Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationSun, 11 Dec 2016 11:07:52 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/11/t1481450902vte8do140ex6lcq.htm/, Retrieved Fri, 01 Nov 2024 03:45:23 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298759, Retrieved Fri, 01 Nov 2024 03:45:23 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact125
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical Decompo...] [2016-12-11 10:07:52] [e1e79d437a44c5123ccedd8a903518e8] [Current]
Feedback Forum

Post a new message
Dataseries X:
4730
4760
4815
4995
4960
5065
5075
5085
5095
5140
5140
5140
5365
5085
5105
5200
5205
5160
5140
5150
5210
5205
5200
5095
5140
5165
5190
5050
5055
4985
4995
5010
5010
5020
5170
5155
5155
5150
5130
5170
5180
5175
5185
5200
5205
5210
5195
5195
5210
5205
5235
5235
5205
5195
5200
5165
5170
5255
5240
5265
5275
5285
5320
5335
5335
5325
5355
5375
5445
5415
5415
5450
5535
5570
5590
5575
5575
5595
5650
5680
5665
5675
5700
5700
5710
5745
5745
5765
5740
5725
5765
5900
5900
5900
5890
5935
5945
6000
6000
5995
6065
6065
6065
6075
6070
6085
6095
6095
6065
6115
6190
6200
6205
6210
6230
6235
6235
6235
6225
6225
6255
6310
6305
6320
6320
6330




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298759&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298759&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298759&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14730NANA23.3636NA
24760NANA3.80343NA
34815NANA13.7571NA
44995NANA5.63214NA
54960NANA-0.0160108NA
65065NANA-24.5068NA
750755015.915026.46-10.550759.0924
850855064.65066.46-1.8632320.4049
950955090.555092.08-1.52994.44657
1051405112.955112.710.24093427.0507
1151405133.515131.462.053436.48823
1251405135.245145.63-10.38414.75907
1353655175.665152.2923.3636189.345
1450855161.515157.713.80343-76.5118
1551055178.975165.2113.7571-73.9655
1652005178.345172.715.6321421.6595
1752055177.95177.92-0.016010827.0993
1851605154.035178.54-24.50685.96508
1951405156.745167.29-10.5507-16.7409
2051505159.395161.25-1.86323-9.38677
2152105166.65168.12-1.529943.4049
2252055165.665165.420.24093439.3424
2352005154.975152.922.0534345.0299
2450955128.995139.38-10.3841-33.9909
2551405149.415126.0423.3636-9.40529
2651655117.975114.173.8034347.0299
2751905113.76510013.757176.2429
2850505089.595083.965.63214-39.5905
2950555074.985075-0.0160108-19.984
3049855051.745076.25-24.5068-66.7432
3149955068.825079.38-10.5507-73.8243
3250105077.515079.37-1.86323-67.5118
3350105074.725076.25-1.5299-64.7201
3450205078.995078.750.240934-58.9909
3551705091.015088.962.0534378.9882
3651555091.75102.08-10.384163.3007
3751555141.285117.9223.363613.7197
3851505137.555133.753.8034312.4466
3951305163.555149.7913.7571-33.5488
4051705171.475165.835.63214-1.46547
4151805174.785174.79-0.01601085.22434
4251755152.995177.5-24.506822.0068
4351855170.915181.46-10.550714.0924
4452005184.185186.04-1.8632315.8216
4552055191.185192.71-1.529913.8216
4652105200.035199.790.2409349.9674
4751955205.65203.542.05343-10.5951
4851955195.035205.42-10.3841-0.0326003
4952105230.245206.8723.3636-20.2386
5052055209.855206.043.80343-4.8451
5152355216.885203.1213.757118.1179
5252355209.175203.545.6321425.8262
5352055207.285207.29-0.0160108-2.27566
5451955187.585212.08-24.50687.42342
5552005207.165217.71-10.5507-7.1576
5651655221.895223.75-1.86323-56.8868
5751705229.15230.62-1.5299-59.0951
5852555238.575238.330.24093416.4257
5952405249.975247.922.05343-9.9701
6052655248.375258.75-10.384116.6341
6152755293.995270.6223.3636-18.9886
6252855289.645285.833.80343-4.63677
6353205319.85306.0413.75710.201196
6453355329.85324.175.632145.2012
6553355338.115338.12-0.0160108-3.10899
6653255328.625353.12-24.5068-3.61825
6753555361.125371.67-10.5507-6.11593
6853755392.515394.37-1.86323-17.5118
