Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_correlation.wasp
Title produced by softwarePearson Correlation
Date of computationTue, 13 Dec 2016 15:22:27 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t1481638955hjgbk8dcr3sxoqe.htm/, Retrieved Fri, 01 Nov 2024 03:26:46 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299120, Retrieved Fri, 01 Nov 2024 03:26:46 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact74
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Pearson Correlation] [] [2016-12-13 14:22:27] [94ac3c9a028ddd47e8862e80eac9f626] [Current]
Feedback Forum

Post a new message
Dataseries X:
8
9
10
10
10
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
18
19
19
19
20
Dataseries Y:
10
11
11
11
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
19
19
20
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299120&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299120&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299120&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean13.592233009708715.4757281553398
Biased Variance2.552172683570553.47271184843058
Biased Standard Deviation1.597552091035081.86352135711684
Covariance2.91157433847325
Correlation0.968504019916408
Determination0.938000036594242
T-Test39.0900654843186
p-value (2 sided)8.47407082383922e-63
p-value (1 sided)4.23703541191961e-63
95% CI of Correlation[0.953737890833525, 0.978608639168302]
Degrees of Freedom101
Number of Observations103

\begin{tabular}{lllllllll}
\hline
Pearson Product Moment Correlation - Ungrouped Data \tabularnewline
Statistic & Variable X & Variable Y \tabularnewline
Mean & 13.5922330097087 & 15.4757281553398 \tabularnewline
Biased Variance & 2.55217268357055 & 3.47271184843058 \tabularnewline
Biased Standard Deviation & 1.59755209103508 & 1.86352135711684 \tabularnewline
Covariance & 2.91157433847325 \tabularnewline
Correlation & 0.968504019916408 \tabularnewline
Determination & 0.938000036594242 \tabularnewline
T-Test & 39.0900654843186 \tabularnewline
p-value (2 sided) & 8.47407082383922e-63 \tabularnewline
p-value (1 sided) & 4.23703541191961e-63 \tabularnewline
95% CI of Correlation & [0.953737890833525, 0.978608639168302] \tabularnewline
Degrees of Freedom & 101 \tabularnewline
Number of Observations & 103 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299120&T=1

[TABLE]
[ROW][C]Pearson Product Moment Correlation - Ungrouped Data[/C][/ROW]
[ROW][C]Statistic[/C][C]Variable X[/C][C]Variable Y[/C][/ROW]
[ROW][C]Mean[/C][C]13.5922330097087[/C][C]15.4757281553398[/C][/ROW]
[ROW][C]Biased Variance[/C][C]2.55217268357055[/C][C]3.47271184843058[/C][/ROW]
[ROW][C]Biased Standard Deviation[/C][C]1.59755209103508[/C][C]1.86352135711684[/C][/ROW]
[ROW][C]Covariance[/C][C]2.91157433847325[/C][/ROW]
[ROW][C]Correlation[/C][C]0.968504019916408[/C][/ROW]
[ROW][C]Determination[/C][C]0.938000036594242[/C][/ROW]
[ROW][C]T-Test[/C][C]39.0900654843186[/C][/ROW]
[ROW][C]p-value (2 sided)[/C][C]8.47407082383922e-63[/C][/ROW]
[ROW][C]p-value (1 sided)[/C][C]4.23703541191961e-63[/C][/ROW]
[ROW][C]95% CI of Correlation[/C][C][0.953737890833525, 0.978608639168302][/C][/ROW]
[ROW][C]Degrees of Freedom[/C][C]101[/C][/ROW]
[ROW][C]Number of Observations[/C][C]103[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299120&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299120&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean13.592233009708715.4757281553398
Biased Variance2.552172683570553.47271184843058
Biased Standard Deviation1.597552091035081.86352135711684
Covariance2.91157433847325
Correlation0.968504019916408
Determination0.938000036594242
T-Test39.0900654843186
p-value (2 sided)8.47407082383922e-63
p-value (1 sided)4.23703541191961e-63
95% CI of Correlation[0.953737890833525, 0.978608639168302]
Degrees of Freedom101
Number of Observations103







Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 13.531, p-value = 0.001153
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 4.8025, p-value = 0.0906
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 2.4679, p-value = 2.799e-06
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.9626, p-value = 4.908e-05

\begin{tabular}{lllllllll}
\hline
Normality Tests \tabularnewline
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 13.531, p-value = 0.001153
alternative hypothesis: greater
\tabularnewline
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 4.8025, p-value = 0.0906
alternative hypothesis: greater
\tabularnewline
> ad.x
	Anderson-Darling normality test
data:  x
A = 2.4679, p-value = 2.799e-06
\tabularnewline
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.9626, p-value = 4.908e-05
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299120&T=2

[TABLE]
[ROW][C]Normality Tests[/C][/ROW]
[ROW][C]
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 13.531, p-value = 0.001153
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 4.8025, p-value = 0.0906
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> ad.x
	Anderson-Darling normality test
data:  x
A = 2.4679, p-value = 2.799e-06
[/C][/ROW] [ROW][C]
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.9626, p-value = 4.908e-05
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299120&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299120&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 13.531, p-value = 0.001153
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 4.8025, p-value = 0.0906
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 2.4679, p-value = 2.799e-06
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.9626, p-value = 4.908e-05



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
library(psychometric)
x <- x[!is.na(y)]
y <- y[!is.na(y)]
y <- y[!is.na(x)]
x <- x[!is.na(x)]
bitmap(file='test1.png')
histx <- hist(x, plot=FALSE)
histy <- hist(y, plot=FALSE)
maxcounts <- max(c(histx$counts, histx$counts))
xrange <- c(min(x),max(x))
yrange <- c(min(y),max(y))
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
par(mar=c(4,4,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab, sub=main)
par(mar=c(0,4,1,1))
barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0)
par(mar=c(4,0,1,1))
barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE)
dev.off()
lx = length(x)
makebiased = (lx-1)/lx
varx = var(x)*makebiased
vary = var(y)*makebiased
corxy <- cor.test(x,y,method='pearson', na.rm = T)
cxy <- as.matrix(corxy$estimate)[1,1]
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistic',1,TRUE)
a<-table.element(a,'Variable X',1,TRUE)
a<-table.element(a,'Variable Y',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,mean(x))
a<-table.element(a,mean(y))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biased Variance',header=TRUE)
a<-table.element(a,varx)
a<-table.element(a,vary)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biased Standard Deviation',header=TRUE)
a<-table.element(a,sqrt(varx))
a<-table.element(a,sqrt(vary))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Covariance',header=TRUE)
a<-table.element(a,cov(x,y),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',header=TRUE)
a<-table.element(a,cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Determination',header=TRUE)
a<-table.element(a,cxy*cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-Test',header=TRUE)
a<-table.element(a,as.matrix(corxy$statistic)[1,1],2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (2 sided)',header=TRUE)
a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (1 sided)',header=TRUE)
a<-table.element(a,p2/2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'95% CI of Correlation',header=TRUE)
a<-table.element(a,paste('[',CIr(r=cxy, n = lx, level = .95)[1],', ', CIr(r=cxy, n = lx, level = .95)[2],']',sep=''),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Degrees of Freedom',header=TRUE)
a<-table.element(a,lx-2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of Observations',header=TRUE)
a<-table.element(a,lx,2)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
library(moments)
library(nortest)
jarque.x <- jarque.test(x)
jarque.y <- jarque.test(y)
if(lx>7) {
ad.x <- ad.test(x)
ad.y <- ad.test(y)
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Normality Tests',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.y'),'
',sep=''))
a<-table.row.end(a)
if(lx>7) {
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.y'),'
',sep=''))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
library(car)
bitmap(file='test2.png')
qqPlot(x,main='QQplot of variable x')
dev.off()
bitmap(file='test3.png')
qqPlot(y,main='QQplot of variable y')
dev.off()