Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 09 Dec 2016 15:26:08 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t1481293620kn3q8p4svg6clup.htm/, Retrieved Fri, 01 Nov 2024 04:27:38 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:27:38 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
5	4	4	4	14
5	4	4	4	19
4	3	3	2	17
4	3	3	3	17
5	4	4	3	15
5	3	4	3	20
5	4	2	3	15
5	4	2	4	19
5	2	2	4	15
5	1	2	4	15
4	4	3	2	19
5	4	3	2	16
5	4	5	4	20
5	5	4	5	18
4	4	3	4	15
5	1	4	4	14
3	4	4	2	20
5	2	2	2	16
5	3	4	5	16
5	3	4	4	16
2	2	3	1	10
3	1	3	5	19
4	3	2	3	19
4	2	2	4	16
4	3	3	4	15
5	4	3	2	18
4	4	3	4	17
5	2	4	2	19
4	3	4	3	17
5	4	3	4	14
4	4	4	4	19
4	4	3	4	20
4	3	4	4	5
5	4	3	4	19
5	4	3	4	16
5	4	3	5	15
5	4	3	4	16
2	3	2	4	18
4	3	5	3	16
4	4	3	4	15
4	2	1	4	17
5	3	2	3	14
5	4	2	2	20
5	4	3	5	19
4	3	2	4	7
4	2	3	3	13
5	3	5	4	16
5	3	4	4	16
5	4	5	4	16
4	3	2	3	18
4	3	4	4	18
5	3	3	4	16
5	3	3	4	17
5	3	2	4	19
4	5	3	5	16
5	4	2	4	19
5	4	4	2	13
4	3	4	4	16
4	4	3	5	13
5	4	1	2	12
5	1	1	3	17
4	4	3	4	17
4	3	3	3	17
5	3	2	4	16
3	4	3	4	16
3	2	4	4	14
5	4	3	5	16
4	5	4	3	13
4	4	4	4	16
5	4	3	4	14
5	4	4	4	20
4	4	4	4	12
5	4	3	4	13
4	2	3	4	18
4	4	5	4	14
4	2	2	4	19
5	5	4	4	18
4	5	3	3	14
4	2	3	3	18
4	4	3	2	19
4	3	4	2	15
4	3	4	2	14
2	3	3	3	17
4	4	5	4	19
4	4	3	4	13
5	3	4	4	19
4	3	3	4	18
5	4	5	4	20
4	4	4	4	15
4	2	4	4	15
3	3	4	2	15
4	3	4	3	20
2	3	2	2	15
4	4	3	3	19
5	4	4	4	18
3	4	3	5	18
4	4	3	4	15
5	5	5	5	20
2	4	3	3	17
5	3	1	5	12
5	4	3	4	18
5	4	4	5	19
4	2	2	2	20
4	3	3	3	13
5	3	4	4	17
5	3	4	5	15
4	4	4	4	16
4	4	4	5	18
5	4	5	5	18
5	4	4	5	14
5	3	3	4	15
4	3	3	4	12
5	3	3	4	17
4	2	4	4	14
5	3	4	4	18
4	2	2	4	17
5	4	5	5	17
5	5	2	5	20
4	3	2	5	16
4	3	2	4	14
4	3	3	4	15
5	2	3	4	18
5	3	4	5	20
4	3	4	4	17
4	3	4	4	17
5	4	3	4	17
5	4	4	4	17
4	3	4	2	15
4	4	3	4	17
4	1	3	2	18
4	5	5	4	17
5	4	4	3	20
5	3	3	5	15
4	5	3	2	16
4	4	3	4	15
4	3	3	3	18
4	4	4	4	11
3	4	3	3	15
4	4	2	4	18
5	3	4	5	20
4	2	4	3	19
4	4	4	2	14
5	3	5	5	16
3	3	2	4	15
4	4	2	4	17
1	2	3	2	18
5	3	3	5	20
4	4	2	3	17
5	4	4	3	18
3	3	2	3	15
4	4	3	4	16
4	4	4	4	11
4	3	3	4	15
4	2	3	4	18
5	4	4	4	17
5	2	2	4	16
5	3	5	5	12
5	4	4	3	19
4	3	3	3	18
5	2	5	4	15
5	4	2	4	17
4	1	4	5	19
3	5	4	3	18
4	4	4	4	19
4	3	3	2	16
5	4	5	5	16
4	4	3	4	16
4	3	3	3	14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
ITHSUM[t] = + 14.3562 + 0.361175KVDD1[t] + 0.0725785KVVD2[t] + 0.110083KVVD3[t] -0.0334588KVDD4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ITHSUM[t] =  +  14.3562 +  0.361175KVDD1[t] +  0.0725785KVVD2[t] +  0.110083KVVD3[t] -0.0334588KVDD4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ITHSUM[t] =  +  14.3562 +  0.361175KVDD1[t] +  0.0725785KVVD2[t] +  0.110083KVVD3[t] -0.0334588KVDD4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ITHSUM[t] = + 14.3562 + 0.361175KVDD1[t] + 0.0725785KVVD2[t] + 0.110083KVVD3[t] -0.0334588KVDD4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.36 1.365+1.0520e+01 4.433e-20 2.216e-20
KVDD1+0.3612 0.2705+1.3350e+00 0.1837 0.09183
KVVD2+0.07258 0.2208+3.2880e-01 0.7428 0.3714
KVVD3+0.1101 0.2143+5.1360e-01 0.6082 0.3041
KVDD4-0.03346 0.2264-1.4780e-01 0.8827 0.4414

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +14.36 &  1.365 & +1.0520e+01 &  4.433e-20 &  2.216e-20 \tabularnewline
KVDD1 & +0.3612 &  0.2705 & +1.3350e+00 &  0.1837 &  0.09183 \tabularnewline
KVVD2 & +0.07258 &  0.2208 & +3.2880e-01 &  0.7428 &  0.3714 \tabularnewline
KVVD3 & +0.1101 &  0.2143 & +5.1360e-01 &  0.6082 &  0.3041 \tabularnewline
KVDD4 & -0.03346 &  0.2264 & -1.4780e-01 &  0.8827 &  0.4414 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+14.36[/C][C] 1.365[/C][C]+1.0520e+01[/C][C] 4.433e-20[/C][C] 2.216e-20[/C][/ROW]
[ROW][C]KVDD1[/C][C]+0.3612[/C][C] 0.2705[/C][C]+1.3350e+00[/C][C] 0.1837[/C][C] 0.09183[/C][/ROW]
[ROW][C]KVVD2[/C][C]+0.07258[/C][C] 0.2208[/C][C]+3.2880e-01[/C][C] 0.7428[/C][C] 0.3714[/C][/ROW]
[ROW][C]KVVD3[/C][C]+0.1101[/C][C] 0.2143[/C][C]+5.1360e-01[/C][C] 0.6082[/C][C] 0.3041[/C][/ROW]
[ROW][C]KVDD4[/C][C]-0.03346[/C][C] 0.2264[/C][C]-1.4780e-01[/C][C] 0.8827[/C][C] 0.4414[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.36 1.365+1.0520e+01 4.433e-20 2.216e-20
KVDD1+0.3612 0.2705+1.3350e+00 0.1837 0.09183
KVVD2+0.07258 0.2208+3.2880e-01 0.7428 0.3714
KVVD3+0.1101 0.2143+5.1360e-01 0.6082 0.3041
KVDD4-0.03346 0.2264-1.4780e-01 0.8827 0.4414







Multiple Linear Regression - Regression Statistics
Multiple R 0.1276
R-squared 0.01628
Adjusted R-squared-0.007861
F-TEST (value) 0.6744
F-TEST (DF numerator)4
F-TEST (DF denominator)163
p-value 0.6107
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.501
Sum Squared Residuals 1019

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1276 \tabularnewline
R-squared &  0.01628 \tabularnewline
Adjusted R-squared & -0.007861 \tabularnewline
F-TEST (value) &  0.6744 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 163 \tabularnewline
p-value &  0.6107 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.501 \tabularnewline
Sum Squared Residuals &  1019 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1276[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.01628[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.007861[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.6744[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]163[/C][/ROW]
[ROW][C]p-value[/C][C] 0.6107[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.501[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 1019[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1276
R-squared 0.01628
Adjusted R-squared-0.007861
F-TEST (value) 0.6744
F-TEST (DF numerator)4
F-TEST (DF denominator)163
p-value 0.6107
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.501
Sum Squared Residuals 1019







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 16.76-2.759
2 19 16.76 2.241
3 17 16.28 0.7181
4 17 16.25 0.7515
5 15 16.79-1.792
6 20 16.72 3.28
7 15 16.57-1.572
8 19 16.54 2.461
9 15 16.39-1.394
10 15 16.32-1.321
11 19 16.35 2.645
12 16 16.72-0.7157
13 20 16.87 3.131
14 18 16.8 1.202
15 15 16.29-1.288
16 14 16.54-2.541
17 20 16.1 3.897
18 16 16.46-0.4605
19 16 16.65-0.6528
20 16 16.69-0.6863
21 10 15.52-5.52
22 19 15.68 3.325
23 19 16.14 2.862
24 16 16.03-0.03237
25 15 16.21-1.215
26 18 16.72 1.284
27 17 16.29 0.7124
28 19 16.68 2.319
29 17 16.36 0.6414
30 14 16.65-2.649
31 19 16.4 2.602
32 20 16.29 3.712
33 5 16.33-11.33
34 19 16.65 2.351
35 16 16.65-0.6488
36 15 16.62-1.615
37 16 16.65-0.6488
38 18 15.38 2.617
39 16 16.47-0.4687
40 15 16.29-1.288
41 17 15.92 1.078
42 14 16.5-2.5
43 20 16.61 3.394
44 19 16.62 2.385
45 7 16.1-9.105
46 13 16.18-3.176
47 16 16.8-0.7964
48 16 16.69-0.6863
49 16 16.87-0.8689
50 18 16.14 1.862
51 18 16.33 1.675
52 16 16.58-0.5762
53 17 16.58 0.4238
54 19 16.47 2.534
55 16 16.33-0.3267
56 19 16.54 2.461
57 13 16.83-3.826
58 16 16.33-0.3251
59 13 16.25-3.254
60 12 16.5-4.496
61 17 16.24 0.7557
62 17 16.29 0.7124
63 17 16.25 0.7515
64 16 16.47-0.4661
65 16 15.93 0.07357
66 14 15.89-1.891
67 16 16.62-0.6153
68 13 16.5-3.504
69 16 16.4-0.3977
70 14 16.65-2.649
71 20 16.76 3.241
72 12 16.4-4.398
73 13 16.65-3.649
74 18 16.14 1.858
75 14 16.51-2.508
76 19 16.03 2.968
77 18 16.83 1.169
78 14 16.39-2.394
79 18 16.18 1.824
80 19 16.35 2.645
81 15 16.39-1.392