6954455415.975417.5-1.529929.0299
7054155438.995438.750.240934-23.9909
7154155460.85458.752.05343-45.8034
7254505469.625480-10.3841-19.6159
7355355526.915503.5423.36368.09471
7455705532.355528.543.8034337.6549
7555905564.175550.4213.757125.8262
7655755576.055570.425.63214-1.0488
7755755593.115593.13-0.0160108-18.109
7855955590.915615.42-24.50684.09008
7956505622.575633.12-10.550727.4257
8056805645.855647.71-1.8632334.1549
8156655659.935661.46-1.52995.07157
8256755676.075675.830.240934-1.07427
8357005692.685690.622.053437.32157
8457005692.535702.92-10.38417.4674
8557105736.495713.1223.3636-26.4886
8657455730.895727.083.8034314.1132
8757455759.85746.0413.7571-14.7988
8857655770.845765.215.63214-5.84047
8957405782.485782.5-0.0160108-42.484
9057255775.75800.21-24.5068-50.7016
9157655809.245819.79-10.5507-44.2409
9259005838.355840.21-1.8632361.6549
9359005859.935861.46-1.529940.0716
9459005881.915881.670.24093418.0924
9558905906.855904.792.05343-16.8451
9659355922.125932.5-10.384112.8841
9759455982.535959.1723.3636-37.5303
9860005982.765978.963.8034317.2382
9960006007.095993.3313.7571-7.09047
10059956013.766008.125.63214-18.7571
10160656024.366024.38-0.016010840.641
10260656015.086039.58-24.506849.9234
10360656040.76051.25-10.550724.3007
10460756059.186061.04-1.8632315.8216
10560706072.226073.75-1.5299-2.2201
10660856090.456090.210.240934-5.44927
10760956106.646104.582.05343-11.6368
10860956106.076116.46-10.3841-11.0743
10960656152.746129.3723.3636-87.7386
11061156146.726142.923.80343-31.7201
11161906170.226156.4613.757119.7845
11262006175.226169.585.6321424.7845
11362056181.236181.25-0.016010823.766
11462106167.586192.08-24.506842.4234
11562306194.876205.42-10.550735.1341
11662356219.66221.46-1.8632315.4049
11762356232.856234.38-1.52992.1549
11862356244.416244.170.240934-9.4076
11962256256.016253.962.05343-31.0118
12062256253.376263.75-10.3841-28.3659
1216255NANA23.3636NA
1226310NANA3.80343NA
1236305NANA13.7571NA
1246320NANA5.63214NA
1256320NANA-0.0160108NA
1266330NANA-24.5068NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 4730 & NA & NA & 23.3636 & NA \tabularnewline
2 & 4760 & NA & NA & 3.80343 & NA \tabularnewline
3 & 4815 & NA & NA & 13.7571 & NA \tabularnewline
4 & 4995 & NA & NA & 5.63214 & NA \tabularnewline
5 & 4960 & NA & NA & -0.0160108 & NA \tabularnewline
6 & 5065 & NA & NA & -24.5068 & NA \tabularnewline
7 & 5075 & 5015.91 & 5026.46 & -10.5507 & 59.0924 \tabularnewline
8 & 5085 & 5064.6 & 5066.46 & -1.86323 & 20.4049 \tabularnewline
9 & 5095 & 5090.55 & 5092.08 & -1.5299 & 4.44657 \tabularnewline
10 & 5140 & 5112.95 & 5112.71 & 0.240934 & 27.0507 \tabularnewline
11 & 5140 & 5133.51 & 5131.46 & 2.05343 & 6.48823 \tabularnewline
12 & 5140 & 5135.24 & 5145.63 & -10.3841 & 4.75907 \tabularnewline
13 & 5365 & 5175.66 & 5152.29 & 23.3636 & 189.345 \tabularnewline
14 & 5085 & 5161.51 & 5157.71 & 3.80343 & -76.5118 \tabularnewline
15 & 5105 & 5178.97 & 5165.21 & 13.7571 & -73.9655 \tabularnewline
16 & 5200 & 5178.34 & 5172.71 & 5.63214 & 21.6595 \tabularnewline
17 & 5205 & 5177.9 & 5177.92 & -0.0160108 & 27.0993 \tabularnewline
18 & 5160 & 5154.03 & 5178.54 & -24.5068 & 5.96508 \tabularnewline
19 & 5140 & 5156.74 & 5167.29 & -10.5507 & -16.7409 \tabularnewline
20 & 5150 & 5159.39 & 5161.25 & -1.86323 & -9.38677 \tabularnewline
21 & 5210 & 5166.6 & 5168.12 & -1.5299 & 43.4049 \tabularnewline
22 & 5205 & 5165.66 & 5165.42 & 0.240934 & 39.3424 \tabularnewline
23 & 5200 & 5154.97 & 5152.92 & 2.05343 & 45.0299 \tabularnewline
24 & 5095 & 5128.99 & 5139.38 & -10.3841 & -33.9909 \tabularnewline
25 & 5140 & 5149.41 & 5126.04 & 23.3636 & -9.40529 \tabularnewline
26 & 5165 & 5117.97 & 5114.17 & 3.80343 & 47.0299 \tabularnewline
