Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 13 Dec 2016 12:06:28 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t1481627246a0evy8qu92o6bc8.htm/, Retrieved Fri, 01 Nov 2024 03:37:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299053, Retrieved Fri, 01 Nov 2024 03:37:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact122
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [Partial autocorre...] [2016-12-13 11:06:28] [94c1b173d9287822f5e2740a4a602bdd] [Current]
Feedback Forum

Post a new message
Dataseries X:
13430
13020
11710
9265
7280
5040
3860
6160
13610
15455
14530
13815
12860
11500
10660
9340
8050
6540
5060
6350
14130
16380
16160
15850
15930
15320
13420
12255
8785
6380
4760
5730
10810
12845
12865
13515
13880
12960
12090
9510
8130
6625
4920
4650
10085
13960
14495
14340
13875
13135
13415
9280
7075
5660
4270
5085
11945
14335
14105
13755
12920
11650
10720
8600
7795
6550
4800
5900
14095
15170
14875
15230
13685
12780
11510
9915
8740
7870
6650
5285
13195
13390
13490
13445
13070
12480
11550
10725
9130
7885
6415
5540
9350
12645
11985
10055
10295
10280
9420
9575
8090
5855
4445
3555
12870
14750
13615
13705
13940
11900
9000
7340
6425
5535
4050
3485
8090
11380
11355
10530
9285




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299053&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299053&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299053&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.112166-1.16570.12316
2-0.144669-1.50340.067822
3-0.016561-0.17210.431838
40.0317460.32990.371051
50.0317840.33030.370904
6-0.065372-0.67940.249179
7-0.065436-0.680.248971
8-0.088027-0.91480.181167
90.0269910.28050.389817
100.0754360.7840.217391
110.1649341.7140.044695
12-0.439095-4.56327e-06
130.0458860.47690.317213
140.0620750.64510.260113
150.0163040.16940.432886
16-0.0915-0.95090.17189
17-0.10347-1.07530.14232
180.0435250.45230.325972
190.1025011.06520.144576
200.0720430.74870.227834

