451179776883 & 15.9569877355051 & 0.341836648290481 \tabularnewline
69 & 2920 & 2863.72212219311 & 5.77721450546857 & 12.324783201414 & 1.06247142359807 \tabularnewline
70 & 3380 & 3324.09467241956 & 6.15991781681974 & 14.998305640982 & 0.988856938631406 \tabularnewline
71 & 2700 & 2745.96209954779 & 5.6424977286177 & 6.61667750711738 & -1.27106038269039 \tabularnewline
72 & 1900 & 1992.5163926246 & 5.48581400192575 & -24.2034915270018 & -1.65068528123166 \tabularnewline
73 & 1960 & 2013.3397032986 & 5.38541316588436 & -54.7268617596926 & 0.034386783544408 \tabularnewline
74 & 2040 & 2032.30375937751 & 5.47111241785537 & 6.55089858370042 & 0.0285236105858671 \tabularnewline
75 & 1860 & 1873.69315526049 & 5.11814297933099 & 0.974139056470269 & -0.356335693738427 \tabularnewline
76 & 1720 & 1715.69172864425 & 4.9876910933412 & 18.9525431276339 & -0.354817749491256 \tabularnewline
77 & 2340 & 2309.14823624981 & 5.39943615905979 & -21.9829097629156 & 1.28000693507088 \tabularnewline
78 & 2060 & 2044.00456047211 & 5.20365293380954 & 40.2848799682812 & -0.588465539285969 \tabularnewline
79 & 2200 & 2200.32203796201 & 5.314061384074 & -13.8889625767325 & 0.328691184773149 \tabularnewline
80 & 2520 & 2482.0775769292 & 5.51606264815878 & 13.1036594531775 & 0.601294099410746 \tabularnewline
81 & 2700 & 2681.55036662484 & 5.65824091171885 & 1.03630973231367 & 0.421880640855902 \tabularnewline
82 & 2000 & 2052.65562675441 & 5.17868710971777 & 4.31420376289949 & -1.38026673230955 \tabularnewline
83 & 2120 & 2088.11409376645 & 5.20256233744021 & 29.1673362530073 & 0.0658678961324197 \tabularnewline
84 & 1780 & 1834.75422888285 & 5.19469523146702 & -31.5388147596819 & -0.562247787512893 \tabularnewline
85 & 1820 & 1867.61227991667 & 5.04492019559653 & -50.1090052029591 & 0.0616796466015099 \tabularnewline
86 & 1480 & 1509.84255891164 & 3.09494056514959 & 1.05296483813862 & -0.766521238645307 \tabularnewline
87 & 1780 & 1743.65664234262 & 3.57149489544744 & 15.764365796618 & 0.500970515659535 \tabularnewline
88 & 1600 & 1615.79078289187 & 3.47274682176182 & -4.01425397963727 & -0.285896340179673 \tabularnewline
89 & 1720 & 1722.65498207811 & 3.53768527869753 & -11.9195870755676 & 0.224886284263379 \tabularnewline
90 & 2100 & 2028.13138200462 & 3.73509385818697 & 44.8137872773712 & 0.656737379899061 \tabularnewline
91 & 2000 & 2025.71374705228 & 3.73101303045393 & -25.1624461988377 & -0.0133825766655478 \tabularnewline
92 & 2420 & 2375.62913655065 & 3.96086060820983 & 13.3518588224259 & 0.75297286880043 \tabularnewline
93 & 2660 & 2619.37723553984 & 4.12102152080913 & 19.1372233916194 & 0.521554379839377 \tabularnewline
94 & 3140 & 3085.94870312699 & 4.4426011131558 & 12.6145013073 & 1.00589307227414 \tabularnewline
95 & 2280 & 2339.83673101926 & 3.90851982643863 & 7.4171900351546 & -1.63264151678429 \tabularnewline
96 & 2220 & 2257.67986423934 & 3.91765686246505 & -29.9676464745701 & -0.187151944604567 \tabularnewline
97 & 1860 & 1939.80798958581 & 5.38393508747685 & -50.8201223888619 & -0.714460925894923 \tabularnewline
98 & 1980 & 1979.67348356637 & 5.54407178099099 & -2.63064683468129 & 0.0731729229954308 \tabularnewline
99 & 1520 & 1550.63685211737 & 4.67530122631716 & 8.05259949689212 & -0.943474398139677 \tabularnewline
100 & 1540 & 1541.6813621652 & 4.66543650490585 & -0.46214844566717 & -0.0296485546827011 \tabularnewline
101 & 1660 & 1663.44795141632 & 4.7327488434846 & -13.9234906134321 & 0.254701858757307 \tabularnewline
102 & 2500 & 2367.65721329532 & 5.15272530807342 & 69.7720752633448 & 1.52137935846641 \tabularnewline
103 & 1660 & 1770.76266261566 & 4.7839855559723 & -56.9081668520127 & -1.30946422892992 \tabularnewline