27 & 5190 & 5113.76 & 5100 & 13.7571 & 76.2429 \tabularnewline
28 & 5050 & 5089.59 & 5083.96 & 5.63214 & -39.5905 \tabularnewline
29 & 5055 & 5074.98 & 5075 & -0.0160108 & -19.984 \tabularnewline
30 & 4985 & 5051.74 & 5076.25 & -24.5068 & -66.7432 \tabularnewline
31 & 4995 & 5068.82 & 5079.38 & -10.5507 & -73.8243 \tabularnewline
32 & 5010 & 5077.51 & 5079.37 & -1.86323 & -67.5118 \tabularnewline
33 & 5010 & 5074.72 & 5076.25 & -1.5299 & -64.7201 \tabularnewline
34 & 5020 & 5078.99 & 5078.75 & 0.240934 & -58.9909 \tabularnewline
35 & 5170 & 5091.01 & 5088.96 & 2.05343 & 78.9882 \tabularnewline
36 & 5155 & 5091.7 & 5102.08 & -10.3841 & 63.3007 \tabularnewline
37 & 5155 & 5141.28 & 5117.92 & 23.3636 & 13.7197 \tabularnewline
38 & 5150 & 5137.55 & 5133.75 & 3.80343 & 12.4466 \tabularnewline
39 & 5130 & 5163.55 & 5149.79 & 13.7571 & -33.5488 \tabularnewline
40 & 5170 & 5171.47 & 5165.83 & 5.63214 & -1.46547 \tabularnewline
41 & 5180 & 5174.78 & 5174.79 & -0.0160108 & 5.22434 \tabularnewline
42 & 5175 & 5152.99 & 5177.5 & -24.5068 & 22.0068 \tabularnewline
43 & 5185 & 5170.91 & 5181.46 & -10.5507 & 14.0924 \tabularnewline
44 & 5200 & 5184.18 & 5186.04 & -1.86323 & 15.8216 \tabularnewline
45 & 5205 & 5191.18 & 5192.71 & -1.5299 & 13.8216 \tabularnewline
46 & 5210 & 5200.03 & 5199.79 & 0.240934 & 9.9674 \tabularnewline
47 & 5195 & 5205.6 & 5203.54 & 2.05343 & -10.5951 \tabularnewline
48 & 5195 & 5195.03 & 5205.42 & -10.3841 & -0.0326003 \tabularnewline
49 & 5210 & 5230.24 & 5206.87 & 23.3636 & -20.2386 \tabularnewline
50 & 5205 & 5209.85 & 5206.04 & 3.80343 & -4.8451 \tabularnewline
51 & 5235 & 5216.88 & 5203.12 & 13.7571 & 18.1179 \tabularnewline
52 & 5235 & 5209.17 & 5203.54 & 5.63214 & 25.8262 \tabularnewline
53 & 5205 & 5207.28 & 5207.29 & -0.0160108 & -2.27566 \tabularnewline
54 & 5195 & 5187.58 & 5212.08 & -24.5068 & 7.42342 \tabularnewline
55 & 5200 & 5207.16 & 5217.71 & -10.5507 & -7.1576 \tabularnewline
56 & 5165 & 5221.89 & 5223.75 & -1.86323 & -56.8868 \tabularnewline
57 & 5170 & 5229.1 & 5230.62 & -1.5299 & -59.0951 \tabularnewline
58 & 5255 & 5238.57 & 5238.33 & 0.240934 & 16.4257 \tabularnewline
59 & 5240 & 5249.97 & 5247.92 & 2.05343 & -9.9701 \tabularnewline
60 & 5265 & 5248.37 & 5258.75 & -10.3841 & 16.6341 \tabularnewline
61 & 5275 & 5293.99 & 5270.62 & 23.3636 & -18.9886 \tabularnewline
62 & 5285 & 5289.64 & 5285.83 & 3.80343 & -4.63677 \tabularnewline
63 & 5320 & 5319.8 & 5306.04 & 13.7571 & 0.201196 \tabularnewline
64 & 5335 & 5329.8 & 5324.17 & 5.63214 & 5.2012 \tabularnewline
65 & 5335 & 5338.11 & 5338.12 & -0.0160108 & -3.10899 \tabularnewline
66 & 5325 & 5328.62 & 5353.12 & -24.5068 & -3.61825 \tabularnewline
67 & 5355 & 5361.12 & 5371.67 & -10.5507 & -6.11593 \tabularnewline
68 & 5375 & 5392.51 & 5394.37 & -1.86323 & -17.5118 \tabularnewline
69 & 5445 & 5415.97 & 5417.5 & -1.5299 & 29.0299 \tabularnewline
70 & 5415 & 5438.99 & 5438.75 & 0.240934 & -23.9909 \tabularnewline
71 & 5415 & 5460.8 & 5458.75 & 2.05343 & -45.8034 \tabularnewline
72 & 5450 & 5469.62 & 5480 & -10.3841 & -19.6159 \tabularnewline
73 & 5535 & 5526.91 & 5503.54 & 23.3636 & 8.09471 \tabularnewline
74 & 5570 & 5532.35 & 5528.54 & 3.80343 & 37.6549 \tabularnewline
75 & 5590 & 5564.17 & 5550.42 & 13.7571 & 25.8262 \tabularnewline
76 & 5575 & 5576.05 & 5570.42 & 5.63214 & -1.0488 \tabularnewline
77 & 5575 & 5593.11 & 5593.13 & -0.0160108 & -18.109 \tabularnewline
78 & 5595 & 5590.91 & 5615.42 & -24.5068 & 4.09008 \tabularnewline
79 & 5650 & 5622.57 & 5633.12 & -10.5507 & 27.4257 \tabularnewline
80 & 5680 & 5645.85 & 5647.71 & -1.86323 & 34.1549 \tabularnewline
81 & 5665 & 5659.93 & 5661.46 & -1.5299 & 5.07157 \tabularnewline
82 & 5675 & 5676.07 & 5675.83 & 0.240934 & -1.07427 \tabularnewline