82 14 16.39-2.392
83 17 15.53 1.474
84 19 16.51 2.492
85 13 16.29-3.288
86 19 16.69 2.314
87 18 16.21 1.785
88 20 16.87 3.131
89 15 16.4-1.398
90 15 16.25-1.253
91 15 16.03-1.031
92 20 16.36 3.641
93 15 15.45-0.4495
94 19 16.32 2.679
95 18 16.76 1.241
96 18 15.89 2.107
97 15 16.29-1.288
98 20 16.91 3.092
99 17 15.6 1.401
100 12 16.32-4.323
101 18 16.65 1.351
102 19 16.73 2.275
103 20 16.1 3.901
104 13 16.25-3.248
105 17 16.69 0.3137
106 15 16.65-1.653
107 16 16.4-0.3977
108 18 16.36 1.636
109 18 16.84 1.165
110 14 16.73-2.725
111 15 16.58-1.576
112 12 16.21-4.215
113 17 16.58 0.4238
114 14 16.25-2.253
115 18 16.69 1.314
116 17 16.03 0.9676
117 17 16.84 0.1645
118 20 16.58 3.422
119 16 16.07-0.07149
120 14 16.1-2.105
121 15 16.21-1.215
122 18 16.5 1.496
123 20 16.65 3.347
124 17 16.33 0.6749
125 17 16.33 0.6749
126 17 16.65 0.3512
127 17 16.76 0.2411
128 15 16.39-1.392
129 17 16.29 0.7124
130 18 16.14 1.863
131 17 16.58 0.4196
132 20 16.79 3.208
133 15 16.54-1.543
134 16 16.43-0.4271
135 15 16.29-1.288
136 18 16.25 1.752
137 11 16.4-5.398
138 15 15.96-0.9599
139 18 16.18 1.822
140 20 16.65 3.347
141 19 16.29 2.714
142 14 16.46-2.465
143 16 16.76-0.7629
144 15 15.74-0.7438
145 17 16.18 0.8225
146 18 15.13 2.874
147 20 16.54 3.457
148 17 16.21 0.789
149 18 16.79 1.208
150 15 15.78-0.7772
151 16 16.29-0.2876
152 11 16.4-5.398
153 15 16.21-1.215
154 18 16.14 1.858
155 17 16.76 0.2411
156 16 16.39-0.3935
157 12 16.76-4.763
158 19 16.79 2.208
159 18 16.25 1.752
160 15 16.72-1.724
161 17 16.54 0.4613
162 19 16.15 2.853
163 18 16.14 1.857
164 19 16.4 2.602
165 16 16.28-0.2819
166 16 16.84-0.8355
167 16 16.29-0.2876
168 14 16.25-2.248

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  14 &  16.76 & -2.759 \tabularnewline
2 &  19 &  16.76 &  2.241 \tabularnewline
3 &  17 &  16.28 &  0.7181 \tabularnewline
4 &  17 &  16.25 &  0.7515 \tabularnewline
5 &  15 &  16.79 & -1.792 \tabularnewline
6 &  20 &  16.72 &  3.28 \tabularnewline
7 &  15 &  16.57 & -1.572 \tabularnewline
8 &  19 &  16.54 &  2.461 \tabularnewline
9 &  15 &  16.39 & -1.394 \tabularnewline
10 &  15 &  16.32 & -1.321 \tabularnewline
11 &  19 &  16.35 &  2.645 \tabularnewline
12 &  16 &  16.72 & -0.7157 \tabularnewline
13 &  20 &  16.87 &  3.131 \tabularnewline
14 &  18 &  16.8 &  1.202 \tabularnewline
15 &  15 &  16.29 & -1.288 \tabularnewline
16 &  14 &  16.54 & -2.541 \tabularnewline
17 &  20 &  16.1 &  3.897 \tabularnewline
18 &  16 &  16.46 & -0.4605 \tabularnewline
19 &  16 &  16.65 & -0.6528 \tabularnewline
20 &  16 &  16.69 & -0.6863 \tabularnewline
21 &  10 &  15.52 & -5.52 \tabularnewline
22 &  19 &  15.68 &  3.325 \tabularnewline
23 &  19 &  16.14 &  2.862 \tabularnewline
24 &  16 &  16.03 & -0.03237 \tabularnewline
25 &  15 &  16.21 & -1.215 \tabularnewline
26 &  18 &  16.72 &  1.284 \tabularnewline
27 &  17 &  16.29 &  0.7124 \tabularnewline
28 &  19 &  16.68 &  2.319 \tabularnewline
29 &  17 &  16.36 &  0.6414 \tabularnewline
30 &  14 &  16.65 & -2.649 \tabularnewline
31 &  19 &  16.4 &  2.602 \tabularnewline
32 &  20 &  16.29 &  3.712 \tabularnewline
33 &  5 &  16.33 & -11.33 \tabularnewline
34 &  19 &  16.65 &  2.351 \tabularnewline
35 &  16 &  16.65 & -0.6488 \tabularnewline
36 &  15 &  16.62 & -1.615 \tabularnewline
37 &  16 &  16.65 & -0.6488 \tabularnewline
38 &  18 &  15.38 &  2.617 \tabularnewline
39 &  16 &  16.47 & -0.4687 \tabularnewline
40 &  15 &  16.29 & -1.288 \tabularnewline
41 &  17 &  15.92 &  1.078 \tabularnewline
42 &  14 &  16.5 & -2.5 \tabularnewline
43 &  20 &  16.61 &  3.394 \tabularnewline
44 &  19 &  16.62 &  2.385 \tabularnewline
45 &  7 &  16.1 & -9.105 \tabularnewline
46 &  13 &  16.18 & -3.176 \tabularnewline
47 &  16 &  16.8 & -0.7964 \tabularnewline
48 &  16 &  16.69 & -0.6863 \tabularnewline
49 &  16 &  16.87 & -0.8689 \tabularnewline
50 &  18 &  16.14 &  1.862 \tabularnewline
51 &  18 &  16.33 &  1.675 \tabularnewline
52 &  16 &  16.58 & -0.5762 \tabularnewline
53 &  17 &  16.58 &  0.4238 \tabularnewline
54 &  19 &  16.47 &  2.534 \tabularnewline
55 &  16 &  16.33 & -0.3267 \tabularnewline
56 &  19 &  16.54 &  2.461 \tabularnewline
57 &  13 &  16.83 & -3.826 \tabularnewline
58 &  16 &  16.33 & -0.3251 \tabularnewline
59 &  13 &  16.25 & -3.254 \tabularnewline
60 &  12 &  16.5 & -4.496 \tabularnewline
61 &  17 &  16.24 &  0.7557 \tabularnewline
62 &  17 &  16.29 &  0.7124 \tabularnewline
63 &  17 &  16.25 &  0.7515 \tabularnewline
64 &  16 &  16.47 & -0.4661 \tabularnewline
65 &  16 &  15.93 &  0.07357 \tabularnewline
66 &  14 &  15.89 & -1.891 \tabularnewline
67 &  16 &  16.62 & -0.6153 \tabularnewline
68 &  13 &  16.5 & -3.504 \tabularnewline
69 &  16 &  16.4 & -0.3977 \tabularnewline
70 &  14 &  16.65 & -2.649 \tabularnewline
71 &  20 &  16.76 &  3.241 \tabularnewline
72 &  12 &  16.4 & -4.398 \tabularnewline
73 &  13 &  16.65 & -3.649 \tabularnewline
74 &  18 &  16.14 &  1.858 \tabularnewline
75 &  14 &  16.51 & -2.508 \tabularnewline
76 &  19 &  16.03 &  2.968 \tabularnewline
77 &  18 &  16.83 &  1.169 \tabularnewline
78 &  14 &  16.39 & -2.394 \tabularnewline
79 &  18 &  16.18 &  1.824 \tabularnewline
80 &  19 &  16.35 &  2.645 \tabularnewline
81 &  15 &  16.39 & -1.392 \tabularnewline
82 &  14 &  16.39 & -2.392 \tabularnewline
83 &  17 &  15.53 &  1.474 \tabularnewline
84 &  19 &  16.51 &  2.492 \tabularnewline
85 &  13 &  16.29 & -3.288 \tabularnewline
86 &  19 &  16.69 &  2.314 \tabularnewline
87 &  18 &  16.21 &  1.785 \tabularnewline
88 &  20 &  16.87 &  3.131 \tabularnewline
89 &  15 &  16.4 & -1.398 \tabularnewline
90 &  15 &  16.25 & -1.253 \tabularnewline
91 &  15 &  16.03 & -1.031 \tabularnewline
92 &  20 &  16.36 &  3.641 \tabularnewline
93 &  15 &  15.45 & -0.4495 \tabularnewline
94 &  19 &  16.32 &  2.679 \tabularnewline
95 &  18 &  16.76 &  1.241 \tabularnewline
96 &  18 &  15.89 &  2.107 \tabularnewline
97 &  15 &  16.29 & -1.288 \tabularnewline
98 &  20 &  16.91 &  3.092 \tabularnewline
99 &  17 &  15.6 &  1.401 \tabularnewline
100 &  12 &  16.32 & -4.323 \tabularnewline
101 &  18 &  16.65 &  1.351 \tabularnewline
102 &  19 &  16.73 &  2.275 \tabularnewline
103 &  20 &  16.1 &  3.901 \tabularnewline
104 &  13 &  16.25 & -3.248 \tabularnewline
105 &  17 &  16.69 &  0.3137 \tabularnewline
106 &  15 &  16.65 & -1.653 \tabularnewline
107 &  16 &  16.4 & -0.3977 \tabularnewline
108 &  18 &  16.36 &  1.636 \tabularnewline
109 &  18 &  16.84 &  1.165 \tabularnewline
110 &  14 &  16.73 & -2.725 \tabularnewline
111 &  15 &  16.58 & -1.576 \tabularnewline
112 &  12 &  16.21 & -4.215 \tabularnewline
113 &  17 &  16.58 &  0.4238 \tabularnewline
114 &  14 &  16.25 & -2.253 \tabularnewline
115 &  18 &  16.69 &  1.314 \tabularnewline
116 &  17 &  16.03 &  0.9676 \tabularnewline
117 &  17 &  16.84 &  0.1645 \tabularnewline
118 &  20 &  16.58 &  3.422 \tabularnewline
119 &  16 &  16.07 & -0.07149 \tabularnewline
120 &  14 &  16.1 & -2.105 \tabularnewline
121 &  15 &  16.21 & -1.215 \tabularnewline
122 &  18 &  16.5 &  1.496 \tabularnewline
123 &  20 &  16.65 &  3.347 \tabularnewline
124 &  17 &  16.33 &  0.6749 \tabularnewline
125 &  17 &  16.33 &  0.6749 \tabularnewline
126 &  17 &  16.65 &  0.3512 \tabularnewline