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.112166 & -1.1657 & 0.12316 \tabularnewline
2 & -0.144669 & -1.5034 & 0.067822 \tabularnewline
3 & -0.016561 & -0.1721 & 0.431838 \tabularnewline
4 & 0.031746 & 0.3299 & 0.371051 \tabularnewline
5 & 0.031784 & 0.3303 & 0.370904 \tabularnewline
6 & -0.065372 & -0.6794 & 0.249179 \tabularnewline
7 & -0.065436 & -0.68 & 0.248971 \tabularnewline
8 & -0.088027 & -0.9148 & 0.181167 \tabularnewline
9 & 0.026991 & 0.2805 & 0.389817 \tabularnewline
10 & 0.075436 & 0.784 & 0.217391 \tabularnewline
11 & 0.164934 & 1.714 & 0.044695 \tabularnewline
12 & -0.439095 & -4.5632 & 7e-06 \tabularnewline
13 & 0.045886 & 0.4769 & 0.317213 \tabularnewline
14 & 0.062075 & 0.6451 & 0.260113 \tabularnewline
15 & 0.016304 & 0.1694 & 0.432886 \tabularnewline
16 & -0.0915 & -0.9509 & 0.17189 \tabularnewline
17 & -0.10347 & -1.0753 & 0.14232 \tabularnewline
18 & 0.043525 & 0.4523 & 0.325972 \tabularnewline
19 & 0.102501 & 1.0652 & 0.144576 \tabularnewline
20 & 0.072043 & 0.7487 & 0.227834 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299053&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.112166[/C][C]-1.1657[/C][C]0.12316[/C][/ROW]
[ROW][C]2[/C][C]-0.144669[/C][C]-1.5034[/C][C]0.067822[/C][/ROW]
[ROW][C]3[/C][C]-0.016561[/C][C]-0.1721[/C][C]0.431838[/C][/ROW]
[ROW][C]4[/C][C]0.031746[/C][C]0.3299[/C][C]0.371051[/C][/ROW]
[ROW][C]5[/C][C]0.031784[/C][C]0.3303[/C][C]0.370904[/C][/ROW]
[ROW][C]6[/C][C]-0.065372[/C][C]-0.6794[/C][C]0.249179[/C][/ROW]
[ROW][C]7[/C][C]-0.065436[/C][C]-0.68[/C][C]0.248971[/C][/ROW]
[ROW][C]8[/C][C]-0.088027[/C][C]-0.9148[/C][C]0.181167[/C][/ROW]
[ROW][C]9[/C][C]0.026991[/C][C]0.2805[/C][C]0.389817[/C][/ROW]
[ROW][C]10[/C][C]0.075436[/C][C]0.784[/C][C]0.217391[/C][/ROW]
[ROW][C]11[/C][C]0.164934[/C][C]1.714[/C][C]0.044695[/C][/ROW]
[ROW][C]12[/C][C]-0.439095[/C][C]-4.5632[/C][C]7e-06[/C][/ROW]
[ROW][C]13[/C][C]0.045886[/C][C]0.4769[/C][C]0.317213[/C][/ROW]
[ROW][C]14[/C][C]0.062075[/C][C]0.6451[/C][C]0.260113[/C][/ROW]
[ROW][C]15[/C][C]0.016304[/C][C]0.1694[/C][C]0.432886[/C][/ROW]
[ROW][C]16[/C][C]-0.0915[/C][C]-0.9509[/C][C]0.17189[/C][/ROW]
[ROW][C]17[/C][C]-0.10347[/C][C]-1.0753[/C][C]0.14232[/C][/ROW]
[ROW][C]18[/C][C]0.043525[/C][C]0.4523[/C][C]0.325972[/C][/ROW]
[ROW][C]19[/C][C]0.102501[/C][C]1.0652[/C][C]0.144576[/C][/ROW]
[ROW][C]20[/C][C]0.072043[/C][C]0.7487[/C][C]0.227834[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299053&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299053&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.112166-1.16570.12316
2-0.144669-1.50340.067822
3-0.016561-0.17210.431838
40.0317460.32990.371051
50.0317840.33030.370904
6-0.065372-0.67940.249179
7-0.065436-0.680.248971
8-0.088027-0.91480.181167
90.0269910.28050.389817
100.0754360.7840.217391
110.1649341.7140.044695
12-0.439095-4.56327e-06
130.0458860.47690.317213
140.0620750.64510.260113
150.0163040.16940.432886
16-0.0915-0.95090.17189
17-0.10347-1.07530.14232
180.0435250.45230.325972
190.1025011.06520.144576
200.0720430.74870.227834







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.112166-1.16570.12316
2-0.159254-1.6550.050413
3-0.055316-0.57490.283291
4-0.000873-0.00910.496391
50.0263870.27420.392221
6-0.055486-0.57660.282695
7-0.074377-0.7730.22062
8-0.130104-1.35210.089588
9-0.03226-0.33530.36904
100.0405330.42120.337212
110.193642.01240.023335
12-0.406083-4.22012.6e-05
13-0.00592-0.06150.47553
14-0.089972-0.9350.175933
15-0.006545-0.0680.472949
16-0.126854-1.31830.095095
17-0.099477-1.03380.151769
18-0.070308-0.73070.233285
190.0568610.59090.277904
20-0.01906-0.19810.421677