83 & 5700 & 5692.68 & 5690.62 & 2.05343 & 7.32157 \tabularnewline
84 & 5700 & 5692.53 & 5702.92 & -10.3841 & 7.4674 \tabularnewline
85 & 5710 & 5736.49 & 5713.12 & 23.3636 & -26.4886 \tabularnewline
86 & 5745 & 5730.89 & 5727.08 & 3.80343 & 14.1132 \tabularnewline
87 & 5745 & 5759.8 & 5746.04 & 13.7571 & -14.7988 \tabularnewline
88 & 5765 & 5770.84 & 5765.21 & 5.63214 & -5.84047 \tabularnewline
89 & 5740 & 5782.48 & 5782.5 & -0.0160108 & -42.484 \tabularnewline
90 & 5725 & 5775.7 & 5800.21 & -24.5068 & -50.7016 \tabularnewline
91 & 5765 & 5809.24 & 5819.79 & -10.5507 & -44.2409 \tabularnewline
92 & 5900 & 5838.35 & 5840.21 & -1.86323 & 61.6549 \tabularnewline
93 & 5900 & 5859.93 & 5861.46 & -1.5299 & 40.0716 \tabularnewline
94 & 5900 & 5881.91 & 5881.67 & 0.240934 & 18.0924 \tabularnewline
95 & 5890 & 5906.85 & 5904.79 & 2.05343 & -16.8451 \tabularnewline
96 & 5935 & 5922.12 & 5932.5 & -10.3841 & 12.8841 \tabularnewline
97 & 5945 & 5982.53 & 5959.17 & 23.3636 & -37.5303 \tabularnewline
98 & 6000 & 5982.76 & 5978.96 & 3.80343 & 17.2382 \tabularnewline
99 & 6000 & 6007.09 & 5993.33 & 13.7571 & -7.09047 \tabularnewline
100 & 5995 & 6013.76 & 6008.12 & 5.63214 & -18.7571 \tabularnewline
101 & 6065 & 6024.36 & 6024.38 & -0.0160108 & 40.641 \tabularnewline
102 & 6065 & 6015.08 & 6039.58 & -24.5068 & 49.9234 \tabularnewline
103 & 6065 & 6040.7 & 6051.25 & -10.5507 & 24.3007 \tabularnewline
104 & 6075 & 6059.18 & 6061.04 & -1.86323 & 15.8216 \tabularnewline
105 & 6070 & 6072.22 & 6073.75 & -1.5299 & -2.2201 \tabularnewline
106 & 6085 & 6090.45 & 6090.21 & 0.240934 & -5.44927 \tabularnewline
107 & 6095 & 6106.64 & 6104.58 & 2.05343 & -11.6368 \tabularnewline
108 & 6095 & 6106.07 & 6116.46 & -10.3841 & -11.0743 \tabularnewline
109 & 6065 & 6152.74 & 6129.37 & 23.3636 & -87.7386 \tabularnewline
110 & 6115 & 6146.72 & 6142.92 & 3.80343 & -31.7201 \tabularnewline
111 & 6190 & 6170.22 & 6156.46 & 13.7571 & 19.7845 \tabularnewline
112 & 6200 & 6175.22 & 6169.58 & 5.63214 & 24.7845 \tabularnewline
113 & 6205 & 6181.23 & 6181.25 & -0.0160108 & 23.766 \tabularnewline
114 & 6210 & 6167.58 & 6192.08 & -24.5068 & 42.4234 \tabularnewline
115 & 6230 & 6194.87 & 6205.42 & -10.5507 & 35.1341 \tabularnewline
116 & 6235 & 6219.6 & 6221.46 & -1.86323 & 15.4049 \tabularnewline
117 & 6235 & 6232.85 & 6234.38 & -1.5299 & 2.1549 \tabularnewline
118 & 6235 & 6244.41 & 6244.17 & 0.240934 & -9.4076 \tabularnewline
119 & 6225 & 6256.01 & 6253.96 & 2.05343 & -31.0118 \tabularnewline
120 & 6225 & 6253.37 & 6263.75 & -10.3841 & -28.3659 \tabularnewline
121 & 6255 & NA & NA & 23.3636 & NA \tabularnewline
122 & 6310 & NA & NA & 3.80343 & NA \tabularnewline
123 & 6305 & NA & NA & 13.7571 & NA \tabularnewline
124 & 6320 & NA & NA & 5.63214 & NA \tabularnewline
125 & 6320 & NA & NA & -0.0160108 & NA \tabularnewline
126 & 6330 & NA & NA & -24.5068 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298759&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]4730[/C][C]NA[/C][C]NA[/C][C]23.3636[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]4760[/C][C]NA[/C][C]NA[/C][C]3.80343[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]4815[/C][C]NA[/C][C]NA[/C][C]13.7571[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]4995[/C][C]NA[/C][C]NA[/C][C]5.63214[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]4960[/C][C]NA[/C][C]NA[/C][C]-0.0160108[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]5065[/C][C]NA[/C][C]NA[/C][C]-24.5068[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]5075[/C][C]5015.91[/C][C]5026.46[/C][C]-10.5507[/C][C]59.0924[/C][/ROW]
[ROW][C]8[/C][C]5085[/C][C]5064.6[/C][C]5066.46[/C][C]-1.86323[/C][C]20.4049[/C][/ROW]
[ROW][C]9[/C][C]5095[/C][C]5090.55[/C][C]5092.08[/C][C]-1.5299[/C][C]4.44657[/C][/ROW]
