Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 13 Dec 2016 11:26:16 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t1481624878x8ol3sedk1r52d2.htm/, Retrieved Fri, 01 Nov 2024 03:26:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299031, Retrieved Fri, 01 Nov 2024 03:26:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact135
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [Autocorrelatie N2013] [2016-12-13 10:26:16] [7b02c9ca65294818d9c418453f92ae83] [Current]
Feedback Forum

Post a new message
Dataseries X:
2870
2690
2790
2650
3500
2690
2790
2900
2690
3110
3020
3220
2860
3090
3240
2830
4060
3080
3120
3270
2740
3190
3220
3050
3180
2850
3920
2690
3270
2790
2500
2930
2630
2590
2710
2940
3230
3140
3140
2600
3520
3090
2760
2840
2310
3440
2790
2380
2210
2730
2590
2580
2670
2490
2570
3020
4840
2590
3240
2320
2590
2330
2880
2620
3220
3130
2790
3090
2910
3770
3220
2950
2930
3710
2920
3000
3360
3210
3100
3460
3300
3060
3730
3620
2800
3300
4020
3000
3350
3440
3430
3470
2920
3170
3510
3040
3320
2980
1180
3010
3780
3220
3590
3670
3270
3260
4170
2580
3960
3440
4160
3320
3510
3440
3620
3320
4840
3400
3700
3740
3450
3760
4050
3760
3700
3650




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299031&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299031&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299031&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.2251992.52780.006356
20.3049633.42320.000418
30.2609492.92910.002018
40.21442.40660.008776
50.187892.10910.018459
60.2908663.2650.000705
70.1707911.91710.028743
80.1216551.36560.087253
90.1954842.19430.015024
100.1889742.12120.017931
110.1365861.53320.06387
120.0810290.90950.1824
130.1961362.20160.014757
140.1781541.99980.023838
150.1279251.4360.076746
160.05860.65780.255938
170.1713141.9230.028368
18-0.00468-0.05250.479093
190.0884260.99260.161409
200.1255951.40980.080532
210.0286110.32120.374309