104 & 2220 & 2159.91918547004 & 5.02001349074905 & 25.697884291855 & 0.836017425305912 \tabularnewline
105 & 2160 & 2159.98163061907 & 5.01693926008461 & 0.461834071039184 & -0.0107828661043767 \tabularnewline
106 & 2540 & 2470.68457588449 & 5.21603886542798 & 41.9710840370353 & 0.664900641283624 \tabularnewline
107 & 2540 & 2527.09128083693 & 5.24914433746854 & 8.32940556527514 & 0.111349343916096 \tabularnewline
108 & 2340 & 2381.19676349549 & 5.28133577475917 & -27.6757790879381 & -0.32867654319218 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299155&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]2880[/C][C]2880[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]2160[/C][C]2220.21273242883[/C][C]-37.0988141100351[/C][C]-37.7121568471626[/C][C]-0.874018005373299[/C][/ROW]
[ROW][C]3[/C][C]2040[/C][C]2086.81227552964[/C][C]-38.0273016692239[/C][C]-38.0942100552482[/C][C]-0.20914975939091[/C][/ROW]
[ROW][C]4[/C][C]2360[/C][C]2365.73527437358[/C][C]-36.3404409138364[/C][C]-34.7048062239776[/C][C]0.690552152952606[/C][/ROW]
[ROW][C]5[/C][C]2160[/C][C]2209.01754666954[/C][C]-36.9405524229841[/C][C]-38.0106706449663[/C][C]-0.262285258572179[/C][/ROW]
[ROW][C]6[/C][C]3300[/C][C]3229.85849265297[/C][C]-31.7158997384647[/C][C]-26.58096838457[/C][C]2.30474345494295[/C][/ROW]
[ROW][C]7[/C][C]2700[/C][C]2776.05245502518[/C][C]-33.789855811412[/C][C]-37.456803672973[/C][C]-0.919660817437494[/C][/ROW]
[ROW][C]8[/C][C]3900[/C][C]3823.87008560652[/C][C]-28.5014263228847[/C][C]-22.7718161067422[/C][C]2.35661132857335[/C][/ROW]
[ROW][C]9[/C][C]4620[/C][C]4571.82955684918[/C][C]-24.7234627281171[/C][C]-22.8289728066327[/C][C]1.69174031255727[/C][/ROW]
[ROW][C]10[/C][C]3860[/C][C]3946.59193372705[/C][C]-27.6311882255362[/C][C]-31.6809268350729[/C][C]-1.30837800108129[/C][/ROW]
[ROW][C]11[/C][C]4040[/C][C]4053.1273958985[/C][C]-26.9846757323723[/C][C]-25.3956197142956[/C][C]0.29231457464171[/C][/ROW]
[ROW][C]12[/C][C]3460[/C][C]3536.59853595309[/C][C]-29.3323428602231[/C][C]-31.8344255757589[/C][C]-1.06658074361433[/C][/ROW]
[ROW][C]13[/C][C]2820[/C][C]2882.52134975032[/C][C]0.350326508121615[/C][C]-5.11179515452642[/C][C]-1.6544956341589[/C][/ROW]
[ROW][C]14[/C][C]2040[/C][C]2113.20282893457[/C][C]-19.188446974669[/C][C]-22.5687862539358[/C][C]-1.41887346775705[/C][/ROW]
[ROW][C]15[/C][C]2100[/C][C]2116.34870548548[/C][C]-19.0827252825377[/C][C]-18.3727830154796[/C][C]0.0485274649768968[/C][/ROW]
[ROW][C]16[/C][C]1820[/C][C]1860.09879013054[/C][C]-19.6681096148164[/C][C]-18.4934288738478[/C][C]-0.516193895455307[/C][/ROW]
[ROW][C]17[/C][C]1840[/C][C]1862.73922930076[/C][C]-19.6161185469311[/C][C]-24.7718029488623[/C][C]0.0485553868102639[/C][/ROW]
[ROW][C]18[/C][C]2680[/C][C]2612.33446439375[/C][C]-17.8303341107363[/C][C]-2.41904369375899[/C][C]1.67421366238725[/C][/ROW]
[ROW][C]19[/C][C]3060[/C][C]3041.89093884608[/C][C]-16.7940008490467[/C][C]-22.6533688777992[/C][C]0.973749851679244[/C][/ROW]
[ROW][C]20[/C][C]3540[/C][C]3507.14162028869[/C][C]-15.6799422129764[/C][C]-11.0618288622588[/C][C]1.04918142548402[/C][/ROW]
[ROW][C]21[/C][C]4700[/C][C]4598.90077515506[/C][C]-13.1262528349393[/C][C]0.197829709425951[/C][C]2.41036207041925[/C][/ROW]
[ROW][C]22[/C][C]4880[/C][C]4872.5163444085[/C][C]-12.4659671035857[/C][C]-18.6420824929124[/C][C]0.624098926235524[/C][/ROW]
[ROW][C]23[/C][C]3960[/C][C]4053.4208057203[/C][C]-14.335685870776[/C][C]-19.9267845051582[/C][C]-1.75567719589411[/C][/ROW]
[ROW][C]24[/C][C]2440[/C][C]2599.05951496604[/C][C]-17.4217729840254[/C][C]-27.8502161853055[/C][C]-3.13389622360415[/C][/ROW]
[ROW][C]25[/C][C]2440[/C][C]2329.24883756162[/C][C]-11.8125595253176[/C][C]133.829103290274[/C][C]-0.607230625882841[/C][/ROW]
