Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationFri, 09 Dec 2016 15:19:28 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t1481293177or0j5t9ng9tptg6.htm/, Retrieved Fri, 01 Nov 2024 04:29:43 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:29:43 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
5	4	4	4	14
5	NA	4	4	19
4	3	3	2	17
4	3	3	3	17
5	4	4	3	15
5	3	4	3	20
5	4	2	3	15
5	4	2	4	19
5	2	2	4	15
5	1	2	4	15
4	4	3	2	19
5	4	3	2	NA
5	4	5	4	20
5	5	4	5	18
4	4	3	4	15
5	1	4	4	14
3	4	4	2	20
5	4	NA	NA	NA
5	2	NA	2	16
5	3	4	5	16
5	3	NA	4	16
NA	2	3	1	10
3	1	3	5	19
4	3	2	3	19
4	2	2	4	16
4	NA	3	4	15
5	4	3	2	18
4	4	3	4	17
5	2	4	2	19
4	3	4	3	17
5	4	3	4	NA
4	4	4	4	19
4	4	3	4	20
4	3	4	4	5
5	4	3	4	19
5	4	3	4	16
5	4	3	5	15
5	4	3	4	16
2	3	2	4	18
4	3	5	3	16
4	4	3	4	15
4	2	1	4	17
5	3	2	3	NA
5	4	2	2	20
5	4	3	5	19
4	3	2	4	7
4	2	3	3	13
5	3	5	4	16
5	3	4	4	16
5	4	5	4	NA
4	3	2	3	18
4	3	4	4	18
5	3	3	4	16
5	3	3	4	17
5	3	2	4	19
4	5	3	5	16
5	4	2	4	19
5	NA	4	2	13
4	3	NA	4	16
4	4	3	5	13
5	4	1	2	12
5	1	1	3	17
4	4	3	4	17
4	3	NA	3	17
5	3	2	4	16
3	4	3	4	16
3	2	4	4	14
5	4	3	5	16
4	5	4	3	13
4	4	4	4	16
5	4	3	4	14
5	4	4	4	20
4	NA	4	4	12
5	4	3	4	13
4	2	3	4	18
4	4	5	4	14
4	2	2	4	19
5	5	4	4	18
4	5	3	3	14
4	2	3	3	18
4	4	3	2	19
4	3	4	2	15
4	3	4	2	14
2	3	NA	3	17
4	4	5	4	19
4	4	3	4	13
5	3	4	4	19
4	3	3	4	18
5	4	5	4	20
4	4	4	4	15
4	2	4	4	15
3	3	4	2	15
4	3	4	3	20
2	3	2	2	15
4	4	3	3	19
5	4	4	4	18
3	4	3	5	18
4	4	3	4	15
5	5	5	5	20
2	4	3	3	17
5	3	1	5	12
5	4	3	4	18
5	4	4	5	19
4	2	2	2	20
4	3	3	3	NA
5	3	4	4	17
5	3	4	5	15
4	4	4	4	16
4	4	4	5	18
5	4	NA	5	18
5	4	4	5	14
5	3	3	4	15
4	3	3	4	12
5	3	3	4	17
4	2	NA	4	14
5	3	4	4	18
4	2	2	4	17
5	4	5	5	17
5	5	2	5	20
4	3	2	5	16
4	3	2	4	14
4	3	3	4	15
5	2	3	4	18
5	3	4	5	20
4	3	NA	4	17
4	3	4	4	17
5	4	3	4	17
5	4	4	4	17
4	3	4	2	15
4	4	3	4	17
4	1	3	2	18
4	5	5	4	17
5	4	4	3	20
5	3	3	5	15
4	5	3	2	16
NA	4	3	4	15
4	3	3	3	18
4	NA	NA	NA	11
3	4	3	3	15
4	4	2	4	18
5	3	4	5	20
4	2	4	3	19
4	4	4	2	14
5	3	5	5	16
3	3	2	4	15
4	4	2	4	17
1	2	3	2	18
5	3	3	5	20
4	4	2	3	17
5	4	4	3	18
3	3	2	3	15
4	4	3	4	16
4	4	NA	4	11
4	3	3	4	15
4	2	3	4	18
5	4	4	4	17
5	2	2	4	16
5	3	5	5	12
5	4	4	3	19
4	3	3	NA	18
5	2	5	4	15
5	4	2	4	17
4	1	4	5	19
3	5	4	3	18
4	4	4	4	19
4	3	3	2	16
5	4	5	5	16
4	4	3	4	16
4	3	3	3	14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=pearson)
KVDD1KVVD2KVVD3KVDD4ITHSUM
KVDD110.1020.1450.3360.078
KVVD20.10210.1960.080.05
KVVD30.1450.19610.1270.085
KVDD40.3360.080.1271-0.033
ITHSUM0.0780.050.085-0.0331

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=pearson) \tabularnewline
  & KVDD1 & KVVD2 & KVVD3 & KVDD4 & ITHSUM \tabularnewline
KVDD1 & 1 & 0.102 & 0.145 & 0.336 & 0.078 \tabularnewline