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.225199 & 2.5278 & 0.006356 \tabularnewline
2 & 0.304963 & 3.4232 & 0.000418 \tabularnewline
3 & 0.260949 & 2.9291 & 0.002018 \tabularnewline
4 & 0.2144 & 2.4066 & 0.008776 \tabularnewline
5 & 0.18789 & 2.1091 & 0.018459 \tabularnewline
6 & 0.290866 & 3.265 & 0.000705 \tabularnewline
7 & 0.170791 & 1.9171 & 0.028743 \tabularnewline
8 & 0.121655 & 1.3656 & 0.087253 \tabularnewline
9 & 0.195484 & 2.1943 & 0.015024 \tabularnewline
10 & 0.188974 & 2.1212 & 0.017931 \tabularnewline
11 & 0.136586 & 1.5332 & 0.06387 \tabularnewline
12 & 0.081029 & 0.9095 & 0.1824 \tabularnewline
13 & 0.196136 & 2.2016 & 0.014757 \tabularnewline
14 & 0.178154 & 1.9998 & 0.023838 \tabularnewline
15 & 0.127925 & 1.436 & 0.076746 \tabularnewline
16 & 0.0586 & 0.6578 & 0.255938 \tabularnewline
17 & 0.171314 & 1.923 & 0.028368 \tabularnewline
18 & -0.00468 & -0.0525 & 0.479093 \tabularnewline
19 & 0.088426 & 0.9926 & 0.161409 \tabularnewline
20 & 0.125595 & 1.4098 & 0.080532 \tabularnewline
21 & 0.028611 & 0.3212 & 0.374309 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299031&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.225199[/C][C]2.5278[/C][C]0.006356[/C][/ROW]
[ROW][C]2[/C][C]0.304963[/C][C]3.4232[/C][C]0.000418[/C][/ROW]
[ROW][C]3[/C][C]0.260949[/C][C]2.9291[/C][C]0.002018[/C][/ROW]
[ROW][C]4[/C][C]0.2144[/C][C]2.4066[/C][C]0.008776[/C][/ROW]
[ROW][C]5[/C][C]0.18789[/C][C]2.1091[/C][C]0.018459[/C][/ROW]
[ROW][C]6[/C][C]0.290866[/C][C]3.265[/C][C]0.000705[/C][/ROW]
[ROW][C]7[/C][C]0.170791[/C][C]1.9171[/C][C]0.028743[/C][/ROW]
[ROW][C]8[/C][C]0.121655[/C][C]1.3656[/C][C]0.087253[/C][/ROW]
[ROW][C]9[/C][C]0.195484[/C][C]2.1943[/C][C]0.015024[/C][/ROW]
[ROW][C]10[/C][C]0.188974[/C][C]2.1212[/C][C]0.017931[/C][/ROW]
[ROW][C]11[/C][C]0.136586[/C][C]1.5332[/C][C]0.06387[/C][/ROW]
[ROW][C]12[/C][C]0.081029[/C][C]0.9095[/C][C]0.1824[/C][/ROW]
[ROW][C]13[/C][C]0.196136[/C][C]2.2016[/C][C]0.014757[/C][/ROW]
[ROW][C]14[/C][C]0.178154[/C][C]1.9998[/C][C]0.023838[/C][/ROW]
[ROW][C]15[/C][C]0.127925[/C][C]1.436[/C][C]0.076746[/C][/ROW]
[ROW][C]16[/C][C]0.0586[/C][C]0.6578[/C][C]0.255938[/C][/ROW]
[ROW][C]17[/C][C]0.171314[/C][C]1.923[/C][C]0.028368[/C][/ROW]
[ROW][C]18[/C][C]-0.00468[/C][C]-0.0525[/C][C]0.479093[/C][/ROW]
[ROW][C]19[/C][C]0.088426[/C][C]0.9926[/C][C]0.161409[/C][/ROW]
[ROW][C]20[/C][C]0.125595[/C][C]1.4098[/C][C]0.080532[/C][/ROW]
[ROW][C]21[/C][C]0.028611[/C][C]0.3212[/C][C]0.374309[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299031&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299031&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.2251992.52780.006356
20.3049633.42320.000418
30.2609492.92910.002018
40.21442.40660.008776
50.187892.10910.018459
60.2908663.2650.000705
70.1707911.91710.028743
80.1216551.36560.087253
90.1954842.19430.015024
100.1889742.12120.017931
110.1365861.53320.06387
120.0810290.90950.1824
130.1961362.20160.014757
140.1781541.99980.023838
150.1279251.4360.076746
160.05860.65780.255938
170.1713141.9230.028368
18-0.00468-0.05250.479093
190.0884260.99260.161409
200.1255951.40980.080532
210.0286110.32120.374309







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.2251992.52780.006356
20.2678313.00640.001596
30.1706231.91520.028865
40.0838950.94170.174068
50.0473530.53150.297993
60.1799452.01990.022758
70.0247250.27750.390913
8-0.058339-0.65490.256877
90.0656930.73740.231125
100.0886210.99480.160877
110.0041680.04680.481379
12-0.095317-1.06990.143348
130.1073281.20480.115279
140.1261271.41580.079654
15-0.024077-0.27030.393701
16-0.138132-1.55050.061761
170.1061651.19170.117809
18-0.063788-0.7160.237652
19-0.053559-0.60120.274395
200.0373520.41930.337865
210.0005340.0060.497612