[ROW][C]26[/C][C]2340[/C][C]2352.53766047832[/C][C]-11.2401833383133[/C][C]-15.1648467301198[/C][C]0.0691208933084135[/C][/ROW]
[ROW][C]27[/C][C]2340[/C][C]2347.4203088186[/C][C]-11.2195394983068[/C][C]-7.97382502269889[/C][C]0.0133037214700762[/C][/ROW]
[ROW][C]28[/C][C]2220[/C][C]2238.66260234898[/C][C]-11.3778965191846[/C][C]-9.80780958762399[/C][C]-0.212227587342119[/C][/ROW]
[ROW][C]29[/C][C]1560[/C][C]1643.370312897[/C][C]-12.2758428591069[/C][C]-30.3561697974991[/C][C]-1.27050882693527[/C][/ROW]
[ROW][C]30[/C][C]2940[/C][C]2811.6722422416[/C][C]-10.4576254472928[/C][C]21.1426422208834[/C][C]2.56875054580415[/C][/ROW]
[ROW][C]31[/C][C]2280[/C][C]2350.90028878815[/C][C]-11.1506314836482[/C][C]-30.0161243175701[/C][C]-0.979811617911427[/C][/ROW]
[ROW][C]32[/C][C]2400[/C][C]2406.60527376662[/C][C]-11.0478950361046[/C][C]-12.6751146944838[/C][C]0.14546694088811[/C][/ROW]
[ROW][C]33[/C][C]2700[/C][C]2673.31761139328[/C][C]-10.6216264955158[/C][C]1.46445066540037[/C][C]0.604360677934326[/C][/ROW]
[ROW][C]34[/C][C]3100[/C][C]3071.24567865476[/C][C]-9.99364195025117[/C][C]-8.33803608783763[/C][C]0.888940386239645[/C][/ROW]
[ROW][C]35[/C][C]3160[/C][C]3155.50896304599[/C][C]-9.8455566035122[/C][C]-4.06659571410196[/C][C]0.205096065001479[/C][/ROW]
[ROW][C]36[/C][C]3520[/C][C]3501.66247364811[/C][C]-9.40206623839769[/C][C]-13.9859041458761[/C][C]0.774446888936978[/C][/ROW]
[ROW][C]37[/C][C]2300[/C][C]2460.09327741224[/C][C]5.39761602781483[/C][C]-66.0255968175877[/C][C]-2.39991989613384[/C][/ROW]
[ROW][C]38[/C][C]2680[/C][C]2658.99044518124[/C][C]7.70175645302541[/C][C]5.69507498620093[/C][C]0.392354937061631[/C][/ROW]
[ROW][C]39[/C][C]2140[/C][C]2182.48954674999[/C][C]6.35854268015462[/C][C]1.15197472999727[/C][C]-1.05199395848748[/C][/ROW]
[ROW][C]40[/C][C]2320[/C][C]2287.32211184888[/C][C]6.47960212672577[/C][C]23.7672033391514[/C][C]0.214234033294388[/C][/ROW]
[ROW][C]41[/C][C]1940[/C][C]2000.47098922772[/C][C]6.13931526865451[/C][C]-33.9265054699141[/C][C]-0.638147990531457[/C][/ROW]
[ROW][C]42[/C][C]2260[/C][C]2194.06652571104[/C][C]6.35860284905845[/C][C]48.9701737003597[/C][C]0.407813846249695[/C][/ROW]
[ROW][C]43[/C][C]2300[/C][C]2302.19827425783[/C][C]6.47774990653505[/C][C]-11.4079131640246[/C][C]0.221408811793924[/C][/ROW]
[ROW][C]44[/C][C]2980[/C][C]2912.0250326402[/C][C]7.18337143724278[/C][C]13.3768092525033[/C][C]1.31259294339459[/C][/ROW]
[ROW][C]45[/C][C]2800[/C][C]2801.79746933553[/C][C]7.04615110098017[/C][C]8.82726235676694[/C][C]-0.25542887978339[/C][/ROW]
[ROW][C]46[/C][C]3060[/C][C]3027.22862058991[/C][C]7.30292787422417[/C][C]13.0093212916622[/C][C]0.475102791537141[/C][/ROW]
[ROW][C]47[/C][C]3140[/C][C]3125.40374927178[/C][C]7.413839950221[/C][C]6.37301872576981[/C][C]0.19770525322[/C][/ROW]
[ROW][C]48[/C][C]2740[/C][C]2767.28379895771[/C][C]7.13646379855538[/C][C]5.79679752856777[/C][C]-0.795022430425544[/C][/ROW]
[ROW][C]49[/C][C]2480[/C][C]2603.85105849522[/C][C]8.91902616645142[/C][C]-108.349808695973[/C][C]-0.389598523291783[/C][/ROW]
[ROW][C]50[/C][C]1720[/C][C]1790.28598105721[/C][C]1.27373952922423[/C][C]-3.14500477712268[/C][C]-1.69587064765233[/C][/ROW]
[ROW][C]51[/C][C]2060[/C][C]2034.28565003161[/C][C]1.87049288763023[/C][C]3.90246919742325[/C][C]0.527288889031294[/C][/ROW]
[ROW][C]52[/C][C]1920[/C][C]1910.82244721101[/C][C]1.74381619467765[/C][C]20.4851809152519[/C][C]-0.272647240956333[/C][/ROW]
[ROW][C]53[/C][C]2000[/C][C]2026.96171916146[/C][C]1.85143057406212[/C][C]-37.2830797091315[/C][C]0.248849025716417[/C][/ROW]
[ROW][C]54[/C][C]2820[/C][C]2700.17859551093[/C][C]2.49355981013505[/C][C]59.248589327324[/C][C]1.46043989974963[/C][/ROW]