[ROW][C]10[/C][C]5140[/C][C]5112.95[/C][C]5112.71[/C][C]0.240934[/C][C]27.0507[/C][/ROW]
[ROW][C]11[/C][C]5140[/C][C]5133.51[/C][C]5131.46[/C][C]2.05343[/C][C]6.48823[/C][/ROW]
[ROW][C]12[/C][C]5140[/C][C]5135.24[/C][C]5145.63[/C][C]-10.3841[/C][C]4.75907[/C][/ROW]
[ROW][C]13[/C][C]5365[/C][C]5175.66[/C][C]5152.29[/C][C]23.3636[/C][C]189.345[/C][/ROW]
[ROW][C]14[/C][C]5085[/C][C]5161.51[/C][C]5157.71[/C][C]3.80343[/C][C]-76.5118[/C][/ROW]
[ROW][C]15[/C][C]5105[/C][C]5178.97[/C][C]5165.21[/C][C]13.7571[/C][C]-73.9655[/C][/ROW]
[ROW][C]16[/C][C]5200[/C][C]5178.34[/C][C]5172.71[/C][C]5.63214[/C][C]21.6595[/C][/ROW]
[ROW][C]17[/C][C]5205[/C][C]5177.9[/C][C]5177.92[/C][C]-0.0160108[/C][C]27.0993[/C][/ROW]
[ROW][C]18[/C][C]5160[/C][C]5154.03[/C][C]5178.54[/C][C]-24.5068[/C][C]5.96508[/C][/ROW]
[ROW][C]19[/C][C]5140[/C][C]5156.74[/C][C]5167.29[/C][C]-10.5507[/C][C]-16.7409[/C][/ROW]
[ROW][C]20[/C][C]5150[/C][C]5159.39[/C][C]5161.25[/C][C]-1.86323[/C][C]-9.38677[/C][/ROW]
[ROW][C]21[/C][C]5210[/C][C]5166.6[/C][C]5168.12[/C][C]-1.5299[/C][C]43.4049[/C][/ROW]
[ROW][C]22[/C][C]5205[/C][C]5165.66[/C][C]5165.42[/C][C]0.240934[/C][C]39.3424[/C][/ROW]
[ROW][C]23[/C][C]5200[/C][C]5154.97[/C][C]5152.92[/C][C]2.05343[/C][C]45.0299[/C][/ROW]
[ROW][C]24[/C][C]5095[/C][C]5128.99[/C][C]5139.38[/C][C]-10.3841[/C][C]-33.9909[/C][/ROW]
[ROW][C]25[/C][C]5140[/C][C]5149.41[/C][C]5126.04[/C][C]23.3636[/C][C]-9.40529[/C][/ROW]
[ROW][C]26[/C][C]5165[/C][C]5117.97[/C][C]5114.17[/C][C]3.80343[/C][C]47.0299[/C][/ROW]
[ROW][C]27[/C][C]5190[/C][C]5113.76[/C][C]5100[/C][C]13.7571[/C][C]76.2429[/C][/ROW]
[ROW][C]28[/C][C]5050[/C][C]5089.59[/C][C]5083.96[/C][C]5.63214[/C][C]-39.5905[/C][/ROW]
[ROW][C]29[/C][C]5055[/C][C]5074.98[/C][C]5075[/C][C]-0.0160108[/C][C]-19.984[/C][/ROW]
[ROW][C]30[/C][C]4985[/C][C]5051.74[/C][C]5076.25[/C][C]-24.5068[/C][C]-66.7432[/C][/ROW]
[ROW][C]31[/C][C]4995[/C][C]5068.82[/C][C]5079.38[/C][C]-10.5507[/C][C]-73.8243[/C][/ROW]
[ROW][C]32[/C][C]5010[/C][C]5077.51[/C][C]5079.37[/C][C]-1.86323[/C][C]-67.5118[/C][/ROW]
[ROW][C]33[/C][C]5010[/C][C]5074.72[/C][C]5076.25[/C][C]-1.5299[/C][C]-64.7201[/C][/ROW]
[ROW][C]34[/C][C]5020[/C][C]5078.99[/C][C]5078.75[/C][C]0.240934[/C][C]-58.9909[/C][/ROW]
[ROW][C]35[/C][C]5170[/C][C]5091.01[/C][C]5088.96[/C][C]2.05343[/C][C]78.9882[/C][/ROW]
[ROW][C]36[/C][C]5155[/C][C]5091.7[/C][C]5102.08[/C][C]-10.3841[/C][C]63.3007[/C][/ROW]
[ROW][C]37[/C][C]5155[/C][C]5141.28[/C][C]5117.92[/C][C]23.3636[/C][C]13.7197[/C][/ROW]
[ROW][C]38[/C][C]5150[/C][C]5137.55[/C][C]5133.75[/C][C]3.80343[/C][C]12.4466[/C][/ROW]
[ROW][C]39[/C][C]5130[/C][C]5163.55[/C][C]5149.79[/C][C]13.7571[/C][C]-33.5488[/C][/ROW]
[ROW][C]40[/C][C]5170[/C][C]5171.47[/C][C]5165.83[/C][C]5.63214[/C][C]-1.46547[/C][/ROW]
[ROW][C]41[/C][C]5180[/C][C]5174.78[/C][C]5174.79[/C][C]-0.0160108[/C][C]5.22434[/C][/ROW]
[ROW][C]42[/C][C]5175[/C][C]5152.99[/C][C]5177.5[/C][C]-24.5068[/C][C]22.0068[/C][/ROW]
[ROW][C]43[/C][C]5185[/C][C]5170.91[/C][C]5181.46[/C][C]-10.5507[/C][C]14.0924[/C][/ROW]
[ROW][C]44[/C][C]5200[/C][C]5184.18[/C][C]5186.04[/C][C]-1.86323[/C][C]15.8216[/C][/ROW]
[ROW][C]45[/C][C]5205[/C][C]5191.18[/C][C]5192.71[/C][C]-1.5299[/C][C]13.8216[/C][/ROW]
[ROW][C]46[/C][C]5210[/C][C]5200.03[/C][C]5199.79[/C][C]0.240934[/C][C]9.9674[/C][/ROW]
[ROW][C]47[/C][C]5195[/C][C]5205.6[/C][C]5203.54[/C][C]2.05343[/C][C]-10.5951[/C][/ROW]
[ROW][C]48[/C][C]5195[/C][C]5195.03[/C][C]5205.42[/C][C]-10.3841[/C][C]-0.0326003[/C][/ROW]
[ROW][C]49[/C][C]5210[/C][C]5230.24[/C][C]5206.87[/C][C]23.3636[/C][C]-20.2386[/C][/ROW]
[ROW][C]50[/C][C]5205[/C][C]5209.85[/C][C]5206.04[/C][C]3.80343[/C][C]-4.8451[/C][/ROW]
[ROW][C]51[/C][C]5235[/C][C]5216.88[/C][C]5203.12[/C][C]13.7571[/C][C]18.1179[/C][/ROW]
