Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationMon, 12 Dec 2016 19:42:36 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/12/t1481568169slsvyne6rorgb6a.htm/, Retrieved Fri, 01 Nov 2024 03:43:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298962, Retrieved Fri, 01 Nov 2024 03:43:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact106
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [classical decompo...] [2016-12-12 18:42:36] [130d73899007e5ff8a4f636b9bcfb397] [Current]
Feedback Forum

Post a new message
Dataseries X:
3765
3680
3265
2950
2975
3225
3270
3425
3575
3455
3335
3725
3895
4145
4490
4280
3785
3295
3290
3530
4345
4340
4950
5395
4895
4255
3910
3895
3910
3300
3780
3830
3505
3505
3440
3065
3085
3240
2930
2900
2375
2875
3575
3725
3600
3695
3245
3700
3350
2670
2960
2830
2825
2920
2930
3385
3350
3485
3140
2960
2850
2995
2695
2950
2890
3040
2945
3650
3995
3540
3435
3345
3005
2760
2890
2745
3180
3365
3660
3890
3685
4150
3930
3675
3380
3195
2985
2555
2830
2595
2940
3185
3090
2615
2785
2695
3015
3185
3050
2970
3295
3680
3715
3785
3655
3725
3545
3440
3575
3570
3355
3500
3275
3395
3485
3390




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298962&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298962&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298962&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13765NANA50.0123NA
23680NANA-65.821NA
33265NANA-151.215NA
42950NANA-251.162NA
52975NANA-258.037NA
63225NANA-260.147NA
732703346.893392.5-45.6127-76.8873
834253628.623417.29211.332-203.623
935753743.023487.71255.313-168.022
1034553814.293594.17220.128-359.295
1133353821.193683.33137.86-486.193
1237253877.353720157.35-152.35
1338953773.763723.7550.0123121.238
1441453663.143728.96-65.821481.863
1544903614.23765.42-151.215875.798
1642803583.213834.37-251.162696.787
1737853680.53938.54-258.037104.496
1832953815.274075.42-260.147-520.27
1932904141.054186.67-45.6127-851.054
2035304444.254232.92211.332-914.248
2143454468.654213.33255.313-123.647
2243404393.254173.12220.128-53.253
2349504300.154162.29137.86649.849
2453954325.064167.71157.351069.94
2548954238.354188.3350.0123656.654
2642554155.434221.25-65.82199.571
2739104047.544198.75-151.215-137.535
2838953877.84128.96-251.16217.2041
2939103773.214031.25-258.037136.787
3033003611.13871.25-260.147-311.103
3137803653.143698.75-45.6127126.863
3238303792.373581.04211.33237.6266
3335053753.233497.92255.313-248.23
3435053635.753415.62220.128-130.753
3534403448.073310.21137.86-8.06785
3630653385.893228.54157.35-320.892
3730853252.33202.2950.0123-167.304
3832403123.553189.38-65.821116.446
3929303037.743188.96-151.215-107.744
4029002949.673200.83-251.162-49.6709
4123752942.593200.62-258.037-567.588
4228752958.813218.96-260.147-83.8115
4335753210.853256.46-45.6127364.154
4437253455.083243.75211.332269.918
4536003476.563221.25255.313123.437
4636953439.713219.58220.128255.289
4732453373.283235.42137.86-128.276
4837003413.393256.04157.35286.608
4933503281.053231.0450.012368.946
5026703124.183190-65.821-454.179
5129603014.23165.42-151.215-54.2021
5228302895.093146.25-251.162-65.0875
5328252875.093133.12-258.037-50.0875
5429202837.773097.92-260.14782.2302
5529303000.643046.25-45.6127-70.6373
5633853250.293038.96211.332134.71
5733503296.773041.46255.31353.2284
5834853255.543035.42220.128229.455
5931403180.983043.12137.86-40.9845
6029603208.183050.83157.35-248.184