[ROW][C]55[/C][C]2440[/C][C]2493.66245710295[/C][C]2.29308240988514[/C][C]-34.8049876799044[/C][C]-0.454664161349101[/C][/ROW]
[ROW][C]56[/C][C]2700[/C][C]2668.10165301791[/C][C]2.4580815002005[/C][C]16.3668210180175[/C][C]0.374473711757541[/C][/ROW]
[ROW][C]57[/C][C]2880[/C][C]2859.13052970134[/C][C]2.63883958495781[/C][C]3.8560617769232[/C][C]0.410202946315894[/C][/ROW]
[ROW][C]58[/C][C]3100[/C][C]3072.52596268114[/C][C]2.84340679136651[/C][C]8.45896591141766[/C][C]0.458469959249396[/C][/ROW]
[ROW][C]59[/C][C]3060[/C][C]3057.44085133659[/C][C]2.82514578322483[/C][C]4.17672768384809[/C][C]-0.039003203264102[/C][/ROW]
[ROW][C]60[/C][C]2040[/C][C]2138.92000116423[/C][C]2.42131192896997[/C][C]-15.7860359068301[/C][C]-2.00365213943796[/C][/ROW]
[ROW][C]61[/C][C]1880[/C][C]1940.11025568808[/C][C]4.05431149522887[/C][C]-41.8686462677518[/C][C]-0.454587772309675[/C][/ROW]
[ROW][C]62[/C][C]2180[/C][C]2162.36312101998[/C][C]5.70308433295432[/C][C]-0.525455761658551[/C][C]0.4548353069717[/C][/ROW]
[ROW][C]63[/C][C]1820[/C][C]1847.10813279336[/C][C]4.97385453548983[/C][C]1.65394544467704[/C][C]-0.697134715714891[/C][/ROW]
[ROW][C]64[/C][C]1700[/C][C]1691.63303403224[/C][C]4.83267424978215[/C][C]22.8046578085391[/C][C]-0.349019446679779[/C][/ROW]
[ROW][C]65[/C][C]1700[/C][C]1741.63978989003[/C][C]4.86874422119873[/C][C]-45.7049474368475[/C][C]0.0982637877222629[/C][/ROW]
[ROW][C]66[/C][C]1680[/C][C]1627.29960667857[/C][C]4.7711095298549[/C][C]63.4275496962112[/C][C]-0.259304240362398[/C][/ROW]
[ROW][C]67[/C][C]2240[/C][C]2207.50506461575[/C][C]5.24511269131329[/C][C]-19.2858835135785[/C][C]1.25168804560131[/C][/ROW]
[ROW][C]68[/C][C]2400[/C][C]2369.90164418957[/C][C]5.37451179776883[/C][C]15.9569877355051[/C][C]0.341836648290481[/C][/ROW]
[ROW][C]69[/C][C]2920[/C][C]2863.72212219311[/C][C]5.77721450546857[/C][C]12.324783201414[/C][C]1.06247142359807[/C][/ROW]
[ROW][C]70[/C][C]3380[/C][C]3324.09467241956[/C][C]6.15991781681974[/C][C]14.998305640982[/C][C]0.988856938631406[/C][/ROW]
[ROW][C]71[/C][C]2700[/C][C]2745.96209954779[/C][C]5.6424977286177[/C][C]6.61667750711738[/C][C]-1.27106038269039[/C][/ROW]
[ROW][C]72[/C][C]1900[/C][C]1992.5163926246[/C][C]5.48581400192575[/C][C]-24.2034915270018[/C][C]-1.65068528123166[/C][/ROW]
[ROW][C]73[/C][C]1960[/C][C]2013.3397032986[/C][C]5.38541316588436[/C][C]-54.7268617596926[/C][C]0.034386783544408[/C][/ROW]
[ROW][C]74[/C][C]2040[/C][C]2032.30375937751[/C][C]5.47111241785537[/C][C]6.55089858370042[/C][C]0.0285236105858671[/C][/ROW]
[ROW][C]75[/C][C]1860[/C][C]1873.69315526049[/C][C]5.11814297933099[/C][C]0.974139056470269[/C][C]-0.356335693738427[/C][/ROW]
[ROW][C]76[/C][C]1720[/C][C]1715.69172864425[/C][C]4.9876910933412[/C][C]18.9525431276339[/C][C]-0.354817749491256[/C][/ROW]
[ROW][C]77[/C][C]2340[/C][C]2309.14823624981[/C][C]5.39943615905979[/C][C]-21.9829097629156[/C][C]1.28000693507088[/C][/ROW]
[ROW][C]78[/C][C]2060[/C][C]2044.00456047211[/C][C]5.20365293380954[/C][C]40.2848799682812[/C][C]-0.588465539285969[/C][/ROW]
[ROW][C]79[/C][C]2200[/C][C]2200.32203796201[/C][C]5.314061384074[/C][C]-13.8889625767325[/C][C]0.328691184773149[/C][/ROW]
[ROW][C]80[/C][C]2520[/C][C]2482.0775769292[/C][C]5.51606264815878[/C][C]13.1036594531775[/C][C]0.601294099410746[/C][/ROW]
[ROW][C]81[/C][C]2700[/C][C]2681.55036662484[/C][C]5.65824091171885[/C][C]1.03630973231367[/C][C]0.421880640855902[/C][/ROW]
[ROW][C]82[/C][C]2000[/C][C]2052.65562675441[/C][C]5.17868710971777[/C][C]4.31420376289949[/C][C]-1.38026673230955[/C][/ROW]
[ROW][C]83[/C][C]2120[/C][C]2088.11409376645[/C][C]5.20256233744021[/C][C]29.1673362530073[/C][C]0.0658678961324197[/C][/ROW]