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.225199 & 2.5278 & 0.006356 \tabularnewline
2 & 0.267831 & 3.0064 & 0.001596 \tabularnewline
3 & 0.170623 & 1.9152 & 0.028865 \tabularnewline
4 & 0.083895 & 0.9417 & 0.174068 \tabularnewline
5 & 0.047353 & 0.5315 & 0.297993 \tabularnewline
6 & 0.179945 & 2.0199 & 0.022758 \tabularnewline
7 & 0.024725 & 0.2775 & 0.390913 \tabularnewline
8 & -0.058339 & -0.6549 & 0.256877 \tabularnewline
9 & 0.065693 & 0.7374 & 0.231125 \tabularnewline
10 & 0.088621 & 0.9948 & 0.160877 \tabularnewline
11 & 0.004168 & 0.0468 & 0.481379 \tabularnewline
12 & -0.095317 & -1.0699 & 0.143348 \tabularnewline
13 & 0.107328 & 1.2048 & 0.115279 \tabularnewline
14 & 0.126127 & 1.4158 & 0.079654 \tabularnewline
15 & -0.024077 & -0.2703 & 0.393701 \tabularnewline
16 & -0.138132 & -1.5505 & 0.061761 \tabularnewline
17 & 0.106165 & 1.1917 & 0.117809 \tabularnewline
18 & -0.063788 & -0.716 & 0.237652 \tabularnewline
19 & -0.053559 & -0.6012 & 0.274395 \tabularnewline
20 & 0.037352 & 0.4193 & 0.337865 \tabularnewline
21 & 0.000534 & 0.006 & 0.497612 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299031&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.225199[/C][C]2.5278[/C][C]0.006356[/C][/ROW]
[ROW][C]2[/C][C]0.267831[/C][C]3.0064[/C][C]0.001596[/C][/ROW]
[ROW][C]3[/C][C]0.170623[/C][C]1.9152[/C][C]0.028865[/C][/ROW]
[ROW][C]4[/C][C]0.083895[/C][C]0.9417[/C][C]0.174068[/C][/ROW]
[ROW][C]5[/C][C]0.047353[/C][C]0.5315[/C][C]0.297993[/C][/ROW]
[ROW][C]6[/C][C]0.179945[/C][C]2.0199[/C][C]0.022758[/C][/ROW]
[ROW][C]7[/C][C]0.024725[/C][C]0.2775[/C][C]0.390913[/C][/ROW]
[ROW][C]8[/C][C]-0.058339[/C][C]-0.6549[/C][C]0.256877[/C][/ROW]
[ROW][C]9[/C][C]0.065693[/C][C]0.7374[/C][C]0.231125[/C][/ROW]
[ROW][C]10[/C][C]0.088621[/C][C]0.9948[/C][C]0.160877[/C][/ROW]
[ROW][C]11[/C][C]0.004168[/C][C]0.0468[/C][C]0.481379[/C][/ROW]
[ROW][C]12[/C][C]-0.095317[/C][C]-1.0699[/C][C]0.143348[/C][/ROW]
[ROW][C]13[/C][C]0.107328[/C][C]1.2048[/C][C]0.115279[/C][/ROW]
[ROW][C]14[/C][C]0.126127[/C][C]1.4158[/C][C]0.079654[/C][/ROW]
[ROW][C]15[/C][C]-0.024077[/C][C]-0.2703[/C][C]0.393701[/C][/ROW]
[ROW][C]16[/C][C]-0.138132[/C][C]-1.5505[/C][C]0.061761[/C][/ROW]
[ROW][C]17[/C][C]0.106165[/C][C]1.1917[/C][C]0.117809[/C][/ROW]
[ROW][C]18[/C][C]-0.063788[/C][C]-0.716[/C][C]0.237652[/C][/ROW]
[ROW][C]19[/C][C]-0.053559[/C][C]-0.6012[/C][C]0.274395[/C][/ROW]
[ROW][C]20[/C][C]0.037352[/C][C]0.4193[/C][C]0.337865[/C][/ROW]
[ROW][C]21[/C][C]0.000534[/C][C]0.006[/C][C]0.497612[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299031&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299031&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.2251992.52780.006356
20.2678313.00640.001596
30.1706231.91520.028865
40.0838950.94170.174068
50.0473530.53150.297993
60.1799452.01990.022758
70.0247250.27750.390913
8-0.058339-0.65490.256877
90.0656930.73740.231125
100.0886210.99480.160877
110.0041680.04680.481379
12-0.095317-1.06990.143348
130.1073281.20480.115279
140.1261271.41580.079654
15-0.024077-0.27030.393701
16-0.138132-1.55050.061761
170.1061651.19170.117809
18-0.063788-0.7160.237652
19-0.053559-0.60120.274395
200.0373520.41930.337865
210.0005340.0060.497612



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')