6128503106.473056.4650.0123-256.471
6229953002.33068.12-65.821-7.30396
6326952954.833106.04-151.215-259.827
6429502884.053135.21-251.16265.9541
6528902891.753149.79-258.037-1.7542
6630402917.983178.13-260.147122.022
6729453155.013200.63-45.6127-210.012
6836503408.623197.29211.332241.377
6939953450.943195.62255.313544.062
7035403415.343195.21220.128124.664
7134353336.613198.75137.8698.3905
7233453381.733224.37157.35-36.7253
7330053317.723267.7150.0123-312.721
7427603241.683307.5-65.821-481.679
7528903153.373304.58-151.215-263.369
7627453065.923317.08-251.162-320.921
7731803105.093363.12-258.03774.9125
7833653137.353397.5-260.147227.647
7936603381.263426.88-45.6127278.738
8038903671.963460.62211.332218.043
8136853738.023482.71255.313-53.0216
8241503698.883478.75220.128451.122
8339303594.113456.25137.86335.89
8436753566.933409.58157.35108.066
8533803397.513347.550.0123-17.5123
8631953222.33288.13-65.821-27.304
8729853082.743233.96-151.215-97.7438
8825552894.053145.21-251.162-339.046
8928302775.53033.54-258.03754.4958
9025952684.852945-260.147-89.8532
9129402843.352888.96-45.612796.6544
9231853084.672873.33211.332100.335
9330903130.942875.62255.313-40.9382
9426153115.752895.62220.128-500.753
9527853070.152932.29137.86-285.151
9626953154.232996.87157.35-459.225
9730153124.393074.3750.0123-109.387
9831853065.853131.67-65.821119.154
9930503028.993180.21-151.21521.0062
10029702998.843250-251.162-28.8375
10132953069.883327.92-258.037225.121
10236803130.483390.62-260.147549.522
10337153399.393445-45.6127315.613
10437853695.713484.38211.33289.2933
10536553768.443513.12255.313-113.438
10637253768.043547.92220.128-43.0447
10735453707.033569.17137.86-162.026
10834403713.813556.46157.35-273.809
10935753585.01353550.0123-10.0123
11035703443.143508.96-65.821126.863
1113355NANA-151.215NA
1123500NANA-251.162NA
1133275NANA-258.037NA
1143395NANA-260.147NA
1153485NANA-45.6127NA
1163390NANA211.332NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3765 & NA & NA & 50.0123 & NA \tabularnewline
2 & 3680 & NA & NA & -65.821 & NA \tabularnewline
3 & 3265 & NA & NA & -151.215 & NA \tabularnewline
4 & 2950 & NA & NA & -251.162 & NA \tabularnewline
5 & 2975 & NA & NA & -258.037 & NA \tabularnewline
6 & 3225 & NA & NA & -260.147 & NA \tabularnewline
7 & 3270 & 3346.89 & 3392.5 & -45.6127 & -76.8873 \tabularnewline
8 & 3425 & 3628.62 & 3417.29 & 211.332 & -203.623 \tabularnewline
9 & 3575 & 3743.02 & 3487.71 & 255.313 & -168.022 \tabularnewline
10 & 3455 & 3814.29 & 3594.17 & 220.128 & -359.295 \tabularnewline
11 & 3335 & 3821.19 & 3683.33 & 137.86 & -486.193 \tabularnewline
12 & 3725 & 3877.35 & 3720 & 157.35 & -152.35 \tabularnewline
13 & 3895 & 3773.76 & 3723.75 & 50.0123 & 121.238 \tabularnewline
14 & 4145 & 3663.14 & 3728.96 & -65.821 & 481.863 \tabularnewline
15 & 4490 & 3614.2 & 3765.42 & -151.215 & 875.798 \tabularnewline
16 & 4280 & 3583.21 & 3834.37 & -251.162 & 696.787 \tabularnewline
17 & 3785 & 3680.5 & 3938.54 & -258.037 & 104.496 \tabularnewline
18 & 3295 & 3815.27 & 4075.42 & -260.147 & -520.27 \tabularnewline
19 & 3290 & 4141.05 & 4186.67 & -45.6127 & -851.054 \tabularnewline
20 & 3530 & 4444.25 & 4232.92 & 211.332 & -914.248 \tabularnewline
21 & 4345 & 4468.65 & 4213.33 & 255.313 & -123.647 \tabularnewline
22 & 4340 & 4393.25 & 4173.12 & 220.128 & -53.253 \tabularnewline
23 & 4950 & 4300.15 & 4162.29 & 137.86 & 649.849 \tabularnewline
24 & 5395 & 4325.06 & 4167.71 & 157.35 & 1069.94 \tabularnewline