[ROW][C]84[/C][C]1780[/C][C]1834.75422888285[/C][C]5.19469523146702[/C][C]-31.5388147596819[/C][C]-0.562247787512893[/C][/ROW]
[ROW][C]85[/C][C]1820[/C][C]1867.61227991667[/C][C]5.04492019559653[/C][C]-50.1090052029591[/C][C]0.0616796466015099[/C][/ROW]
[ROW][C]86[/C][C]1480[/C][C]1509.84255891164[/C][C]3.09494056514959[/C][C]1.05296483813862[/C][C]-0.766521238645307[/C][/ROW]
[ROW][C]87[/C][C]1780[/C][C]1743.65664234262[/C][C]3.57149489544744[/C][C]15.764365796618[/C][C]0.500970515659535[/C][/ROW]
[ROW][C]88[/C][C]1600[/C][C]1615.79078289187[/C][C]3.47274682176182[/C][C]-4.01425397963727[/C][C]-0.285896340179673[/C][/ROW]
[ROW][C]89[/C][C]1720[/C][C]1722.65498207811[/C][C]3.53768527869753[/C][C]-11.9195870755676[/C][C]0.224886284263379[/C][/ROW]
[ROW][C]90[/C][C]2100[/C][C]2028.13138200462[/C][C]3.73509385818697[/C][C]44.8137872773712[/C][C]0.656737379899061[/C][/ROW]
[ROW][C]91[/C][C]2000[/C][C]2025.71374705228[/C][C]3.73101303045393[/C][C]-25.1624461988377[/C][C]-0.0133825766655478[/C][/ROW]
[ROW][C]92[/C][C]2420[/C][C]2375.62913655065[/C][C]3.96086060820983[/C][C]13.3518588224259[/C][C]0.75297286880043[/C][/ROW]
[ROW][C]93[/C][C]2660[/C][C]2619.37723553984[/C][C]4.12102152080913[/C][C]19.1372233916194[/C][C]0.521554379839377[/C][/ROW]
[ROW][C]94[/C][C]3140[/C][C]3085.94870312699[/C][C]4.4426011131558[/C][C]12.6145013073[/C][C]1.00589307227414[/C][/ROW]
[ROW][C]95[/C][C]2280[/C][C]2339.83673101926[/C][C]3.90851982643863[/C][C]7.4171900351546[/C][C]-1.63264151678429[/C][/ROW]
[ROW][C]96[/C][C]2220[/C][C]2257.67986423934[/C][C]3.91765686246505[/C][C]-29.9676464745701[/C][C]-0.187151944604567[/C][/ROW]
[ROW][C]97[/C][C]1860[/C][C]1939.80798958581[/C][C]5.38393508747685[/C][C]-50.8201223888619[/C][C]-0.714460925894923[/C][/ROW]
[ROW][C]98[/C][C]1980[/C][C]1979.67348356637[/C][C]5.54407178099099[/C][C]-2.63064683468129[/C][C]0.0731729229954308[/C][/ROW]
[ROW][C]99[/C][C]1520[/C][C]1550.63685211737[/C][C]4.67530122631716[/C][C]8.05259949689212[/C][C]-0.943474398139677[/C][/ROW]
[ROW][C]100[/C][C]1540[/C][C]1541.6813621652[/C][C]4.66543650490585[/C][C]-0.46214844566717[/C][C]-0.0296485546827011[/C][/ROW]
[ROW][C]101[/C][C]1660[/C][C]1663.44795141632[/C][C]4.7327488434846[/C][C]-13.9234906134321[/C][C]0.254701858757307[/C][/ROW]
[ROW][C]102[/C][C]2500[/C][C]2367.65721329532[/C][C]5.15272530807342[/C][C]69.7720752633448[/C][C]1.52137935846641[/C][/ROW]
[ROW][C]103[/C][C]1660[/C][C]1770.76266261566[/C][C]4.7839855559723[/C][C]-56.9081668520127[/C][C]-1.30946422892992[/C][/ROW]
[ROW][C]104[/C][C]2220[/C][C]2159.91918547004[/C][C]5.02001349074905[/C][C]25.697884291855[/C][C]0.836017425305912[/C][/ROW]
[ROW][C]105[/C][C]2160[/C][C]2159.98163061907[/C][C]5.01693926008461[/C][C]0.461834071039184[/C][C]-0.0107828661043767[/C][/ROW]
[ROW][C]106[/C][C]2540[/C][C]2470.68457588449[/C][C]5.21603886542798[/C][C]41.9710840370353[/C][C]0.664900641283624[/C][/ROW]
[ROW][C]107[/C][C]2540[/C][C]2527.09128083693[/C][C]5.24914433746854[/C][C]8.32940556527514[/C][C]0.111349343916096[/C][/ROW]
[ROW][C]108[/C][C]2340[/C][C]2381.19676349549[/C][C]5.28133577475917[/C][C]-27.6757790879381[/C][C]-0.32867654319218[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299155&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299155&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
128802880000
221602220.21273242883-37.0988141100351-37.7121568471626-0.874018005373299
320402086.81227552964-38.0273016692239-38.0942100552482-0.20914975939091
423602365.73527437358-36.3404409138364-34.70480622397760.690552152952606
521602209.01754666954-36.9405524229841-38.0106706449663-0.262285258572179
633003229.85849265297-31.7158997384647-26.580968384572.30474345494295