[ROW][C]52[/C][C]5235[/C][C]5209.17[/C][C]5203.54[/C][C]5.63214[/C][C]25.8262[/C][/ROW]
[ROW][C]53[/C][C]5205[/C][C]5207.28[/C][C]5207.29[/C][C]-0.0160108[/C][C]-2.27566[/C][/ROW]
[ROW][C]54[/C][C]5195[/C][C]5187.58[/C][C]5212.08[/C][C]-24.5068[/C][C]7.42342[/C][/ROW]
[ROW][C]55[/C][C]5200[/C][C]5207.16[/C][C]5217.71[/C][C]-10.5507[/C][C]-7.1576[/C][/ROW]
[ROW][C]56[/C][C]5165[/C][C]5221.89[/C][C]5223.75[/C][C]-1.86323[/C][C]-56.8868[/C][/ROW]
[ROW][C]57[/C][C]5170[/C][C]5229.1[/C][C]5230.62[/C][C]-1.5299[/C][C]-59.0951[/C][/ROW]
[ROW][C]58[/C][C]5255[/C][C]5238.57[/C][C]5238.33[/C][C]0.240934[/C][C]16.4257[/C][/ROW]
[ROW][C]59[/C][C]5240[/C][C]5249.97[/C][C]5247.92[/C][C]2.05343[/C][C]-9.9701[/C][/ROW]
[ROW][C]60[/C][C]5265[/C][C]5248.37[/C][C]5258.75[/C][C]-10.3841[/C][C]16.6341[/C][/ROW]
[ROW][C]61[/C][C]5275[/C][C]5293.99[/C][C]5270.62[/C][C]23.3636[/C][C]-18.9886[/C][/ROW]
[ROW][C]62[/C][C]5285[/C][C]5289.64[/C][C]5285.83[/C][C]3.80343[/C][C]-4.63677[/C][/ROW]
[ROW][C]63[/C][C]5320[/C][C]5319.8[/C][C]5306.04[/C][C]13.7571[/C][C]0.201196[/C][/ROW]
[ROW][C]64[/C][C]5335[/C][C]5329.8[/C][C]5324.17[/C][C]5.63214[/C][C]5.2012[/C][/ROW]
[ROW][C]65[/C][C]5335[/C][C]5338.11[/C][C]5338.12[/C][C]-0.0160108[/C][C]-3.10899[/C][/ROW]
[ROW][C]66[/C][C]5325[/C][C]5328.62[/C][C]5353.12[/C][C]-24.5068[/C][C]-3.61825[/C][/ROW]
[ROW][C]67[/C][C]5355[/C][C]5361.12[/C][C]5371.67[/C][C]-10.5507[/C][C]-6.11593[/C][/ROW]
[ROW][C]68[/C][C]5375[/C][C]5392.51[/C][C]5394.37[/C][C]-1.86323[/C][C]-17.5118[/C][/ROW]
[ROW][C]69[/C][C]5445[/C][C]5415.97[/C][C]5417.5[/C][C]-1.5299[/C][C]29.0299[/C][/ROW]
[ROW][C]70[/C][C]5415[/C][C]5438.99[/C][C]5438.75[/C][C]0.240934[/C][C]-23.9909[/C][/ROW]
[ROW][C]71[/C][C]5415[/C][C]5460.8[/C][C]5458.75[/C][C]2.05343[/C][C]-45.8034[/C][/ROW]
[ROW][C]72[/C][C]5450[/C][C]5469.62[/C][C]5480[/C][C]-10.3841[/C][C]-19.6159[/C][/ROW]
[ROW][C]73[/C][C]5535[/C][C]5526.91[/C][C]5503.54[/C][C]23.3636[/C][C]8.09471[/C][/ROW]
[ROW][C]74[/C][C]5570[/C][C]5532.35[/C][C]5528.54[/C][C]3.80343[/C][C]37.6549[/C][/ROW]
[ROW][C]75[/C][C]5590[/C][C]5564.17[/C][C]5550.42[/C][C]13.7571[/C][C]25.8262[/C][/ROW]
[ROW][C]76[/C][C]5575[/C][C]5576.05[/C][C]5570.42[/C][C]5.63214[/C][C]-1.0488[/C][/ROW]
[ROW][C]77[/C][C]5575[/C][C]5593.11[/C][C]5593.13[/C][C]-0.0160108[/C][C]-18.109[/C][/ROW]
[ROW][C]78[/C][C]5595[/C][C]5590.91[/C][C]5615.42[/C][C]-24.5068[/C][C]4.09008[/C][/ROW]
[ROW][C]79[/C][C]5650[/C][C]5622.57[/C][C]5633.12[/C][C]-10.5507[/C][C]27.4257[/C][/ROW]
[ROW][C]80[/C][C]5680[/C][C]5645.85[/C][C]5647.71[/C][C]-1.86323[/C][C]34.1549[/C][/ROW]
[ROW][C]81[/C][C]5665[/C][C]5659.93[/C][C]5661.46[/C][C]-1.5299[/C][C]5.07157[/C][/ROW]
[ROW][C]82[/C][C]5675[/C][C]5676.07[/C][C]5675.83[/C][C]0.240934[/C][C]-1.07427[/C][/ROW]
[ROW][C]83[/C][C]5700[/C][C]5692.68[/C][C]5690.62[/C][C]2.05343[/C][C]7.32157[/C][/ROW]
[ROW][C]84[/C][C]5700[/C][C]5692.53[/C][C]5702.92[/C][C]-10.3841[/C][C]7.4674[/C][/ROW]
[ROW][C]85[/C][C]5710[/C][C]5736.49[/C][C]5713.12[/C][C]23.3636[/C][C]-26.4886[/C][/ROW]
[ROW][C]86[/C][C]5745[/C][C]5730.89[/C][C]5727.08[/C][C]3.80343[/C][C]14.1132[/C][/ROW]
[ROW][C]87[/C][C]5745[/C][C]5759.8[/C][C]5746.04[/C][C]13.7571[/C][C]-14.7988[/C][/ROW]
[ROW][C]88[/C][C]5765[/C][C]5770.84[/C][C]5765.21[/C][C]5.63214[/C][C]-5.84047[/C][/ROW]
[ROW][C]89[/C][C]5740[/C][C]5782.48[/C][C]5782.5[/C][C]-0.0160108[/C][C]-42.484[/C][/ROW]
[ROW][C]90[/C][C]5725[/C][C]5775.7[/C][C]5800.21[/C][C]-24.5068[/C][C]-50.7016[/C][/ROW]
[ROW][C]91[/C][C]5765[/C][C]5809.24[/C][C]5819.79[/C][C]-10.5507[/C][C]-44.2409[/C][/ROW]
[ROW][C]92[/C][C]5900[/C][C]5838.35[/C][C]5840.21[/C][C]-1.86323[/C][C]61.6549[/C][/ROW]
[ROW][C]93[/C][C]5900[/C][C]5859.93[/C][C]5861.46[/C][C]-1.5299[/C][C]40.0716[/C][/ROW]