25 & 4895 & 4238.35 & 4188.33 & 50.0123 & 656.654 \tabularnewline
26 & 4255 & 4155.43 & 4221.25 & -65.821 & 99.571 \tabularnewline
27 & 3910 & 4047.54 & 4198.75 & -151.215 & -137.535 \tabularnewline
28 & 3895 & 3877.8 & 4128.96 & -251.162 & 17.2041 \tabularnewline
29 & 3910 & 3773.21 & 4031.25 & -258.037 & 136.787 \tabularnewline
30 & 3300 & 3611.1 & 3871.25 & -260.147 & -311.103 \tabularnewline
31 & 3780 & 3653.14 & 3698.75 & -45.6127 & 126.863 \tabularnewline
32 & 3830 & 3792.37 & 3581.04 & 211.332 & 37.6266 \tabularnewline
33 & 3505 & 3753.23 & 3497.92 & 255.313 & -248.23 \tabularnewline
34 & 3505 & 3635.75 & 3415.62 & 220.128 & -130.753 \tabularnewline
35 & 3440 & 3448.07 & 3310.21 & 137.86 & -8.06785 \tabularnewline
36 & 3065 & 3385.89 & 3228.54 & 157.35 & -320.892 \tabularnewline
37 & 3085 & 3252.3 & 3202.29 & 50.0123 & -167.304 \tabularnewline
38 & 3240 & 3123.55 & 3189.38 & -65.821 & 116.446 \tabularnewline
39 & 2930 & 3037.74 & 3188.96 & -151.215 & -107.744 \tabularnewline
40 & 2900 & 2949.67 & 3200.83 & -251.162 & -49.6709 \tabularnewline
41 & 2375 & 2942.59 & 3200.62 & -258.037 & -567.588 \tabularnewline
42 & 2875 & 2958.81 & 3218.96 & -260.147 & -83.8115 \tabularnewline
43 & 3575 & 3210.85 & 3256.46 & -45.6127 & 364.154 \tabularnewline
44 & 3725 & 3455.08 & 3243.75 & 211.332 & 269.918 \tabularnewline
45 & 3600 & 3476.56 & 3221.25 & 255.313 & 123.437 \tabularnewline
46 & 3695 & 3439.71 & 3219.58 & 220.128 & 255.289 \tabularnewline
47 & 3245 & 3373.28 & 3235.42 & 137.86 & -128.276 \tabularnewline
48 & 3700 & 3413.39 & 3256.04 & 157.35 & 286.608 \tabularnewline
49 & 3350 & 3281.05 & 3231.04 & 50.0123 & 68.946 \tabularnewline
50 & 2670 & 3124.18 & 3190 & -65.821 & -454.179 \tabularnewline
51 & 2960 & 3014.2 & 3165.42 & -151.215 & -54.2021 \tabularnewline
52 & 2830 & 2895.09 & 3146.25 & -251.162 & -65.0875 \tabularnewline
53 & 2825 & 2875.09 & 3133.12 & -258.037 & -50.0875 \tabularnewline
54 & 2920 & 2837.77 & 3097.92 & -260.147 & 82.2302 \tabularnewline
55 & 2930 & 3000.64 & 3046.25 & -45.6127 & -70.6373 \tabularnewline
56 & 3385 & 3250.29 & 3038.96 & 211.332 & 134.71 \tabularnewline
57 & 3350 & 3296.77 & 3041.46 & 255.313 & 53.2284 \tabularnewline
58 & 3485 & 3255.54 & 3035.42 & 220.128 & 229.455 \tabularnewline
59 & 3140 & 3180.98 & 3043.12 & 137.86 & -40.9845 \tabularnewline
60 & 2960 & 3208.18 & 3050.83 & 157.35 & -248.184 \tabularnewline
61 & 2850 & 3106.47 & 3056.46 & 50.0123 & -256.471 \tabularnewline
62 & 2995 & 3002.3 & 3068.12 & -65.821 & -7.30396 \tabularnewline
63 & 2695 & 2954.83 & 3106.04 & -151.215 & -259.827 \tabularnewline
64 & 2950 & 2884.05 & 3135.21 & -251.162 & 65.9541 \tabularnewline
65 & 2890 & 2891.75 & 3149.79 & -258.037 & -1.7542 \tabularnewline
66 & 3040 & 2917.98 & 3178.13 & -260.147 & 122.022 \tabularnewline
67 & 2945 & 3155.01 & 3200.63 & -45.6127 & -210.012 \tabularnewline
68 & 3650 & 3408.62 & 3197.29 & 211.332 & 241.377 \tabularnewline
69 & 3995 & 3450.94 & 3195.62 & 255.313 & 544.062 \tabularnewline
70 & 3540 & 3415.34 & 3195.21 & 220.128 & 124.664 \tabularnewline
71 & 3435 & 3336.61 & 3198.75 & 137.86 & 98.3905 \tabularnewline
72 & 3345 & 3381.73 & 3224.37 & 157.35 & -36.7253 \tabularnewline
73 & 3005 & 3317.72 & 3267.71 & 50.0123 & -312.721 \tabularnewline
74 & 2760 & 3241.68 & 3307.5 & -65.821 & -481.679 \tabularnewline
75 & 2890 & 3153.37 & 3304.58 & -151.215 & -263.369 \tabularnewline