KVVD2 & 0.102 & 1 & 0.196 & 0.08 & 0.05 \tabularnewline
KVVD3 & 0.145 & 0.196 & 1 & 0.127 & 0.085 \tabularnewline
KVDD4 & 0.336 & 0.08 & 0.127 & 1 & -0.033 \tabularnewline
ITHSUM & 0.078 & 0.05 & 0.085 & -0.033 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=pearson)[/C][/ROW]
[ROW][C] [/C][C]KVDD1[/C][C]KVVD2[/C][C]KVVD3[/C][C]KVDD4[/C][C]ITHSUM[/C][/ROW]
[ROW][C]KVDD1[/C][C]1[/C][C]0.102[/C][C]0.145[/C][C]0.336[/C][C]0.078[/C][/ROW]
[ROW][C]KVVD2[/C][C]0.102[/C][C]1[/C][C]0.196[/C][C]0.08[/C][C]0.05[/C][/ROW]
[ROW][C]KVVD3[/C][C]0.145[/C][C]0.196[/C][C]1[/C][C]0.127[/C][C]0.085[/C][/ROW]
[ROW][C]KVDD4[/C][C]0.336[/C][C]0.08[/C][C]0.127[/C][C]1[/C][C]-0.033[/C][/ROW]
[ROW][C]ITHSUM[/C][C]0.078[/C][C]0.05[/C][C]0.085[/C][C]-0.033[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=pearson)
KVDD1KVVD2KVVD3KVDD4ITHSUM
KVDD110.1020.1450.3360.078
KVVD20.10210.1960.080.05
KVVD30.1450.19610.1270.085
KVDD40.3360.080.1271-0.033
ITHSUM0.0780.050.085-0.0331







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
KVDD1;KVVD20.10170.09710.087
p-value(0.2217)(0.2435)(0.2416)
KVDD1;KVVD30.14480.14790.1322
p-value(0.0812)(0.0749)(0.0727)
KVDD1;KVDD40.33610.33640.3053
p-value(0)(0)(0)
KVDD1;ITHSUM0.07830.11290.0934
p-value(0.3474)(0.1749)(0.178)
KVVD2;KVVD30.19550.16640.1429
p-value(0.018)(0.0447)(0.0444)
KVVD2;KVDD40.08040.08710.0755
p-value(0.3349)(0.2957)(0.2929)
KVVD2;ITHSUM0.04990.0680.0541
p-value(0.55)(0.4151)(0.4193)
KVVD3;KVDD40.12720.11920.1015
p-value(0.126)(0.1518)(0.1539)
KVVD3;ITHSUM0.08510.0740.0607
p-value(0.3068)(0.3747)(0.3606)
KVDD4;ITHSUM-0.0333-0.0173-0.0168
p-value(0.6896)(0.8354)(0.8024)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
KVDD1;KVVD2 & 0.1017 & 0.0971 & 0.087 \tabularnewline
p-value & (0.2217) & (0.2435) & (0.2416) \tabularnewline
KVDD1;KVVD3 & 0.1448 & 0.1479 & 0.1322 \tabularnewline
p-value & (0.0812) & (0.0749) & (0.0727) \tabularnewline
KVDD1;KVDD4 & 0.3361 & 0.3364 & 0.3053 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
KVDD1;ITHSUM & 0.0783 & 0.1129 & 0.0934 \tabularnewline
p-value & (0.3474) & (0.1749) & (0.178) \tabularnewline
KVVD2;KVVD3 & 0.1955 & 0.1664 & 0.1429 \tabularnewline
p-value & (0.018) & (0.0447) & (0.0444) \tabularnewline
KVVD2;KVDD4 & 0.0804 & 0.0871 & 0.0755 \tabularnewline
p-value & (0.3349) & (0.2957) & (0.2929) \tabularnewline
KVVD2;ITHSUM & 0.0499 & 0.068 & 0.0541 \tabularnewline
p-value & (0.55) & (0.4151) & (0.4193) \tabularnewline
KVVD3;KVDD4 & 0.1272 & 0.1192 & 0.1015 \tabularnewline
p-value & (0.126) & (0.1518) & (0.1539) \tabularnewline
KVVD3;ITHSUM & 0.0851 & 0.074 & 0.0607 \tabularnewline
p-value & (0.3068) & (0.3747) & (0.3606) \tabularnewline