127 &  17 &  16.76 &  0.2411 \tabularnewline
128 &  15 &  16.39 & -1.392 \tabularnewline
129 &  17 &  16.29 &  0.7124 \tabularnewline
130 &  18 &  16.14 &  1.863 \tabularnewline
131 &  17 &  16.58 &  0.4196 \tabularnewline
132 &  20 &  16.79 &  3.208 \tabularnewline
133 &  15 &  16.54 & -1.543 \tabularnewline
134 &  16 &  16.43 & -0.4271 \tabularnewline
135 &  15 &  16.29 & -1.288 \tabularnewline
136 &  18 &  16.25 &  1.752 \tabularnewline
137 &  11 &  16.4 & -5.398 \tabularnewline
138 &  15 &  15.96 & -0.9599 \tabularnewline
139 &  18 &  16.18 &  1.822 \tabularnewline
140 &  20 &  16.65 &  3.347 \tabularnewline
141 &  19 &  16.29 &  2.714 \tabularnewline
142 &  14 &  16.46 & -2.465 \tabularnewline
143 &  16 &  16.76 & -0.7629 \tabularnewline
144 &  15 &  15.74 & -0.7438 \tabularnewline
145 &  17 &  16.18 &  0.8225 \tabularnewline
146 &  18 &  15.13 &  2.874 \tabularnewline
147 &  20 &  16.54 &  3.457 \tabularnewline
148 &  17 &  16.21 &  0.789 \tabularnewline
149 &  18 &  16.79 &  1.208 \tabularnewline
150 &  15 &  15.78 & -0.7772 \tabularnewline
151 &  16 &  16.29 & -0.2876 \tabularnewline
152 &  11 &  16.4 & -5.398 \tabularnewline
153 &  15 &  16.21 & -1.215 \tabularnewline
154 &  18 &  16.14 &  1.858 \tabularnewline
155 &  17 &  16.76 &  0.2411 \tabularnewline
156 &  16 &  16.39 & -0.3935 \tabularnewline
157 &  12 &  16.76 & -4.763 \tabularnewline
158 &  19 &  16.79 &  2.208 \tabularnewline
159 &  18 &  16.25 &  1.752 \tabularnewline
160 &  15 &  16.72 & -1.724 \tabularnewline
161 &  17 &  16.54 &  0.4613 \tabularnewline
162 &  19 &  16.15 &  2.853 \tabularnewline
163 &  18 &  16.14 &  1.857 \tabularnewline
164 &  19 &  16.4 &  2.602 \tabularnewline
165 &  16 &  16.28 & -0.2819 \tabularnewline
166 &  16 &  16.84 & -0.8355 \tabularnewline
167 &  16 &  16.29 & -0.2876 \tabularnewline
168 &  14 &  16.25 & -2.248 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 14[/C][C] 16.76[/C][C]-2.759[/C][/ROW]
[ROW][C]2[/C][C] 19[/C][C] 16.76[/C][C] 2.241[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 16.28[/C][C] 0.7181[/C][/ROW]
[ROW][C]4[/C][C] 17[/C][C] 16.25[/C][C] 0.7515[/C][/ROW]
[ROW][C]5[/C][C] 15[/C][C] 16.79[/C][C]-1.792[/C][/ROW]
[ROW][C]6[/C][C] 20[/C][C] 16.72[/C][C] 3.28[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 16.57[/C][C]-1.572[/C][/ROW]
[ROW][C]8[/C][C] 19[/C][C] 16.54[/C][C] 2.461[/C][/ROW]
[ROW][C]9[/C][C] 15[/C][C] 16.39[/C][C]-1.394[/C][/ROW]
[ROW][C]10[/C][C] 15[/C][C] 16.32[/C][C]-1.321[/C][/ROW]
[ROW][C]11[/C][C] 19[/C][C] 16.35[/C][C] 2.645[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 16.72[/C][C]-0.7157[/C][/ROW]
[ROW][C]13[/C][C] 20[/C][C] 16.87[/C][C] 3.131[/C][/ROW]
[ROW][C]14[/C][C] 18[/C][C] 16.8[/C][C] 1.202[/C][/ROW]
[ROW][C]15[/C][C] 15[/C][C] 16.29[/C][C]-1.288[/C][/ROW]
[ROW][C]16[/C][C] 14[/C][C] 16.54[/C][C]-2.541[/C][/ROW]
[ROW][C]17[/C][C] 20[/C][C] 16.1[/C][C] 3.897[/C][/ROW]
[ROW][C]18[/C][C] 16[/C][C] 16.46[/C][C]-0.4605[/C][/ROW]
[ROW][C]19[/C][C] 16[/C][C] 16.65[/C][C]-0.6528[/C][/ROW]
[ROW][C]20[/C][C] 16[/C][C] 16.69[/C][C]-0.6863[/C][/ROW]
[ROW][C]21[/C][C] 10[/C][C] 15.52[/C][C]-5.52[/C][/ROW]
[ROW][C]22[/C][C] 19[/C][C] 15.68[/C][C] 3.325[/C][/ROW]
[ROW][C]23[/C][C] 19[/C][C] 16.14[/C][C] 2.862[/C][/ROW]
[ROW][C]24[/C][C] 16[/C][C] 16.03[/C][C]-0.03237[/C][/ROW]
[ROW][C]25[/C][C] 15[/C][C] 16.21[/C][C]-1.215[/C][/ROW]
[ROW][C]26[/C][C] 18[/C][C] 16.72[/C][C] 1.284[/C][/ROW]
[ROW][C]27[/C][C] 17[/C][C] 16.29[/C][C] 0.7124[/C][/ROW]
[ROW][C]28[/C][C] 19[/C][C] 16.68[/C][C] 2.319[/C][/ROW]
[ROW][C]29[/C][C] 17[/C][C] 16.36[/C][C] 0.6414[/C][/ROW]
[ROW][C]30[/C][C] 14[/C][C] 16.65[/C][C]-2.649[/C][/ROW]
[ROW][C]31[/C][C] 19[/C][C] 16.4[/C][C] 2.602[/C][/ROW]
[ROW][C]32[/C][C] 20[/C][C] 16.29[/C][C] 3.712[/C][/ROW]
[ROW][C]33[/C][C] 5[/C][C] 16.33[/C][C]-11.33[/C][/ROW]
[ROW][C]34[/C][C] 19[/C][C] 16.65[/C][C] 2.351[/C][/ROW]
[ROW][C]35[/C][C] 16[/C][C] 16.65[/C][C]-0.6488[/C][/ROW]
[ROW][C]36[/C][C] 15[/C][C] 16.62[/C][C]-1.615[/C][/ROW]
[ROW][C]37[/C][C] 16[/C][C] 16.65[/C][C]-0.6488[/C][/ROW]
[ROW][C]38[/C][C] 18[/C][C] 15.38[/C][C] 2.617[/C][/ROW]
[ROW][C]39[/C][C] 16[/C][C] 16.47[/C][C]-0.4687[/C][/ROW]
[ROW][C]40[/C][C] 15[/C][C] 16.29[/C][C]-1.288[/C][/ROW]
[ROW][C]41[/C][C] 17[/C][C] 15.92[/C][C] 1.078[/C][/ROW]
[ROW][C]42[/C][C] 14[/C][C] 16.5[/C][C]-2.5[/C][/ROW]
[ROW][C]43[/C][C] 20[/C][C] 16.61[/C][C] 3.394[/C][/ROW]
[ROW][C]44[/C][C] 19[/C][C] 16.62[/C][C] 2.385[/C][/ROW]
[ROW][C]45[/C][C] 7[/C][C] 16.1[/C][C]-9.105[/C][/ROW]
[ROW][C]46[/C][C] 13[/C][C] 16.18[/C][C]-3.176[/C][/ROW]
[ROW][C]47[/C][C] 16[/C][C] 16.8[/C][C]-0.7964[/C][/ROW]
[ROW][C]48[/C][C] 16[/C][C] 16.69[/C][C]-0.6863[/C][/ROW]
[ROW][C]49[/C][C] 16[/C][C] 16.87[/C][C]-0.8689[/C][/ROW]
[ROW][C]50[/C][C] 18[/C][C] 16.14[/C][C] 1.862[/C][/ROW]
[ROW][C]51[/C][C] 18[/C][C] 16.33[/C][C] 1.675[/C][/ROW]
[ROW][C]52[/C][C] 16[/C][C] 16.58[/C][C]-0.5762[/C][/ROW]
[ROW][C]53[/C][C] 17[/C][C] 16.58[/C][C] 0.4238[/C][/ROW]
[ROW][C]54[/C][C] 19[/C][C] 16.47[/C][C] 2.534[/C][/ROW]
[ROW][C]55[/C][C] 16[/C][C] 16.33[/C][C]-0.3267[/C][/ROW]
[ROW][C]56[/C][C] 19[/C][C] 16.54[/C][C] 2.461[/C][/ROW]
[ROW][C]57[/C][C] 13[/C][C] 16.83[/C][C]-3.826[/C][/ROW]
[ROW][C]58[/C][C] 16[/C][C] 16.33[/C][C]-0.3251[/C][/ROW]
[ROW][C]59[/C][C] 13[/C][C] 16.25[/C][C]-3.254[/C][/ROW]
[ROW][C]60[/C][C] 12[/C][C] 16.5[/C][C]-4.496[/C][/ROW]
[ROW][C]61[/C][C] 17[/C][C] 16.24[/C][C] 0.7557[/C][/ROW]
[ROW][C]62[/C][C] 17[/C][C] 16.29[/C][C] 0.7124[/C][/ROW]
[ROW][C]63[/C][C] 17[/C][C] 16.25[/C][C] 0.7515[/C][/ROW]
[ROW][C]64[/C][C] 16[/C][C] 16.47[/C][C]-0.4661[/C][/ROW]
[ROW][C]65[/C][C] 16[/C][C] 15.93[/C][C] 0.07357[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 15.89[/C][C]-1.891[/C][/ROW]
[ROW][C]67[/C][C] 16[/C][C] 16.62[/C][C]-0.6153[/C][/ROW]
[ROW][C]68[/C][C] 13[/C][C] 16.5[/C][C]-3.504[/C][/ROW]
[ROW][C]69[/C][C] 16[/C][C] 16.4[/C][C]-0.3977[/C][/ROW]
[ROW][C]70[/C][C] 14[/C][C] 16.65[/C][C]-2.649[/C][/ROW]
[ROW][C]71[/C][C] 20[/C][C] 16.76[/C][C] 3.241[/C][/ROW]
[ROW][C]72[/C][C] 12[/C][C] 16.4[/C][C]-4.398[/C][/ROW]
[ROW][C]73[/C][C] 13[/C][C] 16.65[/C][C]-3.649[/C][/ROW]
[ROW][C]74[/C][C] 18[/C][C] 16.14[/C][C] 1.858[/C][/ROW]
[ROW][C]75[/C][C] 14[/C][C] 16.51[/C][C]-2.508[/C][/ROW]
[ROW][C]76[/C][C] 19[/C][C] 16.03[/C][C] 2.968[/C][/ROW]
[ROW][C]77[/C][C] 18[/C][C] 16.83[/C][C] 1.169[/C][/ROW]
[ROW][C]78[/C][C] 14[/C][C] 16.39[/C][C]-2.394[/C][/ROW]
[ROW][C]79[/C][C] 18[/C][C] 16.18[/C][C] 1.824[/C][/ROW]
[ROW][C]80[/C][C] 19[/C][C] 16.35[/C][C] 2.645[/C][/ROW]
[ROW][C]81[/C][C] 15[/C][C] 16.39[/C][C]-1.392[/C][/ROW]
[ROW][C]82[/C][C] 14[/C][C] 16.39[/C][C]-2.392[/C][/ROW]
[ROW][C]83[/C][C] 17[/C][C] 15.53[/C][C] 1.474[/C][/ROW]
[ROW][C]84[/C][C] 19[/C][C] 16.51[/C][C] 2.492[/C][/ROW]
[ROW][C]85[/C][C] 13[/C][C] 16.29[/C][C]-3.288[/C][/ROW]
[ROW][C]86[/C][C] 19[/C][C] 16.69[/C][C] 2.314[/C][/ROW]
[ROW][C]87[/C][C] 18[/C][C] 16.21[/C][C] 1.785[/C][/ROW]
[ROW][C]88[/C][C] 20[/C][C] 16.87[/C][C] 3.131[/C][/ROW]
[ROW][C]89[/C][C] 15[/C][C] 16.4[/C][C]-1.398[/C][/ROW]
[ROW][C]90[/C][C] 15[/C][C] 16.25[/C][C]-1.253[/C][/ROW]
[ROW][C]91[/C][C] 15[/C][C] 16.03[/C][C]-1.031[/C][/ROW]
[ROW][C]92[/C][C] 20[/C][C] 16.36[/C][C] 3.641[/C][/ROW]