76 & 2745 & 3065.92 & 3317.08 & -251.162 & -320.921 \tabularnewline
77 & 3180 & 3105.09 & 3363.12 & -258.037 & 74.9125 \tabularnewline
78 & 3365 & 3137.35 & 3397.5 & -260.147 & 227.647 \tabularnewline
79 & 3660 & 3381.26 & 3426.88 & -45.6127 & 278.738 \tabularnewline
80 & 3890 & 3671.96 & 3460.62 & 211.332 & 218.043 \tabularnewline
81 & 3685 & 3738.02 & 3482.71 & 255.313 & -53.0216 \tabularnewline
82 & 4150 & 3698.88 & 3478.75 & 220.128 & 451.122 \tabularnewline
83 & 3930 & 3594.11 & 3456.25 & 137.86 & 335.89 \tabularnewline
84 & 3675 & 3566.93 & 3409.58 & 157.35 & 108.066 \tabularnewline
85 & 3380 & 3397.51 & 3347.5 & 50.0123 & -17.5123 \tabularnewline
86 & 3195 & 3222.3 & 3288.13 & -65.821 & -27.304 \tabularnewline
87 & 2985 & 3082.74 & 3233.96 & -151.215 & -97.7438 \tabularnewline
88 & 2555 & 2894.05 & 3145.21 & -251.162 & -339.046 \tabularnewline
89 & 2830 & 2775.5 & 3033.54 & -258.037 & 54.4958 \tabularnewline
90 & 2595 & 2684.85 & 2945 & -260.147 & -89.8532 \tabularnewline
91 & 2940 & 2843.35 & 2888.96 & -45.6127 & 96.6544 \tabularnewline
92 & 3185 & 3084.67 & 2873.33 & 211.332 & 100.335 \tabularnewline
93 & 3090 & 3130.94 & 2875.62 & 255.313 & -40.9382 \tabularnewline
94 & 2615 & 3115.75 & 2895.62 & 220.128 & -500.753 \tabularnewline
95 & 2785 & 3070.15 & 2932.29 & 137.86 & -285.151 \tabularnewline
96 & 2695 & 3154.23 & 2996.87 & 157.35 & -459.225 \tabularnewline
97 & 3015 & 3124.39 & 3074.37 & 50.0123 & -109.387 \tabularnewline
98 & 3185 & 3065.85 & 3131.67 & -65.821 & 119.154 \tabularnewline
99 & 3050 & 3028.99 & 3180.21 & -151.215 & 21.0062 \tabularnewline
100 & 2970 & 2998.84 & 3250 & -251.162 & -28.8375 \tabularnewline
101 & 3295 & 3069.88 & 3327.92 & -258.037 & 225.121 \tabularnewline
102 & 3680 & 3130.48 & 3390.62 & -260.147 & 549.522 \tabularnewline
103 & 3715 & 3399.39 & 3445 & -45.6127 & 315.613 \tabularnewline
104 & 3785 & 3695.71 & 3484.38 & 211.332 & 89.2933 \tabularnewline
105 & 3655 & 3768.44 & 3513.12 & 255.313 & -113.438 \tabularnewline
106 & 3725 & 3768.04 & 3547.92 & 220.128 & -43.0447 \tabularnewline
107 & 3545 & 3707.03 & 3569.17 & 137.86 & -162.026 \tabularnewline
108 & 3440 & 3713.81 & 3556.46 & 157.35 & -273.809 \tabularnewline
109 & 3575 & 3585.01 & 3535 & 50.0123 & -10.0123 \tabularnewline
110 & 3570 & 3443.14 & 3508.96 & -65.821 & 126.863 \tabularnewline
111 & 3355 & NA & NA & -151.215 & NA \tabularnewline
112 & 3500 & NA & NA & -251.162 & NA \tabularnewline
113 & 3275 & NA & NA & -258.037 & NA \tabularnewline
114 & 3395 & NA & NA & -260.147 & NA \tabularnewline
115 & 3485 & NA & NA & -45.6127 & NA \tabularnewline
116 & 3390 & NA & NA & 211.332 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298962&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3765[/C][C]NA[/C][C]NA[/C][C]50.0123[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]3680[/C][C]NA[/C][C]NA[/C][C]-65.821[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]3265[/C][C]NA[/C][C]NA[/C][C]-151.215[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]2950[/C][C]NA[/C][C]NA[/C][C]-251.162[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]2975[/C][C]NA[/C][C]NA[/C][C]-258.037[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3225[/C][C]NA[/C][C]NA[/C][C]-260.147[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3270[/C][C]3346.89[/C][C]3392.5[/C][C]-45.6127[/C][C]-76.8873[/C][/ROW]
[ROW][C]8[/C][C]3425[/C][C]3628.62[/C][C]3417.29[/C][C]211.332[/C][C]-203.623[/C][/ROW]