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.112166 & -1.1657 & 0.12316 \tabularnewline
2 & -0.159254 & -1.655 & 0.050413 \tabularnewline
3 & -0.055316 & -0.5749 & 0.283291 \tabularnewline
4 & -0.000873 & -0.0091 & 0.496391 \tabularnewline
5 & 0.026387 & 0.2742 & 0.392221 \tabularnewline
6 & -0.055486 & -0.5766 & 0.282695 \tabularnewline
7 & -0.074377 & -0.773 & 0.22062 \tabularnewline
8 & -0.130104 & -1.3521 & 0.089588 \tabularnewline
9 & -0.03226 & -0.3353 & 0.36904 \tabularnewline
10 & 0.040533 & 0.4212 & 0.337212 \tabularnewline
11 & 0.19364 & 2.0124 & 0.023335 \tabularnewline
12 & -0.406083 & -4.2201 & 2.6e-05 \tabularnewline
13 & -0.00592 & -0.0615 & 0.47553 \tabularnewline
14 & -0.089972 & -0.935 & 0.175933 \tabularnewline
15 & -0.006545 & -0.068 & 0.472949 \tabularnewline
16 & -0.126854 & -1.3183 & 0.095095 \tabularnewline
17 & -0.099477 & -1.0338 & 0.151769 \tabularnewline
18 & -0.070308 & -0.7307 & 0.233285 \tabularnewline
19 & 0.056861 & 0.5909 & 0.277904 \tabularnewline
20 & -0.01906 & -0.1981 & 0.421677 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299053&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.112166[/C][C]-1.1657[/C][C]0.12316[/C][/ROW]
[ROW][C]2[/C][C]-0.159254[/C][C]-1.655[/C][C]0.050413[/C][/ROW]
[ROW][C]3[/C][C]-0.055316[/C][C]-0.5749[/C][C]0.283291[/C][/ROW]
[ROW][C]4[/C][C]-0.000873[/C][C]-0.0091[/C][C]0.496391[/C][/ROW]
[ROW][C]5[/C][C]0.026387[/C][C]0.2742[/C][C]0.392221[/C][/ROW]
[ROW][C]6[/C][C]-0.055486[/C][C]-0.5766[/C][C]0.282695[/C][/ROW]
[ROW][C]7[/C][C]-0.074377[/C][C]-0.773[/C][C]0.22062[/C][/ROW]
[ROW][C]8[/C][C]-0.130104[/C][C]-1.3521[/C][C]0.089588[/C][/ROW]
[ROW][C]9[/C][C]-0.03226[/C][C]-0.3353[/C][C]0.36904[/C][/ROW]
[ROW][C]10[/C][C]0.040533[/C][C]0.4212[/C][C]0.337212[/C][/ROW]
[ROW][C]11[/C][C]0.19364[/C][C]2.0124[/C][C]0.023335[/C][/ROW]
[ROW][C]12[/C][C]-0.406083[/C][C]-4.2201[/C][C]2.6e-05[/C][/ROW]
[ROW][C]13[/C][C]-0.00592[/C][C]-0.0615[/C][C]0.47553[/C][/ROW]
[ROW][C]14[/C][C]-0.089972[/C][C]-0.935[/C][C]0.175933[/C][/ROW]
[ROW][C]15[/C][C]-0.006545[/C][C]-0.068[/C][C]0.472949[/C][/ROW]
[ROW][C]16[/C][C]-0.126854[/C][C]-1.3183[/C][C]0.095095[/C][/ROW]
[ROW][C]17[/C][C]-0.099477[/C][C]-1.0338[/C][C]0.151769[/C][/ROW]
[ROW][C]18[/C][C]-0.070308[/C][C]-0.7307[/C][C]0.233285[/C][/ROW]
[ROW][C]19[/C][C]0.056861[/C][C]0.5909[/C][C]0.277904[/C][/ROW]
[ROW][C]20[/C][C]-0.01906[/C][C]-0.1981[/C][C]0.421677[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299053&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299053&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.112166-1.16570.12316
2-0.159254-1.6550.050413
3-0.055316-0.57490.283291
4-0.000873-0.00910.496391
50.0263870.27420.392221
6-0.055486-0.57660.282695
7-0.074377-0.7730.22062
8-0.130104-1.35210.089588
9-0.03226-0.33530.36904
100.0405330.42120.337212
110.193642.01240.023335
12-0.406083-4.22012.6e-05
13-0.00592-0.06150.47553
14-0.089972-0.9350.175933
15-0.006545-0.0680.472949
16-0.126854-1.31830.095095
17-0.099477-1.03380.151769
18-0.070308-0.73070.233285
190.0568610.59090.277904
20-0.01906-0.19810.421677



Parameters (Session):
par1 = 8 ; par2 = 0 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '2'
par3 <- '0'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')