[ROW][C]93[/C][C] 15[/C][C] 15.45[/C][C]-0.4495[/C][/ROW]
[ROW][C]94[/C][C] 19[/C][C] 16.32[/C][C] 2.679[/C][/ROW]
[ROW][C]95[/C][C] 18[/C][C] 16.76[/C][C] 1.241[/C][/ROW]
[ROW][C]96[/C][C] 18[/C][C] 15.89[/C][C] 2.107[/C][/ROW]
[ROW][C]97[/C][C] 15[/C][C] 16.29[/C][C]-1.288[/C][/ROW]
[ROW][C]98[/C][C] 20[/C][C] 16.91[/C][C] 3.092[/C][/ROW]
[ROW][C]99[/C][C] 17[/C][C] 15.6[/C][C] 1.401[/C][/ROW]
[ROW][C]100[/C][C] 12[/C][C] 16.32[/C][C]-4.323[/C][/ROW]
[ROW][C]101[/C][C] 18[/C][C] 16.65[/C][C] 1.351[/C][/ROW]
[ROW][C]102[/C][C] 19[/C][C] 16.73[/C][C] 2.275[/C][/ROW]
[ROW][C]103[/C][C] 20[/C][C] 16.1[/C][C] 3.901[/C][/ROW]
[ROW][C]104[/C][C] 13[/C][C] 16.25[/C][C]-3.248[/C][/ROW]
[ROW][C]105[/C][C] 17[/C][C] 16.69[/C][C] 0.3137[/C][/ROW]
[ROW][C]106[/C][C] 15[/C][C] 16.65[/C][C]-1.653[/C][/ROW]
[ROW][C]107[/C][C] 16[/C][C] 16.4[/C][C]-0.3977[/C][/ROW]
[ROW][C]108[/C][C] 18[/C][C] 16.36[/C][C] 1.636[/C][/ROW]
[ROW][C]109[/C][C] 18[/C][C] 16.84[/C][C] 1.165[/C][/ROW]
[ROW][C]110[/C][C] 14[/C][C] 16.73[/C][C]-2.725[/C][/ROW]
[ROW][C]111[/C][C] 15[/C][C] 16.58[/C][C]-1.576[/C][/ROW]
[ROW][C]112[/C][C] 12[/C][C] 16.21[/C][C]-4.215[/C][/ROW]
[ROW][C]113[/C][C] 17[/C][C] 16.58[/C][C] 0.4238[/C][/ROW]
[ROW][C]114[/C][C] 14[/C][C] 16.25[/C][C]-2.253[/C][/ROW]
[ROW][C]115[/C][C] 18[/C][C] 16.69[/C][C] 1.314[/C][/ROW]
[ROW][C]116[/C][C] 17[/C][C] 16.03[/C][C] 0.9676[/C][/ROW]
[ROW][C]117[/C][C] 17[/C][C] 16.84[/C][C] 0.1645[/C][/ROW]
[ROW][C]118[/C][C] 20[/C][C] 16.58[/C][C] 3.422[/C][/ROW]
[ROW][C]119[/C][C] 16[/C][C] 16.07[/C][C]-0.07149[/C][/ROW]
[ROW][C]120[/C][C] 14[/C][C] 16.1[/C][C]-2.105[/C][/ROW]
[ROW][C]121[/C][C] 15[/C][C] 16.21[/C][C]-1.215[/C][/ROW]
[ROW][C]122[/C][C] 18[/C][C] 16.5[/C][C] 1.496[/C][/ROW]
[ROW][C]123[/C][C] 20[/C][C] 16.65[/C][C] 3.347[/C][/ROW]
[ROW][C]124[/C][C] 17[/C][C] 16.33[/C][C] 0.6749[/C][/ROW]
[ROW][C]125[/C][C] 17[/C][C] 16.33[/C][C] 0.6749[/C][/ROW]
[ROW][C]126[/C][C] 17[/C][C] 16.65[/C][C] 0.3512[/C][/ROW]
[ROW][C]127[/C][C] 17[/C][C] 16.76[/C][C] 0.2411[/C][/ROW]
[ROW][C]128[/C][C] 15[/C][C] 16.39[/C][C]-1.392[/C][/ROW]
[ROW][C]129[/C][C] 17[/C][C] 16.29[/C][C] 0.7124[/C][/ROW]
[ROW][C]130[/C][C] 18[/C][C] 16.14[/C][C] 1.863[/C][/ROW]
[ROW][C]131[/C][C] 17[/C][C] 16.58[/C][C] 0.4196[/C][/ROW]
[ROW][C]132[/C][C] 20[/C][C] 16.79[/C][C] 3.208[/C][/ROW]
[ROW][C]133[/C][C] 15[/C][C] 16.54[/C][C]-1.543[/C][/ROW]
[ROW][C]134[/C][C] 16[/C][C] 16.43[/C][C]-0.4271[/C][/ROW]
[ROW][C]135[/C][C] 15[/C][C] 16.29[/C][C]-1.288[/C][/ROW]
[ROW][C]136[/C][C] 18[/C][C] 16.25[/C][C] 1.752[/C][/ROW]
[ROW][C]137[/C][C] 11[/C][C] 16.4[/C][C]-5.398[/C][/ROW]
[ROW][C]138[/C][C] 15[/C][C] 15.96[/C][C]-0.9599[/C][/ROW]
[ROW][C]139[/C][C] 18[/C][C] 16.18[/C][C] 1.822[/C][/ROW]
[ROW][C]140[/C][C] 20[/C][C] 16.65[/C][C] 3.347[/C][/ROW]
[ROW][C]141[/C][C] 19[/C][C] 16.29[/C][C] 2.714[/C][/ROW]
[ROW][C]142[/C][C] 14[/C][C] 16.46[/C][C]-2.465[/C][/ROW]
[ROW][C]143[/C][C] 16[/C][C] 16.76[/C][C]-0.7629[/C][/ROW]
[ROW][C]144[/C][C] 15[/C][C] 15.74[/C][C]-0.7438[/C][/ROW]
[ROW][C]145[/C][C] 17[/C][C] 16.18[/C][C] 0.8225[/C][/ROW]
[ROW][C]146[/C][C] 18[/C][C] 15.13[/C][C] 2.874[/C][/ROW]
[ROW][C]147[/C][C] 20[/C][C] 16.54[/C][C] 3.457[/C][/ROW]
[ROW][C]148[/C][C] 17[/C][C] 16.21[/C][C] 0.789[/C][/ROW]
[ROW][C]149[/C][C] 18[/C][C] 16.79[/C][C] 1.208[/C][/ROW]
[ROW][C]150[/C][C] 15[/C][C] 15.78[/C][C]-0.7772[/C][/ROW]
[ROW][C]151[/C][C] 16[/C][C] 16.29[/C][C]-0.2876[/C][/ROW]
[ROW][C]152[/C][C] 11[/C][C] 16.4[/C][C]-5.398[/C][/ROW]
[ROW][C]153[/C][C] 15[/C][C] 16.21[/C][C]-1.215[/C][/ROW]
[ROW][C]154[/C][C] 18[/C][C] 16.14[/C][C] 1.858[/C][/ROW]
[ROW][C]155[/C][C] 17[/C][C] 16.76[/C][C] 0.2411[/C][/ROW]
[ROW][C]156[/C][C] 16[/C][C] 16.39[/C][C]-0.3935[/C][/ROW]
[ROW][C]157[/C][C] 12[/C][C] 16.76[/C][C]-4.763[/C][/ROW]
[ROW][C]158[/C][C] 19[/C][C] 16.79[/C][C] 2.208[/C][/ROW]
[ROW][C]159[/C][C] 18[/C][C] 16.25[/C][C] 1.752[/C][/ROW]
[ROW][C]160[/C][C] 15[/C][C] 16.72[/C][C]-1.724[/C][/ROW]
[ROW][C]161[/C][C] 17[/C][C] 16.54[/C][C] 0.4613[/C][/ROW]
[ROW][C]162[/C][C] 19[/C][C] 16.15[/C][C] 2.853[/C][/ROW]
[ROW][C]163[/C][C] 18[/C][C] 16.14[/C][C] 1.857[/C][/ROW]
[ROW][C]164[/C][C] 19[/C][C] 16.4[/C][C] 2.602[/C][/ROW]
[ROW][C]165[/C][C] 16[/C][C] 16.28[/C][C]-0.2819[/C][/ROW]
[ROW][C]166[/C][C] 16[/C][C] 16.84[/C][C]-0.8355[/C][/ROW]
[ROW][C]167[/C][C] 16[/C][C] 16.29[/C][C]-0.2876[/C][/ROW]
[ROW][C]168[/C][C] 14[/C][C] 16.25[/C][C]-2.248[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 16.76-2.759
2 19 16.76 2.241
3 17 16.28 0.7181
4 17 16.25 0.7515
5 15 16.79-1.792
6 20 16.72 3.28
7 15 16.57-1.572
8 19 16.54 2.461
9 15 16.39-1.394
10 15 16.32-1.321
11 19 16.35 2.645
12 16 16.72-0.7157
13 20 16.87 3.131
14 18 16.8 1.202
15 15 16.29-1.288
16 14 16.54-2.541
17 20 16.1 3.897
18 16 16.46-0.4605
19 16 16.65-0.6528
20 16 16.69-0.6863
21 10 15.52-5.52
22 19 15.68 3.325
23 19 16.14 2.862
24 16 16.03-0.03237
25 15 16.21-1.215
26 18 16.72 1.284
27 17 16.29 0.7124
28 19 16.68 2.319
29 17 16.36 0.6414
30 14 16.65-2.649
31 19 16.4 2.602
32 20 16.29 3.712
33 5 16.33-11.33
34 19 16.65 2.351
35 16 16.65-0.6488
36 15 16.62-1.615
37 16 16.65-0.6488
38 18 15.38 2.617
39 16 16.47-0.4687
40 15 16.29-1.288
41 17 15.92 1.078
42 14 16.5-2.5
43 20 16.61 3.394
44 19 16.62 2.385
45 7 16.1-9.105
46 13 16.18-3.176
47 16 16.8-0.7964
48 16 16.69-0.6863
49 16 16.87-0.8689
50 18 16.14 1.862
51 18 16.33 1.675
52 16 16.58-0.5762
53 17 16.58 0.4238
54 19 16.47 2.534
55 16 16.33-0.3267
56 19 16.54 2.461
57 13 16.83-3.826
58 16 16.33-0.3251
59 13 16.25-3.254
60 12 16.5-4.496
61 17 16.24 0.7557
62 17 16.29 0.7124
63 17 16.25 0.7515
64 16 16.47-0.4661
65 16 15.93 0.07357
66 14 15.89-1.891
67 16 16.62-0.6153
68 13 16.5-3.504
69 16 16.4-0.3977
70 14 16.65-2.649
71 20 16.76 3.241
72 12 16.4-4.398
73 13 16.65-3.649
74 18 16.14 1.858
75 14 16.51-2.508
76 19 16.03 2.968
77 18 16.83 1.169
78 14 16.39-2.394
79 18 16.18 1.824
80 19 16.35 2.645
81 15 16.39-1.392
82 14 16.39-2.392
83 17 15.53 1.474
84 19 16.51 2.492
85 13 16.29-3.288
86 19 16.69 2.314
87 18 16.21 1.785
88 20 16.87 3.131
89 15 16.4-1.398
90 15 16.25-1.253
91 15 16.03-1.031
92 20 16.36 3.641
93 15 15.45-0.4495
94 19 16.32 2.679
95 18 16.76 1.241
96 18 15.89 2.107
97 15 16.29-1.288
98 20 16.91 3.092
99 17 15.6 1.401
100 12 16.32-4.323
101 18 16.65 1.351
102 19 16.73 2.275
103 20 16.1 3.901
104 13 16.25-3.248
105 17 16.69 0.3137
106 15 16.65-1.653
107 16 16.4-0.3977
108 18 16.36 1.636
109 18 16.84 1.165
110 14 16.73-2.725
111 15 16.58-1.576
112 12 16.21-4.215
113 17 16.58 0.4238
114 14 16.25-2.253
115 18 16.69 1.314
116 17 16.03 0.9676
117 17 16.84 0.1645
118 20 16.58 3.422
119 16 16.07-0.07149
120 14 16.1-2.105
121 15 16.21-1.215
122 18 16.5 1.496
123 20 16.65 3.347
124 17 16.33 0.6749
125 17 16.33 0.6749
126 17 16.65 0.3512
127 17 16.76 0.2411
128 15 16.39-1.392
129 17 16.29 0.7124
130 18 16.14 1.863
131 17 16.58 0.4196
132 20 16.79 3.208
133 15 16.54-1.543
134 16 16.43-0.4271
135 15 16.29-1.288
136 18 16.25 1.752
137 11 16.4-5.398
138 15 15.96-0.9599
139 18 16.18 1.822
140 20 16.65 3.347
141 19 16.29 2.714
142 14 16.46-2.465
143 16 16.76-0.7629
144 15 15.74-0.7438
145 17 16.18 0.8225