[ROW][C]9[/C][C]3575[/C][C]3743.02[/C][C]3487.71[/C][C]255.313[/C][C]-168.022[/C][/ROW]
[ROW][C]10[/C][C]3455[/C][C]3814.29[/C][C]3594.17[/C][C]220.128[/C][C]-359.295[/C][/ROW]
[ROW][C]11[/C][C]3335[/C][C]3821.19[/C][C]3683.33[/C][C]137.86[/C][C]-486.193[/C][/ROW]
[ROW][C]12[/C][C]3725[/C][C]3877.35[/C][C]3720[/C][C]157.35[/C][C]-152.35[/C][/ROW]
[ROW][C]13[/C][C]3895[/C][C]3773.76[/C][C]3723.75[/C][C]50.0123[/C][C]121.238[/C][/ROW]
[ROW][C]14[/C][C]4145[/C][C]3663.14[/C][C]3728.96[/C][C]-65.821[/C][C]481.863[/C][/ROW]
[ROW][C]15[/C][C]4490[/C][C]3614.2[/C][C]3765.42[/C][C]-151.215[/C][C]875.798[/C][/ROW]
[ROW][C]16[/C][C]4280[/C][C]3583.21[/C][C]3834.37[/C][C]-251.162[/C][C]696.787[/C][/ROW]
[ROW][C]17[/C][C]3785[/C][C]3680.5[/C][C]3938.54[/C][C]-258.037[/C][C]104.496[/C][/ROW]
[ROW][C]18[/C][C]3295[/C][C]3815.27[/C][C]4075.42[/C][C]-260.147[/C][C]-520.27[/C][/ROW]
[ROW][C]19[/C][C]3290[/C][C]4141.05[/C][C]4186.67[/C][C]-45.6127[/C][C]-851.054[/C][/ROW]
[ROW][C]20[/C][C]3530[/C][C]4444.25[/C][C]4232.92[/C][C]211.332[/C][C]-914.248[/C][/ROW]
[ROW][C]21[/C][C]4345[/C][C]4468.65[/C][C]4213.33[/C][C]255.313[/C][C]-123.647[/C][/ROW]
[ROW][C]22[/C][C]4340[/C][C]4393.25[/C][C]4173.12[/C][C]220.128[/C][C]-53.253[/C][/ROW]
[ROW][C]23[/C][C]4950[/C][C]4300.15[/C][C]4162.29[/C][C]137.86[/C][C]649.849[/C][/ROW]
[ROW][C]24[/C][C]5395[/C][C]4325.06[/C][C]4167.71[/C][C]157.35[/C][C]1069.94[/C][/ROW]
[ROW][C]25[/C][C]4895[/C][C]4238.35[/C][C]4188.33[/C][C]50.0123[/C][C]656.654[/C][/ROW]
[ROW][C]26[/C][C]4255[/C][C]4155.43[/C][C]4221.25[/C][C]-65.821[/C][C]99.571[/C][/ROW]
[ROW][C]27[/C][C]3910[/C][C]4047.54[/C][C]4198.75[/C][C]-151.215[/C][C]-137.535[/C][/ROW]
[ROW][C]28[/C][C]3895[/C][C]3877.8[/C][C]4128.96[/C][C]-251.162[/C][C]17.2041[/C][/ROW]
[ROW][C]29[/C][C]3910[/C][C]3773.21[/C][C]4031.25[/C][C]-258.037[/C][C]136.787[/C][/ROW]
[ROW][C]30[/C][C]3300[/C][C]3611.1[/C][C]3871.25[/C][C]-260.147[/C][C]-311.103[/C][/ROW]
[ROW][C]31[/C][C]3780[/C][C]3653.14[/C][C]3698.75[/C][C]-45.6127[/C][C]126.863[/C][/ROW]
[ROW][C]32[/C][C]3830[/C][C]3792.37[/C][C]3581.04[/C][C]211.332[/C][C]37.6266[/C][/ROW]
[ROW][C]33[/C][C]3505[/C][C]3753.23[/C][C]3497.92[/C][C]255.313[/C][C]-248.23[/C][/ROW]
[ROW][C]34[/C][C]3505[/C][C]3635.75[/C][C]3415.62[/C][C]220.128[/C][C]-130.753[/C][/ROW]
[ROW][C]35[/C][C]3440[/C][C]3448.07[/C][C]3310.21[/C][C]137.86[/C][C]-8.06785[/C][/ROW]
[ROW][C]36[/C][C]3065[/C][C]3385.89[/C][C]3228.54[/C][C]157.35[/C][C]-320.892[/C][/ROW]
[ROW][C]37[/C][C]3085[/C][C]3252.3[/C][C]3202.29[/C][C]50.0123[/C][C]-167.304[/C][/ROW]
[ROW][C]38[/C][C]3240[/C][C]3123.55[/C][C]3189.38[/C][C]-65.821[/C][C]116.446[/C][/ROW]
[ROW][C]39[/C][C]2930[/C][C]3037.74[/C][C]3188.96[/C][C]-151.215[/C][C]-107.744[/C][/ROW]
[ROW][C]40[/C][C]2900[/C][C]2949.67[/C][C]3200.83[/C][C]-251.162[/C][C]-49.6709[/C][/ROW]
[ROW][C]41[/C][C]2375[/C][C]2942.59[/C][C]3200.62[/C][C]-258.037[/C][C]-567.588[/C][/ROW]
[ROW][C]42[/C][C]2875[/C][C]2958.81[/C][C]3218.96[/C][C]-260.147[/C][C]-83.8115[/C][/ROW]
[ROW][C]43[/C][C]3575[/C][C]3210.85[/C][C]3256.46[/C][C]-45.6127[/C][C]364.154[/C][/ROW]
[ROW][C]44[/C][C]3725[/C][C]3455.08[/C][C]3243.75[/C][C]211.332[/C][C]269.918[/C][/ROW]
[ROW][C]45[/C][C]3600[/C][C]3476.56[/C][C]3221.25[/C][C]255.313[/C][C]123.437[/C][/ROW]
[ROW][C]46[/C][C]3695[/C][C]3439.71[/C][C]3219.58[/C][C]220.128[/C][C]255.289[/C][/ROW]