727002776.05245502518-33.789855811412-37.456803672973-0.919660817437494
839003823.87008560652-28.5014263228847-22.77181610674222.35661132857335
946204571.82955684918-24.7234627281171-22.82897280663271.69174031255727
1038603946.59193372705-27.6311882255362-31.6809268350729-1.30837800108129
1140404053.1273958985-26.9846757323723-25.39561971429560.29231457464171
1234603536.59853595309-29.3323428602231-31.8344255757589-1.06658074361433
1328202882.521349750320.350326508121615-5.11179515452642-1.6544956341589
1420402113.20282893457-19.188446974669-22.5687862539358-1.41887346775705
1521002116.34870548548-19.0827252825377-18.37278301547960.0485274649768968
1618201860.09879013054-19.6681096148164-18.4934288738478-0.516193895455307
1718401862.73922930076-19.6161185469311-24.77180294886230.0485553868102639
1826802612.33446439375-17.8303341107363-2.419043693758991.67421366238725
1930603041.89093884608-16.7940008490467-22.65336887779920.973749851679244
2035403507.14162028869-15.6799422129764-11.06182886225881.04918142548402
2147004598.90077515506-13.12625283493930.1978297094259512.41036207041925
2248804872.5163444085-12.4659671035857-18.64208249291240.624098926235524
2339604053.4208057203-14.335685870776-19.9267845051582-1.75567719589411
2424402599.05951496604-17.4217729840254-27.8502161853055-3.13389622360415
2524402329.24883756162-11.8125595253176133.829103290274-0.607230625882841
2623402352.53766047832-11.2401833383133-15.16484673011980.0691208933084135
2723402347.4203088186-11.2195394983068-7.973825022698890.0133037214700762
2822202238.66260234898-11.3778965191846-9.80780958762399-0.212227587342119
2915601643.370312897-12.2758428591069-30.3561697974991-1.27050882693527
3029402811.6722422416-10.457625447292821.14264222088342.56875054580415
3122802350.90028878815-11.1506314836482-30.0161243175701-0.979811617911427
3224002406.60527376662-11.0478950361046-12.67511469448380.14546694088811
3327002673.31761139328-10.62162649551581.464450665400370.604360677934326
3431003071.24567865476-9.99364195025117-8.338036087837630.888940386239645
3531603155.50896304599-9.8455566035122-4.066595714101960.205096065001479
3635203501.66247364811-9.40206623839769-13.98590414587610.774446888936978
3723002460.093277412245.39761602781483-66.0255968175877-2.39991989613384
3826802658.990445181247.701756453025415.695074986200930.392354937061631
3921402182.489546749996.358542680154621.15197472999727-1.05199395848748
4023202287.322111848886.4796021267257723.76720333915140.214234033294388
4119402000.470989227726.13931526865451-33.9265054699141-0.638147990531457
4222602194.066525711046.3586028490584548.97017370035970.407813846249695
4323002302.198274257836.47774990653505-11.40791316402460.221408811793924
4429802912.02503264027.1833714372427813.37680925250331.31259294339459
4528002801.797469335537.046151100980178.82726235676694-0.25542887978339
4630603027.228620589917.3029278742241713.00932129166220.475102791537141
4731403125.403749271787.4138399502216.373018725769810.19770525322
4827402767.283798957717.136463798555385.79679752856777-0.795022430425544
4924802603.851058495228.91902616645142-108.349808695973-0.389598523291783
5017201790.285981057211.27373952922423-3.14500477712268-1.69587064765233
5120602034.285650031611.870492887630233.902469197423250.527288889031294
5219201910.822447211011.7438161946776520.4851809152519-0.272647240956333
5320002026.961719161461.85143057406212-37.28307970913150.248849025716417
5428202700.178595510932.4935598101350559.2485893273241.46043989974963
5524402493.662457102952.29308240988514-34.8049876799044-0.454664161349101
5627002668.101653017912.458081500200516.36682101801750.374473711757541
5728802859.130529701342.638839584957813.85606177692320.410202946315894