146 18 15.13 2.874
147 20 16.54 3.457
148 17 16.21 0.789
149 18 16.79 1.208
150 15 15.78-0.7772
151 16 16.29-0.2876
152 11 16.4-5.398
153 15 16.21-1.215
154 18 16.14 1.858
155 17 16.76 0.2411
156 16 16.39-0.3935
157 12 16.76-4.763
158 19 16.79 2.208
159 18 16.25 1.752
160 15 16.72-1.724
161 17 16.54 0.4613
162 19 16.15 2.853
163 18 16.14 1.857
164 19 16.4 2.602
165 16 16.28-0.2819
166 16 16.84-0.8355
167 16 16.29-0.2876
168 14 16.25-2.248







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.5433 0.9134 0.4567
9 0.7753 0.4494 0.2247
10 0.6737 0.6527 0.3263
11 0.5882 0.8235 0.4118
12 0.4774 0.9548 0.5226
13 0.4365 0.873 0.5635
14 0.3395 0.679 0.6605
15 0.3452 0.6904 0.6548
16 0.3308 0.6615 0.6692
17 0.2829 0.5658 0.7171
18 0.2161 0.4322 0.7839
19 0.1598 0.3196 0.8402
20 0.117 0.234 0.883
21 0.3662 0.7323 0.6338
22 0.5391 0.9217 0.4609
23 0.5553 0.8894 0.4447
24 0.4846 0.9693 0.5154
25 0.4513 0.9025 0.5487
26 0.401 0.802 0.599
27 0.3401 0.6802 0.6599
28 0.3606 0.7212 0.6394
29 0.3023 0.6046 0.6977
30 0.3365 0.673 0.6635
31 0.3099 0.6198 0.6901
32 0.3375 0.675 0.6625
33 0.9887 0.02257 0.01129
34 0.9866 0.02671 0.01335
35 0.9822 0.03563 0.01781
36 0.9789 0.0422 0.0211
37 0.9721 0.05586 0.02793
38 0.9699 0.06016 0.03008
39 0.9598 0.0803 0.04015
40 0.9526 0.09483 0.04741
41 0.9409 0.1182 0.05912
42 0.9394 0.1212 0.06061
43 0.9444 0.1112 0.05558
44 0.9401 0.1198 0.0599
45 0.9983 0.003366 0.001683
46 0.9985 0.003085 0.001542
47 0.9978 0.004451 0.002225
48 0.9968 0.006365 0.003182
49 0.9956 0.008756 0.004378
50 0.9948 0.01042 0.005211
51 0.9938 0.01239 0.006197
52 0.9915 0.01706 0.008532
53 0.9885 0.02304 0.01152
54 0.9885 0.023 0.0115
55 0.985 0.03006 0.01503
56 0.9841 0.03181 0.0159
57 0.9894 0.02122 0.01061
58 0.9857 0.02857 0.01428
59 0.9883 0.02335 0.01167
60 0.9944 0.01114 0.00557
61 0.9929 0.01429 0.007144
62 0.9904 0.01914 0.00957
63 0.9874 0.0252 0.0126
64 0.9834 0.03329 0.01664
65 0.978 0.04395 0.02197
66 0.9748 0.05042 0.02521
67 0.9678 0.06449 0.03225
68 0.9745 0.05099 0.0255
69 0.9671 0.06587 0.03293
70 0.968 0.06407 0.03203
71 0.9729 0.0542 0.0271
72 0.9839 0.03216 0.01608
73 0.9885 0.02307 0.01154
74 0.987 0.02607 0.01303
75 0.9866 0.02671 0.01335
76 0.988 0.0239 0.01195
77 0.985 0.02995 0.01497
78 0.9848 0.03044 0.01522
79 0.9827 0.0347 0.01735
80 0.983 0.03409 0.01705
81 0.9797 0.04067 0.02034
82 0.9801 0.03987 0.01994
83 0.9764 0.04716 0.02358
84 0.9766 0.04675 0.02338
85 0.9811 0.03785 0.01893
86 0.9801 0.03984 0.01992
87 0.9772 0.04555 0.02278
88 0.9801 0.03972 0.01986
89 0.9762 0.04763 0.02381
90 0.9711 0.05777 0.02889
91 0.9651 0.06972 0.03486
92 0.9731 0.05376 0.02688
93 0.9658 0.06842 0.03421
94 0.9664 0.06721 0.0336
95 0.9592 0.08164 0.04082
96 0.957 0.08605 0.04303
97 0.9487 0.1025 0.05127
98 0.9565 0.08693 0.04346
99 0.9493 0.1015 0.05074
100 0.974 0.0521 0.02605
101 0.9679 0.06415 0.03208
102 0.9675 0.06504 0.03252
103 0.9753 0.0494 0.0247
104 0.9812 0.03751 0.01875
105 0.9751 0.04985 0.02493
106 0.9712 0.05761 0.0288
107 0.9624 0.07519 0.0376
108 0.9584 0.08316 0.04158
109 0.9515 0.09696 0.04848
110 0.9532 0.09365 0.04683
111 0.9489 0.1023 0.05114
112 0.9728 0.05435 0.02718
113 0.9642 0.07157 0.03579
114 0.9646 0.0708 0.0354
115 0.956 0.08796 0.04398
116 0.9439 0.1123 0.05614
117 0.9286 0.1429 0.07145
118 0.945 0.11 0.05502
119 0.9293 0.1413 0.07065
120 0.9324 0.1353 0.06763
121 0.9221 0.1558 0.0779
122 0.904 0.1919 0.09597
123 0.9226 0.1549 0.07745
124 0.9028 0.1945 0.09722
125 0.8795 0.241 0.1205
126 0.8502 0.2997 0.1498
127 0.8174 0.3653 0.1826
128 0.8 0.4 0.2
129 0.7633 0.4734 0.2367
130 0.7249 0.5502 0.2751
131 0.6991 0.6017 0.3009
132 0.744 0.5121 0.256
133 0.7205 0.559 0.2795
134 0.6691 0.6618 0.3309
135 0.6254 0.7492 0.3746
136 0.5841 0.8317 0.4159
137 0.7571 0.4858 0.2429
138 0.7176 0.5647 0.2824
139 0.6799 0.6401 0.3201
140 0.7368 0.5263 0.2632
141 0.738 0.524 0.262
142 0.7371 0.5258 0.2629
143 0.6784 0.6432 0.3216
144 0.6408 0.7184 0.3592
145 0.5729 0.8541 0.4271
146 0.5406 0.9187 0.4594
147 0.6244 0.7512 0.3756
148 0.5502 0.8996 0.4498
149 0.4971 0.9941 0.5029
150 0.4619 0.9239 0.5381
151 0.3808 0.7615 0.6192
152 0.7104 0.5792 0.2896
153 0.6894 0.6212 0.3106
154 0.614 0.772 0.386
155 0.5253 0.9494 0.4747
156 0.4165 0.8331 0.5835
157 0.6457 0.7085 0.3543
158 0.7903 0.4195 0.2097
159 0.7328 0.5344 0.2672
160 0.5729 0.8542 0.4271

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.5433 &  0.9134 &  0.4567 \tabularnewline
9 &  0.7753 &  0.4494 &  0.2247 \tabularnewline
10 &  0.6737 &  0.6527 &  0.3263 \tabularnewline
11 &  0.5882 &  0.8235 &  0.4118 \tabularnewline
12 &  0.4774 &  0.9548 &  0.5226 \tabularnewline
13 &  0.4365 &  0.873 &  0.5635 \tabularnewline
14 &  0.3395 &  0.679 &  0.6605 \tabularnewline
15 &  0.3452 &  0.6904 &  0.6548 \tabularnewline
16 &  0.3308 &  0.6615 &  0.6692 \tabularnewline
17 &  0.2829 &  0.5658 &  0.7171 \tabularnewline
18 &  0.2161 &  0.4322 &  0.7839 \tabularnewline
19 &  0.1598 &  0.3196 &  0.8402 \tabularnewline
20 &  0.117 &  0.234 &  0.883 \tabularnewline
21 &  0.3662 &  0.7323 &  0.6338 \tabularnewline
22 &  0.5391 &  0.9217 &  0.4609 \tabularnewline
23 &  0.5553 &  0.8894 &  0.4447 \tabularnewline
24 &  0.4846 &  0.9693 &  0.5154 \tabularnewline
25 &  0.4513 &  0.9025 &  0.5487 \tabularnewline
26 &  0.401 &  0.802 &  0.599 \tabularnewline
27 &  0.3401 &  0.6802 &  0.6599 \tabularnewline
28 &  0.3606 &  0.7212 &  0.6394 \tabularnewline
29 &  0.3023 &  0.6046 &  0.6977 \tabularnewline
30 &  0.3365 &  0.673 &  0.6635 \tabularnewline
31 &  0.3099 &  0.6198 &  0.6901 \tabularnewline
32 &  0.3375 &  0.675 &  0.6625 \tabularnewline
33 &  0.9887 &  0.02257 &  0.01129 \tabularnewline
34 &  0.9866 &  0.02671 &  0.01335 \tabularnewline
35 &  0.9822 &  0.03563 &  0.01781 \tabularnewline
36 &  0.9789 &  0.0422 &  0.0211 \tabularnewline
37 &  0.9721 &  0.05586 &  0.02793 \tabularnewline
38 &  0.9699 &  0.06016 &  0.03008 \tabularnewline
39 &  0.9598 &  0.0803 &  0.04015 \tabularnewline
40 &  0.9526 &  0.09483 &  0.04741 \tabularnewline
41 &  0.9409 &  0.1182 &  0.05912 \tabularnewline
42 &  0.9394 &  0.1212 &  0.06061 \tabularnewline
43 &  0.9444 &  0.1112 &  0.05558 \tabularnewline
44 &  0.9401 &  0.1198 &  0.0599 \tabularnewline
45 &  0.9983 &  0.003366 &  0.001683 \tabularnewline
46 &  0.9985 &  0.003085 &  0.001542 \tabularnewline
47 &  0.9978 &  0.004451 &  0.002225 \tabularnewline
48 &  0.9968 &  0.006365 &  0.003182 \tabularnewline
49 &  0.9956 &  0.008756 &  0.004378 \tabularnewline
50 &  0.9948 &  0.01042 &  0.005211 \tabularnewline
51 &  0.9938 &  0.01239 &  0.006197 \tabularnewline
52 &  0.9915 &  0.01706 &  0.008532 \tabularnewline
53 &  0.9885 &  0.02304 &  0.01152 \tabularnewline
54 &  0.9885 &  0.023 &  0.0115 \tabularnewline
55 &  0.985 &  0.03006 &  0.01503 \tabularnewline
56 &  0.9841 &  0.03181 &  0.0159 \tabularnewline
57 &  0.9894 &  0.02122 &  0.01061 \tabularnewline
58 &  0.9857 &  0.02857 &  0.01428 \tabularnewline
59 &  0.9883 &  0.02335 &  0.01167 \tabularnewline
60 &  0.9944 &  0.01114 &  0.00557 \tabularnewline
61 &  0.9929 &  0.01429 &  0.007144 \tabularnewline
62 &  0.9904 &  0.01914 &  0.00957 \tabularnewline
63 &  0.9874 &  0.0252 &  0.0126 \tabularnewline