[ROW][C]47[/C][C]3245[/C][C]3373.28[/C][C]3235.42[/C][C]137.86[/C][C]-128.276[/C][/ROW]
[ROW][C]48[/C][C]3700[/C][C]3413.39[/C][C]3256.04[/C][C]157.35[/C][C]286.608[/C][/ROW]
[ROW][C]49[/C][C]3350[/C][C]3281.05[/C][C]3231.04[/C][C]50.0123[/C][C]68.946[/C][/ROW]
[ROW][C]50[/C][C]2670[/C][C]3124.18[/C][C]3190[/C][C]-65.821[/C][C]-454.179[/C][/ROW]
[ROW][C]51[/C][C]2960[/C][C]3014.2[/C][C]3165.42[/C][C]-151.215[/C][C]-54.2021[/C][/ROW]
[ROW][C]52[/C][C]2830[/C][C]2895.09[/C][C]3146.25[/C][C]-251.162[/C][C]-65.0875[/C][/ROW]
[ROW][C]53[/C][C]2825[/C][C]2875.09[/C][C]3133.12[/C][C]-258.037[/C][C]-50.0875[/C][/ROW]
[ROW][C]54[/C][C]2920[/C][C]2837.77[/C][C]3097.92[/C][C]-260.147[/C][C]82.2302[/C][/ROW]
[ROW][C]55[/C][C]2930[/C][C]3000.64[/C][C]3046.25[/C][C]-45.6127[/C][C]-70.6373[/C][/ROW]
[ROW][C]56[/C][C]3385[/C][C]3250.29[/C][C]3038.96[/C][C]211.332[/C][C]134.71[/C][/ROW]
[ROW][C]57[/C][C]3350[/C][C]3296.77[/C][C]3041.46[/C][C]255.313[/C][C]53.2284[/C][/ROW]
[ROW][C]58[/C][C]3485[/C][C]3255.54[/C][C]3035.42[/C][C]220.128[/C][C]229.455[/C][/ROW]
[ROW][C]59[/C][C]3140[/C][C]3180.98[/C][C]3043.12[/C][C]137.86[/C][C]-40.9845[/C][/ROW]
[ROW][C]60[/C][C]2960[/C][C]3208.18[/C][C]3050.83[/C][C]157.35[/C][C]-248.184[/C][/ROW]
[ROW][C]61[/C][C]2850[/C][C]3106.47[/C][C]3056.46[/C][C]50.0123[/C][C]-256.471[/C][/ROW]
[ROW][C]62[/C][C]2995[/C][C]3002.3[/C][C]3068.12[/C][C]-65.821[/C][C]-7.30396[/C][/ROW]
[ROW][C]63[/C][C]2695[/C][C]2954.83[/C][C]3106.04[/C][C]-151.215[/C][C]-259.827[/C][/ROW]
[ROW][C]64[/C][C]2950[/C][C]2884.05[/C][C]3135.21[/C][C]-251.162[/C][C]65.9541[/C][/ROW]
[ROW][C]65[/C][C]2890[/C][C]2891.75[/C][C]3149.79[/C][C]-258.037[/C][C]-1.7542[/C][/ROW]
[ROW][C]66[/C][C]3040[/C][C]2917.98[/C][C]3178.13[/C][C]-260.147[/C][C]122.022[/C][/ROW]
[ROW][C]67[/C][C]2945[/C][C]3155.01[/C][C]3200.63[/C][C]-45.6127[/C][C]-210.012[/C][/ROW]
[ROW][C]68[/C][C]3650[/C][C]3408.62[/C][C]3197.29[/C][C]211.332[/C][C]241.377[/C][/ROW]
[ROW][C]69[/C][C]3995[/C][C]3450.94[/C][C]3195.62[/C][C]255.313[/C][C]544.062[/C][/ROW]
[ROW][C]70[/C][C]3540[/C][C]3415.34[/C][C]3195.21[/C][C]220.128[/C][C]124.664[/C][/ROW]
[ROW][C]71[/C][C]3435[/C][C]3336.61[/C][C]3198.75[/C][C]137.86[/C][C]98.3905[/C][/ROW]
[ROW][C]72[/C][C]3345[/C][C]3381.73[/C][C]3224.37[/C][C]157.35[/C][C]-36.7253[/C][/ROW]
[ROW][C]73[/C][C]3005[/C][C]3317.72[/C][C]3267.71[/C][C]50.0123[/C][C]-312.721[/C][/ROW]
[ROW][C]74[/C][C]2760[/C][C]3241.68[/C][C]3307.5[/C][C]-65.821[/C][C]-481.679[/C][/ROW]
[ROW][C]75[/C][C]2890[/C][C]3153.37[/C][C]3304.58[/C][C]-151.215[/C][C]-263.369[/C][/ROW]
[ROW][C]76[/C][C]2745[/C][C]3065.92[/C][C]3317.08[/C][C]-251.162[/C][C]-320.921[/C][/ROW]
[ROW][C]77[/C][C]3180[/C][C]3105.09[/C][C]3363.12[/C][C]-258.037[/C][C]74.9125[/C][/ROW]
[ROW][C]78[/C][C]3365[/C][C]3137.35[/C][C]3397.5[/C][C]-260.147[/C][C]227.647[/C][/ROW]
[ROW][C]79[/C][C]3660[/C][C]3381.26[/C][C]3426.88[/C][C]-45.6127[/C][C]278.738[/C][/ROW]
[ROW][C]80[/C][C]3890[/C][C]3671.96[/C][C]3460.62[/C][C]211.332[/C][C]218.043[/C][/ROW]
[ROW][C]81[/C][C]3685[/C][C]3738.02[/C][C]3482.71[/C][C]255.313[/C][C]-53.0216[/C][/ROW]
[ROW][C]82[/C][C]4150[/C][C]3698.88[/C][C]3478.75[/C][C]220.128[/C][C]451.122[/C][/ROW]
[ROW][C]83[/C][C]3930[/C][C]3594.11[/C][C]3456.25[/C][C]137.86[/C][C]335.89[/C][/ROW]
[ROW][C]84[/C][C]3675[/C][C]3566.93[/C][C]3409.58[/C][C]157.35[/C][C]108.066[/C][/ROW]
[ROW][C]85[/C][C]3380[/C][C]3397.51[/C][C]3347.5[/C][C]50.0123[/C][C]-17.5123[/C][/ROW]