5831003072.525962681142.843406791366518.458965911417660.458469959249396
5930603057.440851336592.825145783224834.17672768384809-0.039003203264102
6020402138.920001164232.42131192896997-15.7860359068301-2.00365213943796
6118801940.110255688084.05431149522887-41.8686462677518-0.454587772309675
6221802162.363121019985.70308433295432-0.5254557616585510.4548353069717
6318201847.108132793364.973854535489831.65394544467704-0.697134715714891
6417001691.633034032244.8326742497821522.8046578085391-0.349019446679779
6517001741.639789890034.86874422119873-45.70494743684750.0982637877222629
6616801627.299606678574.771109529854963.4275496962112-0.259304240362398
6722402207.505064615755.24511269131329-19.28588351357851.25168804560131
6824002369.901644189575.3745117977688315.95698773550510.341836648290481
6929202863.722122193115.7772145054685712.3247832014141.06247142359807
7033803324.094672419566.1599178168197414.9983056409820.988856938631406
7127002745.962099547795.64249772861776.61667750711738-1.27106038269039
7219001992.51639262465.48581400192575-24.2034915270018-1.65068528123166
7319602013.33970329865.38541316588436-54.72686175969260.034386783544408
7420402032.303759377515.471112417855376.550898583700420.0285236105858671
7518601873.693155260495.118142979330990.974139056470269-0.356335693738427
7617201715.691728644254.987691093341218.9525431276339-0.354817749491256
7723402309.148236249815.39943615905979-21.98290976291561.28000693507088
7820602044.004560472115.2036529338095440.2848799682812-0.588465539285969
7922002200.322037962015.314061384074-13.88896257673250.328691184773149
8025202482.07757692925.5160626481587813.10365945317750.601294099410746
8127002681.550366624845.658240911718851.036309732313670.421880640855902
8220002052.655626754415.178687109717774.31420376289949-1.38026673230955
8321202088.114093766455.2025623374402129.16733625300730.0658678961324197
8417801834.754228882855.19469523146702-31.5388147596819-0.562247787512893
8518201867.612279916675.04492019559653-50.10900520295910.0616796466015099
8614801509.842558911643.094940565149591.05296483813862-0.766521238645307
8717801743.656642342623.5714948954474415.7643657966180.500970515659535
8816001615.790782891873.47274682176182-4.01425397963727-0.285896340179673
8917201722.654982078113.53768527869753-11.91958707556760.224886284263379
9021002028.131382004623.7350938581869744.81378727737120.656737379899061
9120002025.713747052283.73101303045393-25.1624461988377-0.0133825766655478
9224202375.629136550653.9608606082098313.35185882242590.75297286880043
9326602619.377235539844.1210215208091319.13722339161940.521554379839377
9431403085.948703126994.442601113155812.61450130731.00589307227414
9522802339.836731019263.908519826438637.4171900351546-1.63264151678429
9622202257.679864239343.91765686246505-29.9676464745701-0.187151944604567
9718601939.807989585815.38393508747685-50.8201223888619-0.714460925894923
9819801979.673483566375.54407178099099-2.630646834681290.0731729229954308
9915201550.636852117374.675301226317168.05259949689212-0.943474398139677
10015401541.68136216524.66543650490585-0.46214844566717-0.0296485546827011
10116601663.447951416324.7327488434846-13.92349061343210.254701858757307
10225002367.657213295325.1527253080734269.77207526334481.52137935846641
10316601770.762662615664.7839855559723-56.9081668520127-1.30946422892992
10422202159.919185470045.0200134907490525.6978842918550.836017425305912
10521602159.981630619075.016939260084610.461834071039184-0.0107828661043767
10625402470.684575884495.2160388654279841.97108403703530.664900641283624
10725402527.091280836935.249144337468548.329405565275140.111349343916096