64 &  0.9834 &  0.03329 &  0.01664 \tabularnewline
65 &  0.978 &  0.04395 &  0.02197 \tabularnewline
66 &  0.9748 &  0.05042 &  0.02521 \tabularnewline
67 &  0.9678 &  0.06449 &  0.03225 \tabularnewline
68 &  0.9745 &  0.05099 &  0.0255 \tabularnewline
69 &  0.9671 &  0.06587 &  0.03293 \tabularnewline
70 &  0.968 &  0.06407 &  0.03203 \tabularnewline
71 &  0.9729 &  0.0542 &  0.0271 \tabularnewline
72 &  0.9839 &  0.03216 &  0.01608 \tabularnewline
73 &  0.9885 &  0.02307 &  0.01154 \tabularnewline
74 &  0.987 &  0.02607 &  0.01303 \tabularnewline
75 &  0.9866 &  0.02671 &  0.01335 \tabularnewline
76 &  0.988 &  0.0239 &  0.01195 \tabularnewline
77 &  0.985 &  0.02995 &  0.01497 \tabularnewline
78 &  0.9848 &  0.03044 &  0.01522 \tabularnewline
79 &  0.9827 &  0.0347 &  0.01735 \tabularnewline
80 &  0.983 &  0.03409 &  0.01705 \tabularnewline
81 &  0.9797 &  0.04067 &  0.02034 \tabularnewline
82 &  0.9801 &  0.03987 &  0.01994 \tabularnewline
83 &  0.9764 &  0.04716 &  0.02358 \tabularnewline
84 &  0.9766 &  0.04675 &  0.02338 \tabularnewline
85 &  0.9811 &  0.03785 &  0.01893 \tabularnewline
86 &  0.9801 &  0.03984 &  0.01992 \tabularnewline
87 &  0.9772 &  0.04555 &  0.02278 \tabularnewline
88 &  0.9801 &  0.03972 &  0.01986 \tabularnewline
89 &  0.9762 &  0.04763 &  0.02381 \tabularnewline
90 &  0.9711 &  0.05777 &  0.02889 \tabularnewline
91 &  0.9651 &  0.06972 &  0.03486 \tabularnewline
92 &  0.9731 &  0.05376 &  0.02688 \tabularnewline
93 &  0.9658 &  0.06842 &  0.03421 \tabularnewline
94 &  0.9664 &  0.06721 &  0.0336 \tabularnewline
95 &  0.9592 &  0.08164 &  0.04082 \tabularnewline
96 &  0.957 &  0.08605 &  0.04303 \tabularnewline
97 &  0.9487 &  0.1025 &  0.05127 \tabularnewline
98 &  0.9565 &  0.08693 &  0.04346 \tabularnewline
99 &  0.9493 &  0.1015 &  0.05074 \tabularnewline
100 &  0.974 &  0.0521 &  0.02605 \tabularnewline
101 &  0.9679 &  0.06415 &  0.03208 \tabularnewline
102 &  0.9675 &  0.06504 &  0.03252 \tabularnewline
103 &  0.9753 &  0.0494 &  0.0247 \tabularnewline
104 &  0.9812 &  0.03751 &  0.01875 \tabularnewline
105 &  0.9751 &  0.04985 &  0.02493 \tabularnewline
106 &  0.9712 &  0.05761 &  0.0288 \tabularnewline
107 &  0.9624 &  0.07519 &  0.0376 \tabularnewline
108 &  0.9584 &  0.08316 &  0.04158 \tabularnewline
109 &  0.9515 &  0.09696 &  0.04848 \tabularnewline
110 &  0.9532 &  0.09365 &  0.04683 \tabularnewline
111 &  0.9489 &  0.1023 &  0.05114 \tabularnewline
112 &  0.9728 &  0.05435 &  0.02718 \tabularnewline
113 &  0.9642 &  0.07157 &  0.03579 \tabularnewline
114 &  0.9646 &  0.0708 &  0.0354 \tabularnewline
115 &  0.956 &  0.08796 &  0.04398 \tabularnewline
116 &  0.9439 &  0.1123 &  0.05614 \tabularnewline
117 &  0.9286 &  0.1429 &  0.07145 \tabularnewline
118 &  0.945 &  0.11 &  0.05502 \tabularnewline
119 &  0.9293 &  0.1413 &  0.07065 \tabularnewline
120 &  0.9324 &  0.1353 &  0.06763 \tabularnewline
121 &  0.9221 &  0.1558 &  0.0779 \tabularnewline
122 &  0.904 &  0.1919 &  0.09597 \tabularnewline
123 &  0.9226 &  0.1549 &  0.07745 \tabularnewline
124 &  0.9028 &  0.1945 &  0.09722 \tabularnewline
125 &  0.8795 &  0.241 &  0.1205 \tabularnewline
126 &  0.8502 &  0.2997 &  0.1498 \tabularnewline
127 &  0.8174 &  0.3653 &  0.1826 \tabularnewline
128 &  0.8 &  0.4 &  0.2 \tabularnewline
129 &  0.7633 &  0.4734 &  0.2367 \tabularnewline
130 &  0.7249 &  0.5502 &  0.2751 \tabularnewline
131 &  0.6991 &  0.6017 &  0.3009 \tabularnewline
132 &  0.744 &  0.5121 &  0.256 \tabularnewline
133 &  0.7205 &  0.559 &  0.2795 \tabularnewline
134 &  0.6691 &  0.6618 &  0.3309 \tabularnewline
135 &  0.6254 &  0.7492 &  0.3746 \tabularnewline
136 &  0.5841 &  0.8317 &  0.4159 \tabularnewline
137 &  0.7571 &  0.4858 &  0.2429 \tabularnewline
138 &  0.7176 &  0.5647 &  0.2824 \tabularnewline
139 &  0.6799 &  0.6401 &  0.3201 \tabularnewline
140 &  0.7368 &  0.5263 &  0.2632 \tabularnewline
141 &  0.738 &  0.524 &  0.262 \tabularnewline
142 &  0.7371 &  0.5258 &  0.2629 \tabularnewline
143 &  0.6784 &  0.6432 &  0.3216 \tabularnewline
144 &  0.6408 &  0.7184 &  0.3592 \tabularnewline
145 &  0.5729 &  0.8541 &  0.4271 \tabularnewline
146 &  0.5406 &  0.9187 &  0.4594 \tabularnewline
147 &  0.6244 &  0.7512 &  0.3756 \tabularnewline
148 &  0.5502 &  0.8996 &  0.4498 \tabularnewline
149 &  0.4971 &  0.9941 &  0.5029 \tabularnewline
150 &  0.4619 &  0.9239 &  0.5381 \tabularnewline
151 &  0.3808 &  0.7615 &  0.6192 \tabularnewline
152 &  0.7104 &  0.5792 &  0.2896 \tabularnewline
153 &  0.6894 &  0.6212 &  0.3106 \tabularnewline
154 &  0.614 &  0.772 &  0.386 \tabularnewline
155 &  0.5253 &  0.9494 &  0.4747 \tabularnewline
156 &  0.4165 &  0.8331 &  0.5835 \tabularnewline
157 &  0.6457 &  0.7085 &  0.3543 \tabularnewline
158 &  0.7903 &  0.4195 &  0.2097 \tabularnewline
159 &  0.7328 &  0.5344 &  0.2672 \tabularnewline
160 &  0.5729 &  0.8542 &  0.4271 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.5433[/C][C] 0.9134[/C][C] 0.4567[/C][/ROW]
[ROW][C]9[/C][C] 0.7753[/C][C] 0.4494[/C][C] 0.2247[/C][/ROW]
[ROW][C]10[/C][C] 0.6737[/C][C] 0.6527[/C][C] 0.3263[/C][/ROW]
[ROW][C]11[/C][C] 0.5882[/C][C] 0.8235[/C][C] 0.4118[/C][/ROW]
[ROW][C]12[/C][C] 0.4774[/C][C] 0.9548[/C][C] 0.5226[/C][/ROW]
[ROW][C]13[/C][C] 0.4365[/C][C] 0.873[/C][C] 0.5635[/C][/ROW]
[ROW][C]14[/C][C] 0.3395[/C][C] 0.679[/C][C] 0.6605[/C][/ROW]
[ROW][C]15[/C][C] 0.3452[/C][C] 0.6904[/C][C] 0.6548[/C][/ROW]
[ROW][C]16[/C][C] 0.3308[/C][C] 0.6615[/C][C] 0.6692[/C][/ROW]
[ROW][C]17[/C][C] 0.2829[/C][C] 0.5658[/C][C] 0.7171[/C][/ROW]
[ROW][C]18[/C][C] 0.2161[/C][C] 0.4322[/C][C] 0.7839[/C][/ROW]
[ROW][C]19[/C][C] 0.1598[/C][C] 0.3196[/C][C] 0.8402[/C][/ROW]
[ROW][C]20[/C][C] 0.117[/C][C] 0.234[/C][C] 0.883[/C][/ROW]
[ROW][C]21[/C][C] 0.3662[/C][C] 0.7323[/C][C] 0.6338[/C][/ROW]
[ROW][C]22[/C][C] 0.5391[/C][C] 0.9217[/C][C] 0.4609[/C][/ROW]
[ROW][C]23[/C][C] 0.5553[/C][C] 0.8894[/C][C] 0.4447[/C][/ROW]
[ROW][C]24[/C][C] 0.4846[/C][C] 0.9693[/C][C] 0.5154[/C][/ROW]
[ROW][C]25[/C][C] 0.4513[/C][C] 0.9025[/C][C] 0.5487[/C][/ROW]
[ROW][C]26[/C][C] 0.401[/C][C] 0.802[/C][C] 0.599[/C][/ROW]
[ROW][C]27[/C][C] 0.3401[/C][C] 0.6802[/C][C] 0.6599[/C][/ROW]
[ROW][C]28[/C][C] 0.3606[/C][C] 0.7212[/C][C] 0.6394[/C][/ROW]
[ROW][C]29[/C][C] 0.3023[/C][C] 0.6046[/C][C] 0.6977[/C][/ROW]
[ROW][C]30[/C][C] 0.3365[/C][C] 0.673[/C][C] 0.6635[/C][/ROW]
[ROW][C]31[/C][C] 0.3099[/C][C] 0.6198[/C][C] 0.6901[/C][/ROW]
[ROW][C]32[/C][C] 0.3375[/C][C] 0.675[/C][C] 0.6625[/C][/ROW]
[ROW][C]33[/C][C] 0.9887[/C][C] 0.02257[/C][C] 0.01129[/C][/ROW]
[ROW][C]34[/C][C] 0.9866[/C][C] 0.02671[/C][C] 0.01335[/C][/ROW]
[ROW][C]35[/C][C] 0.9822[/C][C] 0.03563[/C][C] 0.01781[/C][/ROW]
[ROW][C]36[/C][C] 0.9789[/C][C] 0.0422[/C][C] 0.0211[/C][/ROW]
[ROW][C]37[/C][C] 0.9721[/C][C] 0.05586[/C][C] 0.02793[/C][/ROW]
[ROW][C]38[/C][C] 0.9699[/C][C] 0.06016[/C][C] 0.03008[/C][/ROW]
[ROW][C]39[/C][C] 0.9598[/C][C] 0.0803[/C][C] 0.04015[/C][/ROW]
[ROW][C]40[/C][C] 0.9526[/C][C] 0.09483[/C][C] 0.04741[/C][/ROW]
[ROW][C]41[/C][C] 0.9409[/C][C] 0.1182[/C][C] 0.05912[/C][/ROW]
[ROW][C]42[/C][C] 0.9394[/C][C] 0.1212[/C][C] 0.06061[/C][/ROW]
[ROW][C]43[/C][C] 0.9444[/C][C] 0.1112[/C][C] 0.05558[/C][/ROW]