[ROW][C]86[/C][C]3195[/C][C]3222.3[/C][C]3288.13[/C][C]-65.821[/C][C]-27.304[/C][/ROW]
[ROW][C]87[/C][C]2985[/C][C]3082.74[/C][C]3233.96[/C][C]-151.215[/C][C]-97.7438[/C][/ROW]
[ROW][C]88[/C][C]2555[/C][C]2894.05[/C][C]3145.21[/C][C]-251.162[/C][C]-339.046[/C][/ROW]
[ROW][C]89[/C][C]2830[/C][C]2775.5[/C][C]3033.54[/C][C]-258.037[/C][C]54.4958[/C][/ROW]
[ROW][C]90[/C][C]2595[/C][C]2684.85[/C][C]2945[/C][C]-260.147[/C][C]-89.8532[/C][/ROW]
[ROW][C]91[/C][C]2940[/C][C]2843.35[/C][C]2888.96[/C][C]-45.6127[/C][C]96.6544[/C][/ROW]
[ROW][C]92[/C][C]3185[/C][C]3084.67[/C][C]2873.33[/C][C]211.332[/C][C]100.335[/C][/ROW]
[ROW][C]93[/C][C]3090[/C][C]3130.94[/C][C]2875.62[/C][C]255.313[/C][C]-40.9382[/C][/ROW]
[ROW][C]94[/C][C]2615[/C][C]3115.75[/C][C]2895.62[/C][C]220.128[/C][C]-500.753[/C][/ROW]
[ROW][C]95[/C][C]2785[/C][C]3070.15[/C][C]2932.29[/C][C]137.86[/C][C]-285.151[/C][/ROW]
[ROW][C]96[/C][C]2695[/C][C]3154.23[/C][C]2996.87[/C][C]157.35[/C][C]-459.225[/C][/ROW]
[ROW][C]97[/C][C]3015[/C][C]3124.39[/C][C]3074.37[/C][C]50.0123[/C][C]-109.387[/C][/ROW]
[ROW][C]98[/C][C]3185[/C][C]3065.85[/C][C]3131.67[/C][C]-65.821[/C][C]119.154[/C][/ROW]
[ROW][C]99[/C][C]3050[/C][C]3028.99[/C][C]3180.21[/C][C]-151.215[/C][C]21.0062[/C][/ROW]
[ROW][C]100[/C][C]2970[/C][C]2998.84[/C][C]3250[/C][C]-251.162[/C][C]-28.8375[/C][/ROW]
[ROW][C]101[/C][C]3295[/C][C]3069.88[/C][C]3327.92[/C][C]-258.037[/C][C]225.121[/C][/ROW]
[ROW][C]102[/C][C]3680[/C][C]3130.48[/C][C]3390.62[/C][C]-260.147[/C][C]549.522[/C][/ROW]
[ROW][C]103[/C][C]3715[/C][C]3399.39[/C][C]3445[/C][C]-45.6127[/C][C]315.613[/C][/ROW]
[ROW][C]104[/C][C]3785[/C][C]3695.71[/C][C]3484.38[/C][C]211.332[/C][C]89.2933[/C][/ROW]
[ROW][C]105[/C][C]3655[/C][C]3768.44[/C][C]3513.12[/C][C]255.313[/C][C]-113.438[/C][/ROW]
[ROW][C]106[/C][C]3725[/C][C]3768.04[/C][C]3547.92[/C][C]220.128[/C][C]-43.0447[/C][/ROW]
[ROW][C]107[/C][C]3545[/C][C]3707.03[/C][C]3569.17[/C][C]137.86[/C][C]-162.026[/C][/ROW]
[ROW][C]108[/C][C]3440[/C][C]3713.81[/C][C]3556.46[/C][C]157.35[/C][C]-273.809[/C][/ROW]
[ROW][C]109[/C][C]3575[/C][C]3585.01[/C][C]3535[/C][C]50.0123[/C][C]-10.0123[/C][/ROW]
[ROW][C]110[/C][C]3570[/C][C]3443.14[/C][C]3508.96[/C][C]-65.821[/C][C]126.863[/C][/ROW]
[ROW][C]111[/C][C]3355[/C][C]NA[/C][C]NA[/C][C]-151.215[/C][C]NA[/C][/ROW]
[ROW][C]112[/C][C]3500[/C][C]NA[/C][C]NA[/C][C]-251.162[/C][C]NA[/C][/ROW]
[ROW][C]113[/C][C]3275[/C][C]NA[/C][C]NA[/C][C]-258.037[/C][C]NA[/C][/ROW]
[ROW][C]114[/C][C]3395[/C][C]NA[/C][C]NA[/C][C]-260.147[/C][C]NA[/C][/ROW]
[ROW][C]115[/C][C]3485[/C][C]NA[/C][C]NA[/C][C]-45.6127[/C][C]NA[/C][/ROW]
[ROW][C]116[/C][C]3390[/C][C]NA[/C][C]NA[/C][C]211.332[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298962&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298962&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13765NANA50.0123NA
23680NANA-65.821NA
33265NANA-151.215NA
42950NANA-251.162NA
52975NANA-258.037NA
63225NANA-260.147NA
732703346.893392.5-45.6127-76.8873
834253628.623417.29211.332-203.623
935753743.023487.71255.313-168.022
1034553814.293594.17220.128-359.295
1133353821.193683.33137.86-486.193
1237253877.353720157.35-152.35
1338953773.763723.7550.0123121.238
1441453663.143728.96-65.821481.863
1544903614.23765.42-151.215875.798
1642803583.213834.37-251.162696.787
1737853680.53938.54-258.037104.496
1832953815.274075.42-260.147-520.27
1932904141.054186.67-45.6127-851.054