10823402381.196763495495.28133577475917-27.6757790879381-0.32867654319218







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
12158.20413308222435.82660074852-277.622467666327
22361.459767707982640.28460068105-278.824832973067
32238.644282850672844.74260061357-606.098317762901
42414.130610678193049.2006005461-635.06998986791
52720.717776666163253.65860047862-532.940823812463
63683.227418864713458.11660041115225.110818453567
73400.094467017383662.57460034367-262.480133326296
84316.864442683963867.0326002762449.831842407761
94604.896765473474071.49060020872533.40616526475
105090.352947518384275.94860014125814.404347377135
114955.096718512614480.40660007377474.690118438844
124780.45787347324684.8646000062995.5932734669077

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 2158.2041330822 & 2435.82660074852 & -277.622467666327 \tabularnewline
2 & 2361.45976770798 & 2640.28460068105 & -278.824832973067 \tabularnewline
3 & 2238.64428285067 & 2844.74260061357 & -606.098317762901 \tabularnewline
4 & 2414.13061067819 & 3049.2006005461 & -635.06998986791 \tabularnewline
5 & 2720.71777666616 & 3253.65860047862 & -532.940823812463 \tabularnewline
6 & 3683.22741886471 & 3458.11660041115 & 225.110818453567 \tabularnewline
7 & 3400.09446701738 & 3662.57460034367 & -262.480133326296 \tabularnewline
8 & 4316.86444268396 & 3867.0326002762 & 449.831842407761 \tabularnewline
9 & 4604.89676547347 & 4071.49060020872 & 533.40616526475 \tabularnewline
10 & 5090.35294751838 & 4275.94860014125 & 814.404347377135 \tabularnewline
11 & 4955.09671851261 & 4480.40660007377 & 474.690118438844 \tabularnewline
12 & 4780.4578734732 & 4684.86460000629 & 95.5932734669077 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299155&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]2158.2041330822[/C][C]2435.82660074852[/C][C]-277.622467666327[/C][/ROW]
[ROW][C]2[/C][C]2361.45976770798[/C][C]2640.28460068105[/C][C]-278.824832973067[/C][/ROW]
[ROW][C]3[/C][C]2238.64428285067[/C][C]2844.74260061357[/C][C]-606.098317762901[/C][/ROW]
[ROW][C]4[/C][C]2414.13061067819[/C][C]3049.2006005461[/C][C]-635.06998986791[/C][/ROW]
[ROW][C]5[/C][C]2720.71777666616[/C][C]3253.65860047862[/C][C]-532.940823812463[/C][/ROW]
[ROW][C]6[/C][C]3683.22741886471[/C][C]3458.11660041115[/C][C]225.110818453567[/C][/ROW]
[ROW][C]7[/C][C]3400.09446701738[/C][C]3662.57460034367[/C][C]-262.480133326296[/C][/ROW]
[ROW][C]8[/C][C]4316.86444268396[/C][C]3867.0326002762[/C][C]449.831842407761[/C][/ROW]
[ROW][C]9[/C][C]4604.89676547347[/C][C]4071.49060020872[/C][C]533.40616526475[/C][/ROW]
[ROW][C]10[/C][C]5090.35294751838[/C][C]4275.94860014125[/C][C]814.404347377135[/C][/ROW]
[ROW][C]11[/C][C]4955.09671851261[/C][C]4480.40660007377[/C][C]474.690118438844[/C][/ROW]
[ROW][C]12[/C][C]4780.4578734732[/C][C]4684.86460000629[/C][C]95.5932734669077[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299155&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299155&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
12158.20413308222435.82660074852-277.622467666327
22361.459767707982640.28460068105-278.824832973067
32238.644282850672844.74260061357-606.098317762901
42414.130610678193049.2006005461-635.06998986791
52720.717776666163253.65860047862-532.940823812463
63683.227418864713458.11660041115225.110818453567
73400.094467017383662.57460034367-262.480133326296
84316.864442683963867.0326002762449.831842407761
94604.896765473474071.49060020872533.40616526475
105090.352947518384275.94860014125814.404347377135
114955.096718512614480.40660007377474.690118438844
124780.45787347324684.8646000062995.5932734669077



Parameters (Session):
par1 = 8 ; par2 = 0 ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')