[ROW][C]44[/C][C] 0.9401[/C][C] 0.1198[/C][C] 0.0599[/C][/ROW]
[ROW][C]45[/C][C] 0.9983[/C][C] 0.003366[/C][C] 0.001683[/C][/ROW]
[ROW][C]46[/C][C] 0.9985[/C][C] 0.003085[/C][C] 0.001542[/C][/ROW]
[ROW][C]47[/C][C] 0.9978[/C][C] 0.004451[/C][C] 0.002225[/C][/ROW]
[ROW][C]48[/C][C] 0.9968[/C][C] 0.006365[/C][C] 0.003182[/C][/ROW]
[ROW][C]49[/C][C] 0.9956[/C][C] 0.008756[/C][C] 0.004378[/C][/ROW]
[ROW][C]50[/C][C] 0.9948[/C][C] 0.01042[/C][C] 0.005211[/C][/ROW]
[ROW][C]51[/C][C] 0.9938[/C][C] 0.01239[/C][C] 0.006197[/C][/ROW]
[ROW][C]52[/C][C] 0.9915[/C][C] 0.01706[/C][C] 0.008532[/C][/ROW]
[ROW][C]53[/C][C] 0.9885[/C][C] 0.02304[/C][C] 0.01152[/C][/ROW]
[ROW][C]54[/C][C] 0.9885[/C][C] 0.023[/C][C] 0.0115[/C][/ROW]
[ROW][C]55[/C][C] 0.985[/C][C] 0.03006[/C][C] 0.01503[/C][/ROW]
[ROW][C]56[/C][C] 0.9841[/C][C] 0.03181[/C][C] 0.0159[/C][/ROW]
[ROW][C]57[/C][C] 0.9894[/C][C] 0.02122[/C][C] 0.01061[/C][/ROW]
[ROW][C]58[/C][C] 0.9857[/C][C] 0.02857[/C][C] 0.01428[/C][/ROW]
[ROW][C]59[/C][C] 0.9883[/C][C] 0.02335[/C][C] 0.01167[/C][/ROW]
[ROW][C]60[/C][C] 0.9944[/C][C] 0.01114[/C][C] 0.00557[/C][/ROW]
[ROW][C]61[/C][C] 0.9929[/C][C] 0.01429[/C][C] 0.007144[/C][/ROW]
[ROW][C]62[/C][C] 0.9904[/C][C] 0.01914[/C][C] 0.00957[/C][/ROW]
[ROW][C]63[/C][C] 0.9874[/C][C] 0.0252[/C][C] 0.0126[/C][/ROW]
[ROW][C]64[/C][C] 0.9834[/C][C] 0.03329[/C][C] 0.01664[/C][/ROW]
[ROW][C]65[/C][C] 0.978[/C][C] 0.04395[/C][C] 0.02197[/C][/ROW]
[ROW][C]66[/C][C] 0.9748[/C][C] 0.05042[/C][C] 0.02521[/C][/ROW]
[ROW][C]67[/C][C] 0.9678[/C][C] 0.06449[/C][C] 0.03225[/C][/ROW]
[ROW][C]68[/C][C] 0.9745[/C][C] 0.05099[/C][C] 0.0255[/C][/ROW]
[ROW][C]69[/C][C] 0.9671[/C][C] 0.06587[/C][C] 0.03293[/C][/ROW]
[ROW][C]70[/C][C] 0.968[/C][C] 0.06407[/C][C] 0.03203[/C][/ROW]
[ROW][C]71[/C][C] 0.9729[/C][C] 0.0542[/C][C] 0.0271[/C][/ROW]
[ROW][C]72[/C][C] 0.9839[/C][C] 0.03216[/C][C] 0.01608[/C][/ROW]
[ROW][C]73[/C][C] 0.9885[/C][C] 0.02307[/C][C] 0.01154[/C][/ROW]
[ROW][C]74[/C][C] 0.987[/C][C] 0.02607[/C][C] 0.01303[/C][/ROW]
[ROW][C]75[/C][C] 0.9866[/C][C] 0.02671[/C][C] 0.01335[/C][/ROW]
[ROW][C]76[/C][C] 0.988[/C][C] 0.0239[/C][C] 0.01195[/C][/ROW]
[ROW][C]77[/C][C] 0.985[/C][C] 0.02995[/C][C] 0.01497[/C][/ROW]
[ROW][C]78[/C][C] 0.9848[/C][C] 0.03044[/C][C] 0.01522[/C][/ROW]
[ROW][C]79[/C][C] 0.9827[/C][C] 0.0347[/C][C] 0.01735[/C][/ROW]
[ROW][C]80[/C][C] 0.983[/C][C] 0.03409[/C][C] 0.01705[/C][/ROW]
[ROW][C]81[/C][C] 0.9797[/C][C] 0.04067[/C][C] 0.02034[/C][/ROW]
[ROW][C]82[/C][C] 0.9801[/C][C] 0.03987[/C][C] 0.01994[/C][/ROW]
[ROW][C]83[/C][C] 0.9764[/C][C] 0.04716[/C][C] 0.02358[/C][/ROW]
[ROW][C]84[/C][C] 0.9766[/C][C] 0.04675[/C][C] 0.02338[/C][/ROW]
[ROW][C]85[/C][C] 0.9811[/C][C] 0.03785[/C][C] 0.01893[/C][/ROW]
[ROW][C]86[/C][C] 0.9801[/C][C] 0.03984[/C][C] 0.01992[/C][/ROW]
[ROW][C]87[/C][C] 0.9772[/C][C] 0.04555[/C][C] 0.02278[/C][/ROW]
[ROW][C]88[/C][C] 0.9801[/C][C] 0.03972[/C][C] 0.01986[/C][/ROW]
[ROW][C]89[/C][C] 0.9762[/C][C] 0.04763[/C][C] 0.02381[/C][/ROW]
[ROW][C]90[/C][C] 0.9711[/C][C] 0.05777[/C][C] 0.02889[/C][/ROW]
[ROW][C]91[/C][C] 0.9651[/C][C] 0.06972[/C][C] 0.03486[/C][/ROW]
[ROW][C]92[/C][C] 0.9731[/C][C] 0.05376[/C][C] 0.02688[/C][/ROW]
[ROW][C]93[/C][C] 0.9658[/C][C] 0.06842[/C][C] 0.03421[/C][/ROW]
[ROW][C]94[/C][C] 0.9664[/C][C] 0.06721[/C][C] 0.0336[/C][/ROW]
[ROW][C]95[/C][C] 0.9592[/C][C] 0.08164[/C][C] 0.04082[/C][/ROW]
[ROW][C]96[/C][C] 0.957[/C][C] 0.08605[/C][C] 0.04303[/C][/ROW]
[ROW][C]97[/C][C] 0.9487[/C][C] 0.1025[/C][C] 0.05127[/C][/ROW]
[ROW][C]98[/C][C] 0.9565[/C][C] 0.08693[/C][C] 0.04346[/C][/ROW]
[ROW][C]99[/C][C] 0.9493[/C][C] 0.1015[/C][C] 0.05074[/C][/ROW]
[ROW][C]100[/C][C] 0.974[/C][C] 0.0521[/C][C] 0.02605[/C][/ROW]
[ROW][C]101[/C][C] 0.9679[/C][C] 0.06415[/C][C] 0.03208[/C][/ROW]
[ROW][C]102[/C][C] 0.9675[/C][C] 0.06504[/C][C] 0.03252[/C][/ROW]
[ROW][C]103[/C][C] 0.9753[/C][C] 0.0494[/C][C] 0.0247[/C][/ROW]
[ROW][C]104[/C][C] 0.9812[/C][C] 0.03751[/C][C] 0.01875[/C][/ROW]
[ROW][C]105[/C][C] 0.9751[/C][C] 0.04985[/C][C] 0.02493[/C][/ROW]
[ROW][C]106[/C][C] 0.9712[/C][C] 0.05761[/C][C] 0.0288[/C][/ROW]
[ROW][C]107[/C][C] 0.9624[/C][C] 0.07519[/C][C] 0.0376[/C][/ROW]
[ROW][C]108[/C][C] 0.9584[/C][C] 0.08316[/C][C] 0.04158[/C][/ROW]
[ROW][C]109[/C][C] 0.9515[/C][C] 0.09696[/C][C] 0.04848[/C][/ROW]
[ROW][C]110[/C][C] 0.9532[/C][C] 0.09365[/C][C] 0.04683[/C][/ROW]
[ROW][C]111[/C][C] 0.9489[/C][C] 0.1023[/C][C] 0.05114[/C][/ROW]
[ROW][C]112[/C][C] 0.9728[/C][C] 0.05435[/C][C] 0.02718[/C][/ROW]
[ROW][C]113[/C][C] 0.9642[/C][C] 0.07157[/C][C] 0.03579[/C][/ROW]
[ROW][C]114[/C][C] 0.9646[/C][C] 0.0708[/C][C] 0.0354[/C][/ROW]
[ROW][C]115[/C][C] 0.956[/C][C] 0.08796[/C][C] 0.04398[/C][/ROW]
[ROW][C]116[/C][C] 0.9439[/C][C] 0.1123[/C][C] 0.05614[/C][/ROW]
[ROW][C]117[/C][C] 0.9286[/C][C] 0.1429[/C][C] 0.07145[/C][/ROW]
[ROW][C]118[/C][C] 0.945[/C][C] 0.11[/C][C] 0.05502[/C][/ROW]
[ROW][C]119[/C][C] 0.9293[/C][C] 0.1413[/C][C] 0.07065[/C][/ROW]
[ROW][C]120[/C][C] 0.9324[/C][C] 0.1353[/C][C] 0.06763[/C][/ROW]
[ROW][C]121[/C][C] 0.9221[/C][C] 0.1558[/C][C] 0.0779[/C][/ROW]
[ROW][C]122[/C][C] 0.904[/C][C] 0.1919[/C][C] 0.09597[/C][/ROW]
[ROW][C]123[/C][C] 0.9226[/C][C] 0.1549[/C][C] 0.07745[/C][/ROW]
[ROW][C]124[/C][C] 0.9028[/C][C] 0.1945[/C][C] 0.09722[/C][/ROW]
[ROW][C]125[/C][C] 0.8795[/C][C] 0.241[/C][C] 0.1205[/C][/ROW]
[ROW][C]126[/C][C] 0.8502[/C][C] 0.2997[/C][C] 0.1498[/C][/ROW]
[ROW][C]127[/C][C] 0.8174[/C][C] 0.3653[/C][C] 0.1826[/C][/ROW]
[ROW][C]128[/C][C] 0.8[/C][C] 0.4[/C][C] 0.2[/C][/ROW]
[ROW][C]129[/C][C] 0.7633[/C][C] 0.4734[/C][C] 0.2367[/C][/ROW]
[ROW][C]130[/C][C] 0.7249[/C][C] 0.5502[/C][C] 0.2751[/C][/ROW]
[ROW][C]131[/C][C] 0.6991[/C][C] 0.6017[/C][C] 0.3009[/C][/ROW]
[ROW][C]132[/C][C] 0.744[/C][C] 0.5121[/C][C] 0.256[/C][/ROW]
[ROW][C]133[/C][C] 0.7205[/C][C] 0.559[/C][C] 0.2795[/C][/ROW]
[ROW][C]134[/C][C] 0.6691[/C][C] 0.6618[/C][C] 0.3309[/C][/ROW]
[ROW][C]135[/C][C] 0.6254[/C][C] 0.7492[/C][C] 0.3746[/C][/ROW]
[ROW][C]136[/C][C] 0.5841[/C][C] 0.8317[/C][C] 0.4159[/C][/ROW]
[ROW][C]137[/C][C] 0.7571[/C][C] 0.4858[/C][C] 0.2429[/C][/ROW]
[ROW][C]138[/C][C] 0.7176[/C][C] 0.5647[/C][C] 0.2824[/C][/ROW]
[ROW][C]139[/C][C] 0.6799[/C][C] 0.6401[/C][C] 0.3201[/C][/ROW]
[ROW][C]140[/C][C] 0.7368[/C][C] 0.5263[/C][C] 0.2632[/C][/ROW]
[ROW][C]141[/C][C] 0.738[/C][C] 0.524[/C][C] 0.262[/C][/ROW]
[ROW][C]142[/C][C] 0.7371[/C][C] 0.5258[/C][C] 0.2629[/C][/ROW]
[ROW][C]143[/C][C] 0.6784[/C][C] 0.6432[/C][C] 0.3216[/C][/ROW]
[ROW][C]144[/C][C] 0.6408[/C][C] 0.7184[/C][C] 0.3592[/C][/ROW]
[ROW][C]145[/C][C] 0.5729[/C][C] 0.8541[/C][C] 0.4271[/C][/ROW]
[ROW][C]146[/C][C] 0.5406[/C][C] 0.9187[/C][C] 0.4594[/C][/ROW]
[ROW][C]147[/C][C] 0.6244[/C][C] 0.7512[/C][C] 0.3756[/C][/ROW]
[ROW][C]148[/C][C] 0.5502[/C][C] 0.8996[/C][C] 0.4498[/C][/ROW]
[ROW][C]149[/C][C] 0.4971[/C][C] 0.9941[/C][C] 0.5029[/C][/ROW]
[ROW][C]150[/C][C] 0.4619[/C][C] 0.9239[/C][C] 0.5381[/C][/ROW]
[ROW][C]151[/C][C] 0.3808[/C][C] 0.7615[/C][C] 0.6192[/C][/ROW]
[ROW][C]152[/C][C] 0.7104[/C][C] 0.5792[/C][C] 0.2896[/C][/ROW]
[ROW][C]153[/C][C] 0.6894[/C][C] 0.6212[/C][C] 0.3106[/C][/ROW]
[ROW][C]154[/C][C] 0.614[/C][C] 0.772[/C][C] 0.386[/C][/ROW]