[ROW][C]94[/C][C]5900[/C][C]5881.91[/C][C]5881.67[/C][C]0.240934[/C][C]18.0924[/C][/ROW]
[ROW][C]95[/C][C]5890[/C][C]5906.85[/C][C]5904.79[/C][C]2.05343[/C][C]-16.8451[/C][/ROW]
[ROW][C]96[/C][C]5935[/C][C]5922.12[/C][C]5932.5[/C][C]-10.3841[/C][C]12.8841[/C][/ROW]
[ROW][C]97[/C][C]5945[/C][C]5982.53[/C][C]5959.17[/C][C]23.3636[/C][C]-37.5303[/C][/ROW]
[ROW][C]98[/C][C]6000[/C][C]5982.76[/C][C]5978.96[/C][C]3.80343[/C][C]17.2382[/C][/ROW]
[ROW][C]99[/C][C]6000[/C][C]6007.09[/C][C]5993.33[/C][C]13.7571[/C][C]-7.09047[/C][/ROW]
[ROW][C]100[/C][C]5995[/C][C]6013.76[/C][C]6008.12[/C][C]5.63214[/C][C]-18.7571[/C][/ROW]
[ROW][C]101[/C][C]6065[/C][C]6024.36[/C][C]6024.38[/C][C]-0.0160108[/C][C]40.641[/C][/ROW]
[ROW][C]102[/C][C]6065[/C][C]6015.08[/C][C]6039.58[/C][C]-24.5068[/C][C]49.9234[/C][/ROW]
[ROW][C]103[/C][C]6065[/C][C]6040.7[/C][C]6051.25[/C][C]-10.5507[/C][C]24.3007[/C][/ROW]
[ROW][C]104[/C][C]6075[/C][C]6059.18[/C][C]6061.04[/C][C]-1.86323[/C][C]15.8216[/C][/ROW]
[ROW][C]105[/C][C]6070[/C][C]6072.22[/C][C]6073.75[/C][C]-1.5299[/C][C]-2.2201[/C][/ROW]
[ROW][C]106[/C][C]6085[/C][C]6090.45[/C][C]6090.21[/C][C]0.240934[/C][C]-5.44927[/C][/ROW]
[ROW][C]107[/C][C]6095[/C][C]6106.64[/C][C]6104.58[/C][C]2.05343[/C][C]-11.6368[/C][/ROW]
[ROW][C]108[/C][C]6095[/C][C]6106.07[/C][C]6116.46[/C][C]-10.3841[/C][C]-11.0743[/C][/ROW]
[ROW][C]109[/C][C]6065[/C][C]6152.74[/C][C]6129.37[/C][C]23.3636[/C][C]-87.7386[/C][/ROW]
[ROW][C]110[/C][C]6115[/C][C]6146.72[/C][C]6142.92[/C][C]3.80343[/C][C]-31.7201[/C][/ROW]
[ROW][C]111[/C][C]6190[/C][C]6170.22[/C][C]6156.46[/C][C]13.7571[/C][C]19.7845[/C][/ROW]
[ROW][C]112[/C][C]6200[/C][C]6175.22[/C][C]6169.58[/C][C]5.63214[/C][C]24.7845[/C][/ROW]
[ROW][C]113[/C][C]6205[/C][C]6181.23[/C][C]6181.25[/C][C]-0.0160108[/C][C]23.766[/C][/ROW]
[ROW][C]114[/C][C]6210[/C][C]6167.58[/C][C]6192.08[/C][C]-24.5068[/C][C]42.4234[/C][/ROW]
[ROW][C]115[/C][C]6230[/C][C]6194.87[/C][C]6205.42[/C][C]-10.5507[/C][C]35.1341[/C][/ROW]
[ROW][C]116[/C][C]6235[/C][C]6219.6[/C][C]6221.46[/C][C]-1.86323[/C][C]15.4049[/C][/ROW]
[ROW][C]117[/C][C]6235[/C][C]6232.85[/C][C]6234.38[/C][C]-1.5299[/C][C]2.1549[/C][/ROW]
[ROW][C]118[/C][C]6235[/C][C]6244.41[/C][C]6244.17[/C][C]0.240934[/C][C]-9.4076[/C][/ROW]
[ROW][C]119[/C][C]6225[/C][C]6256.01[/C][C]6253.96[/C][C]2.05343[/C][C]-31.0118[/C][/ROW]
[ROW][C]120[/C][C]6225[/C][C]6253.37[/C][C]6263.75[/C][C]-10.3841[/C][C]-28.3659[/C][/ROW]
[ROW][C]121[/C][C]6255[/C][C]NA[/C][C]NA[/C][C]23.3636[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]6310[/C][C]NA[/C][C]NA[/C][C]3.80343[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]6305[/C][C]NA[/C][C]NA[/C][C]13.7571[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]6320[/C][C]NA[/C][C]NA[/C][C]5.63214[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]6320[/C][C]NA[/C][C]NA[/C][C]-0.0160108[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]6330[/C][C]NA[/C][C]NA[/C][C]-24.5068[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298759&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298759&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14730NANA23.3636NA
24760NANA3.80343NA
34815NANA13.7571NA
44995NANA5.63214NA
54960NANA-0.0160108NA
65065NANA-24.5068NA
750755015.915026.46-10.550759.0924
850855064.65066.46-1.8632320.4049
950955090.555092.08-1.52994.44657
1051405112.955112.710.24093427.0507
1151405133.515131.462.053436.48823
1251405135.245145.63-10.38414.75907
1353655175.665152.2923.3636189.345
1450855161.515157.713.80343-76.5118
1551055178.975165.2113.7571-73.9655
1652005178.345172.715.6321421.6595
1752055177.95177.92-0.016010827.0993
1851605154.035178.54-24.50685.96508
1951405156.745167.29-10.5507-16.7409
2051505159.395161.25-1.86323-9.38677
2152105166.65168.12-1.529943.4049