2035304444.254232.92211.332-914.248
2143454468.654213.33255.313-123.647
2243404393.254173.12220.128-53.253
2349504300.154162.29137.86649.849
2453954325.064167.71157.351069.94
2548954238.354188.3350.0123656.654
2642554155.434221.25-65.82199.571
2739104047.544198.75-151.215-137.535
2838953877.84128.96-251.16217.2041
2939103773.214031.25-258.037136.787
3033003611.13871.25-260.147-311.103
3137803653.143698.75-45.6127126.863
3238303792.373581.04211.33237.6266
3335053753.233497.92255.313-248.23
3435053635.753415.62220.128-130.753
3534403448.073310.21137.86-8.06785
3630653385.893228.54157.35-320.892
3730853252.33202.2950.0123-167.304
3832403123.553189.38-65.821116.446
3929303037.743188.96-151.215-107.744
4029002949.673200.83-251.162-49.6709
4123752942.593200.62-258.037-567.588
4228752958.813218.96-260.147-83.8115
4335753210.853256.46-45.6127364.154
4437253455.083243.75211.332269.918
4536003476.563221.25255.313123.437
4636953439.713219.58220.128255.289
4732453373.283235.42137.86-128.276
4837003413.393256.04157.35286.608
4933503281.053231.0450.012368.946
5026703124.183190-65.821-454.179
5129603014.23165.42-151.215-54.2021
5228302895.093146.25-251.162-65.0875
5328252875.093133.12-258.037-50.0875
5429202837.773097.92-260.14782.2302
5529303000.643046.25-45.6127-70.6373
5633853250.293038.96211.332134.71
5733503296.773041.46255.31353.2284
5834853255.543035.42220.128229.455
5931403180.983043.12137.86-40.9845
6029603208.183050.83157.35-248.184
6128503106.473056.4650.0123-256.471
6229953002.33068.12-65.821-7.30396
6326952954.833106.04-151.215-259.827
6429502884.053135.21-251.16265.9541
6528902891.753149.79-258.037-1.7542
6630402917.983178.13-260.147122.022
6729453155.013200.63-45.6127-210.012
6836503408.623197.29211.332241.377
6939953450.943195.62255.313544.062
7035403415.343195.21220.128124.664
7134353336.613198.75137.8698.3905
7233453381.733224.37157.35-36.7253
7330053317.723267.7150.0123-312.721
7427603241.683307.5-65.821-481.679
7528903153.373304.58-151.215-263.369
7627453065.923317.08-251.162-320.921
7731803105.093363.12-258.03774.9125
7833653137.353397.5-260.147227.647
7936603381.263426.88-45.6127278.738
8038903671.963460.62211.332218.043
8136853738.023482.71255.313-53.0216
8241503698.883478.75220.128451.122
8339303594.113456.25137.86335.89
8436753566.933409.58157.35108.066
8533803397.513347.550.0123-17.5123
8631953222.33288.13-65.821-27.304
8729853082.743233.96-151.215-97.7438
8825552894.053145.21-251.162-339.046
8928302775.53033.54-258.03754.4958
9025952684.852945-260.147-89.8532
9129402843.352888.96-45.612796.6544
9231853084.672873.33211.332100.335
9330903130.942875.62255.313-40.9382
9426153115.752895.62220.128-500.753
9527853070.152932.29137.86-285.151
9626953154.232996.87157.35-459.225
9730153124.393074.3750.0123-109.387
9831853065.853131.67-65.821119.154
9930503028.993180.21-151.21521.0062
10029702998.843250-251.162-28.8375
10132953069.883327.92-258.037225.121
10236803130.483390.62-260.147549.522
10337153399.393445-45.6127315.613
10437853695.713484.38211.33289.2933
10536553768.443513.12255.313-113.438
10637253768.043547.92220.128-43.0447
10735453707.033569.17137.86-162.026
10834403713.813556.46157.35-273.809
10935753585.01353550.0123-10.0123
11035703443.143508.96-65.821126.863
1113355NANA-151.215NA
1123500NANA-251.162NA
1133275NANA-258.037NA
1143395NANA-260.147NA
1153485NANA-45.6127NA
1163390NANA211.332NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')