[ROW][C]155[/C][C] 0.5253[/C][C] 0.9494[/C][C] 0.4747[/C][/ROW]
[ROW][C]156[/C][C] 0.4165[/C][C] 0.8331[/C][C] 0.5835[/C][/ROW]
[ROW][C]157[/C][C] 0.6457[/C][C] 0.7085[/C][C] 0.3543[/C][/ROW]
[ROW][C]158[/C][C] 0.7903[/C][C] 0.4195[/C][C] 0.2097[/C][/ROW]
[ROW][C]159[/C][C] 0.7328[/C][C] 0.5344[/C][C] 0.2672[/C][/ROW]
[ROW][C]160[/C][C] 0.5729[/C][C] 0.8542[/C][C] 0.4271[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.5433 0.9134 0.4567
9 0.7753 0.4494 0.2247
10 0.6737 0.6527 0.3263
11 0.5882 0.8235 0.4118
12 0.4774 0.9548 0.5226
13 0.4365 0.873 0.5635
14 0.3395 0.679 0.6605
15 0.3452 0.6904 0.6548
16 0.3308 0.6615 0.6692
17 0.2829 0.5658 0.7171
18 0.2161 0.4322 0.7839
19 0.1598 0.3196 0.8402
20 0.117 0.234 0.883
21 0.3662 0.7323 0.6338
22 0.5391 0.9217 0.4609
23 0.5553 0.8894 0.4447
24 0.4846 0.9693 0.5154
25 0.4513 0.9025 0.5487
26 0.401 0.802 0.599
27 0.3401 0.6802 0.6599
28 0.3606 0.7212 0.6394
29 0.3023 0.6046 0.6977
30 0.3365 0.673 0.6635
31 0.3099 0.6198 0.6901
32 0.3375 0.675 0.6625
33 0.9887 0.02257 0.01129
34 0.9866 0.02671 0.01335
35 0.9822 0.03563 0.01781
36 0.9789 0.0422 0.0211
37 0.9721 0.05586 0.02793
38 0.9699 0.06016 0.03008
39 0.9598 0.0803 0.04015
40 0.9526 0.09483 0.04741
41 0.9409 0.1182 0.05912
42 0.9394 0.1212 0.06061
43 0.9444 0.1112 0.05558
44 0.9401 0.1198 0.0599
45 0.9983 0.003366 0.001683
46 0.9985 0.003085 0.001542
47 0.9978 0.004451 0.002225
48 0.9968 0.006365 0.003182
49 0.9956 0.008756 0.004378
50 0.9948 0.01042 0.005211
51 0.9938 0.01239 0.006197
52 0.9915 0.01706 0.008532
53 0.9885 0.02304 0.01152
54 0.9885 0.023 0.0115
55 0.985 0.03006 0.01503
56 0.9841 0.03181 0.0159
57 0.9894 0.02122 0.01061
58 0.9857 0.02857 0.01428
59 0.9883 0.02335 0.01167
60 0.9944 0.01114 0.00557
61 0.9929 0.01429 0.007144
62 0.9904 0.01914 0.00957
63 0.9874 0.0252 0.0126
64 0.9834 0.03329 0.01664
65 0.978 0.04395 0.02197
66 0.9748 0.05042 0.02521
67 0.9678 0.06449 0.03225
68 0.9745 0.05099 0.0255
69 0.9671 0.06587 0.03293
70 0.968 0.06407 0.03203
71 0.9729 0.0542 0.0271
72 0.9839 0.03216 0.01608
73 0.9885 0.02307 0.01154
74 0.987 0.02607 0.01303
75 0.9866 0.02671 0.01335
76 0.988 0.0239 0.01195
77 0.985 0.02995 0.01497
78 0.9848 0.03044 0.01522
79 0.9827 0.0347 0.01735
80 0.983 0.03409 0.01705
81 0.9797 0.04067 0.02034
82 0.9801 0.03987 0.01994
83 0.9764 0.04716 0.02358
84 0.9766 0.04675 0.02338
85 0.9811 0.03785 0.01893
86 0.9801 0.03984 0.01992
87 0.9772 0.04555 0.02278
88 0.9801 0.03972 0.01986
89 0.9762 0.04763 0.02381
90 0.9711 0.05777 0.02889
91 0.9651 0.06972 0.03486
92 0.9731 0.05376 0.02688
93 0.9658 0.06842 0.03421
94 0.9664 0.06721 0.0336
95 0.9592 0.08164 0.04082
96 0.957 0.08605 0.04303
97 0.9487 0.1025 0.05127
98 0.9565 0.08693 0.04346
99 0.9493 0.1015 0.05074
100 0.974 0.0521 0.02605
101 0.9679 0.06415 0.03208
102 0.9675 0.06504 0.03252
103 0.9753 0.0494 0.0247
104 0.9812 0.03751 0.01875
105 0.9751 0.04985 0.02493
106 0.9712 0.05761 0.0288
107 0.9624 0.07519 0.0376
108 0.9584 0.08316 0.04158
109 0.9515 0.09696 0.04848
110 0.9532 0.09365 0.04683
111 0.9489 0.1023 0.05114
112 0.9728 0.05435 0.02718
113 0.9642 0.07157 0.03579
114 0.9646 0.0708 0.0354
115 0.956 0.08796 0.04398
116 0.9439 0.1123 0.05614
117 0.9286 0.1429 0.07145
118 0.945 0.11 0.05502
119 0.9293 0.1413 0.07065
120 0.9324 0.1353 0.06763
121 0.9221 0.1558 0.0779
122 0.904 0.1919 0.09597
123 0.9226 0.1549 0.07745
124 0.9028 0.1945 0.09722
125 0.8795 0.241 0.1205
126 0.8502 0.2997 0.1498
127 0.8174 0.3653 0.1826
128 0.8 0.4 0.2
129 0.7633 0.4734 0.2367
130 0.7249 0.5502 0.2751
131 0.6991 0.6017 0.3009
132 0.744 0.5121 0.256
133 0.7205 0.559 0.2795
134 0.6691 0.6618 0.3309
135 0.6254 0.7492 0.3746
136 0.5841 0.8317 0.4159
137 0.7571 0.4858 0.2429
138 0.7176 0.5647 0.2824
139 0.6799 0.6401 0.3201
140 0.7368 0.5263 0.2632
141 0.738 0.524 0.262
142 0.7371 0.5258 0.2629
143 0.6784 0.6432 0.3216
144 0.6408 0.7184 0.3592
145 0.5729 0.8541 0.4271
146 0.5406 0.9187 0.4594
147 0.6244 0.7512 0.3756
148 0.5502 0.8996 0.4498
149 0.4971 0.9941 0.5029
150 0.4619 0.9239 0.5381
151 0.3808 0.7615 0.6192
152 0.7104 0.5792 0.2896
153 0.6894 0.6212 0.3106
154 0.614 0.772 0.386
155 0.5253 0.9494 0.4747
156 0.4165 0.8331 0.5835
157 0.6457 0.7085 0.3543
158 0.7903 0.4195 0.2097
159 0.7328 0.5344 0.2672
160 0.5729 0.8542 0.4271







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level5 0.03268NOK
5% type I error level460.300654NOK
10% type I error level760.496732NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 5 &  0.03268 & NOK \tabularnewline
5% type I error level & 46 & 0.300654 & NOK \tabularnewline
10% type I error level & 76 & 0.496732 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]5[/C][C] 0.03268[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]46[/C][C]0.300654[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]76[/C][C]0.496732[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level5 0.03268NOK
5% type I error level460.300654NOK
10% type I error level760.496732NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1717, df1 = 2, df2 = 161, p-value = 0.1173
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.1026, df1 = 8, df2 = 155, p-value = 0.03863
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.5274, df1 = 2, df2 = 161, p-value = 0.2202

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1717, df1 = 2, df2 = 161, p-value = 0.1173
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.1026, df1 = 8, df2 = 155, p-value = 0.03863
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.5274, df1 = 2, df2 = 161, p-value = 0.2202
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1717, df1 = 2, df2 = 161, p-value = 0.1173
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.1026, df1 = 8, df2 = 155, p-value = 0.03863
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.5274, df1 = 2, df2 = 161, p-value = 0.2202
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1717, df1 = 2, df2 = 161, p-value = 0.1173
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.1026, df1 = 8, df2 = 155, p-value = 0.03863
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.5274, df1 = 2, df2 = 161, p-value = 0.2202







Variance Inflation Factors (Multicollinearity)
> vif
   KVDD1    KVVD2    KVVD3    KVDD4 
1.141081 1.064463 1.077699 1.144094 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
   KVDD1    KVVD2    KVVD3    KVDD4 
1.141081 1.064463 1.077699 1.144094 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
   KVDD1    KVVD2    KVVD3    KVDD4 
1.141081 1.064463 1.077699 1.144094 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
   KVDD1    KVVD2    KVVD3    KVDD4 
1.141081 1.064463 1.077699 1.144094 



Parameters (Session):
par1 = 55555pearson5 ; par2 = Include Quarterly DummiesDo not include Seasonal DummiesDo not include Seasonal DummiesDo not include Seasonal DummiesDo not include Seasonal DummiesDo not include Seasonal DummiesDo not include Seasonal DummiesDo not include Seasonal Dummies ; par3 = No Linear TrendNo Linear TrendNo Linear TrendNo Linear TrendNo Linear TrendNo Linear TrendNo Linear TrendNo Linear Trend ; par4 = 00000000 ; par5 = 00000000 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')