2252055165.665165.420.24093439.3424
2352005154.975152.922.0534345.0299
2450955128.995139.38-10.3841-33.9909
2551405149.415126.0423.3636-9.40529
2651655117.975114.173.8034347.0299
2751905113.76510013.757176.2429
2850505089.595083.965.63214-39.5905
2950555074.985075-0.0160108-19.984
3049855051.745076.25-24.5068-66.7432
3149955068.825079.38-10.5507-73.8243
3250105077.515079.37-1.86323-67.5118
3350105074.725076.25-1.5299-64.7201
3450205078.995078.750.240934-58.9909
3551705091.015088.962.0534378.9882
3651555091.75102.08-10.384163.3007
3751555141.285117.9223.363613.7197
3851505137.555133.753.8034312.4466
3951305163.555149.7913.7571-33.5488
4051705171.475165.835.63214-1.46547
4151805174.785174.79-0.01601085.22434
4251755152.995177.5-24.506822.0068
4351855170.915181.46-10.550714.0924
4452005184.185186.04-1.8632315.8216
4552055191.185192.71-1.529913.8216
4652105200.035199.790.2409349.9674
4751955205.65203.542.05343-10.5951
4851955195.035205.42-10.3841-0.0326003
4952105230.245206.8723.3636-20.2386
5052055209.855206.043.80343-4.8451
5152355216.885203.1213.757118.1179
5252355209.175203.545.6321425.8262
5352055207.285207.29-0.0160108-2.27566
5451955187.585212.08-24.50687.42342
5552005207.165217.71-10.5507-7.1576
5651655221.895223.75-1.86323-56.8868
5751705229.15230.62-1.5299-59.0951
5852555238.575238.330.24093416.4257
5952405249.975247.922.05343-9.9701
6052655248.375258.75-10.384116.6341
6152755293.995270.6223.3636-18.9886
6252855289.645285.833.80343-4.63677
6353205319.85306.0413.75710.201196
6453355329.85324.175.632145.2012
6553355338.115338.12-0.0160108-3.10899
6653255328.625353.12-24.5068-3.61825
6753555361.125371.67-10.5507-6.11593
6853755392.515394.37-1.86323-17.5118
6954455415.975417.5-1.529929.0299
7054155438.995438.750.240934-23.9909
7154155460.85458.752.05343-45.8034
7254505469.625480-10.3841-19.6159
7355355526.915503.5423.36368.09471
7455705532.355528.543.8034337.6549
7555905564.175550.4213.757125.8262
7655755576.055570.425.63214-1.0488
7755755593.115593.13-0.0160108-18.109
7855955590.915615.42-24.50684.09008
7956505622.575633.12-10.550727.4257
8056805645.855647.71-1.8632334.1549
8156655659.935661.46-1.52995.07157
8256755676.075675.830.240934-1.07427
8357005692.685690.622.053437.32157
8457005692.535702.92-10.38417.4674
8557105736.495713.1223.3636-26.4886
8657455730.895727.083.8034314.1132
8757455759.85746.0413.7571-14.7988
8857655770.845765.215.63214-5.84047
8957405782.485782.5-0.0160108-42.484
9057255775.75800.21-24.5068-50.7016
9157655809.245819.79-10.5507-44.2409
9259005838.355840.21-1.8632361.6549
9359005859.935861.46-1.529940.0716
9459005881.915881.670.24093418.0924
9558905906.855904.792.05343-16.8451
9659355922.125932.5-10.384112.8841
9759455982.535959.1723.3636-37.5303
9860005982.765978.963.8034317.2382
9960006007.095993.3313.7571-7.09047
10059956013.766008.125.63214-18.7571
10160656024.366024.38-0.016010840.641
10260656015.086039.58-24.506849.9234
10360656040.76051.25-10.550724.3007
10460756059.186061.04-1.8632315.8216
10560706072.226073.75-1.5299-2.2201
10660856090.456090.210.240934-5.44927
10760956106.646104.582.05343-11.6368
10860956106.076116.46-10.3841-11.0743
10960656152.746129.3723.3636-87.7386
11061156146.726142.923.80343-31.7201
11161906170.226156.4613.757119.7845
11262006175.226169.585.6321424.7845
11362056181.236181.25-0.016010823.766
11462106167.586192.08-24.506842.4234
11562306194.876205.42-10.550735.1341
11662356219.66221.46-1.8632315.4049
11762356232.856234.38-1.52992.1549
11862356244.416244.170.240934-9.4076
11962256256.016253.962.05343-31.0118
12062256253.376263.75-10.3841-28.3659
1216255NANA23.3636NA
1226310NANA3.80343NA
1236305NANA13.7571NA
1246320NANA5.63214NA
1256320NANA-0.0160108NA
1266330NANA-24.5068NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')