KVDD4;ITHSUM & -0.0333 & -0.0173 & -0.0168 \tabularnewline
p-value & (0.6896) & (0.8354) & (0.8024) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]KVDD1;KVVD2[/C][C]0.1017[/C][C]0.0971[/C][C]0.087[/C][/ROW]
[ROW][C]p-value[/C][C](0.2217)[/C][C](0.2435)[/C][C](0.2416)[/C][/ROW]
[ROW][C]KVDD1;KVVD3[/C][C]0.1448[/C][C]0.1479[/C][C]0.1322[/C][/ROW]
[ROW][C]p-value[/C][C](0.0812)[/C][C](0.0749)[/C][C](0.0727)[/C][/ROW]
[ROW][C]KVDD1;KVDD4[/C][C]0.3361[/C][C]0.3364[/C][C]0.3053[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]KVDD1;ITHSUM[/C][C]0.0783[/C][C]0.1129[/C][C]0.0934[/C][/ROW]
[ROW][C]p-value[/C][C](0.3474)[/C][C](0.1749)[/C][C](0.178)[/C][/ROW]
[ROW][C]KVVD2;KVVD3[/C][C]0.1955[/C][C]0.1664[/C][C]0.1429[/C][/ROW]
[ROW][C]p-value[/C][C](0.018)[/C][C](0.0447)[/C][C](0.0444)[/C][/ROW]
[ROW][C]KVVD2;KVDD4[/C][C]0.0804[/C][C]0.0871[/C][C]0.0755[/C][/ROW]
[ROW][C]p-value[/C][C](0.3349)[/C][C](0.2957)[/C][C](0.2929)[/C][/ROW]
[ROW][C]KVVD2;ITHSUM[/C][C]0.0499[/C][C]0.068[/C][C]0.0541[/C][/ROW]
[ROW][C]p-value[/C][C](0.55)[/C][C](0.4151)[/C][C](0.4193)[/C][/ROW]
[ROW][C]KVVD3;KVDD4[/C][C]0.1272[/C][C]0.1192[/C][C]0.1015[/C][/ROW]
[ROW][C]p-value[/C][C](0.126)[/C][C](0.1518)[/C][C](0.1539)[/C][/ROW]
[ROW][C]KVVD3;ITHSUM[/C][C]0.0851[/C][C]0.074[/C][C]0.0607[/C][/ROW]
[ROW][C]p-value[/C][C](0.3068)[/C][C](0.3747)[/C][C](0.3606)[/C][/ROW]
[ROW][C]KVDD4;ITHSUM[/C][C]-0.0333[/C][C]-0.0173[/C][C]-0.0168[/C][/ROW]
[ROW][C]p-value[/C][C](0.6896)[/C][C](0.8354)[/C][C](0.8024)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
KVDD1;KVVD20.10170.09710.087
p-value(0.2217)(0.2435)(0.2416)
KVDD1;KVVD30.14480.14790.1322
p-value(0.0812)(0.0749)(0.0727)
KVDD1;KVDD40.33610.33640.3053
p-value(0)(0)(0)
KVDD1;ITHSUM0.07830.11290.0934
p-value(0.3474)(0.1749)(0.178)
KVVD2;KVVD30.19550.16640.1429
p-value(0.018)(0.0447)(0.0444)
KVVD2;KVDD40.08040.08710.0755
p-value(0.3349)(0.2957)(0.2929)
KVVD2;ITHSUM0.04990.0680.0541
p-value(0.55)(0.4151)(0.4193)
KVVD3;KVDD40.12720.11920.1015
p-value(0.126)(0.1518)(0.1539)
KVVD3;ITHSUM0.08510.0740.0607
p-value(0.3068)(0.3747)(0.3606)
KVDD4;ITHSUM-0.0333-0.0173-0.0168
p-value(0.6896)(0.8354)(0.8024)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.10.10.1
0.020.20.10.1
0.030.20.10.1
0.040.20.10.1
0.050.20.20.2
0.060.20.20.2
0.070.20.20.2
0.080.20.30.3
0.090.30.30.3
0.10.30.30.3

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.1 & 0.1 & 0.1 \tabularnewline
0.02 & 0.2 & 0.1 & 0.1 \tabularnewline
0.03 & 0.2 & 0.1 & 0.1 \tabularnewline
0.04 & 0.2 & 0.1 & 0.1 \tabularnewline
0.05 & 0.2 & 0.2 & 0.2 \tabularnewline
0.06 & 0.2 & 0.2 & 0.2 \tabularnewline
0.07 & 0.2 & 0.2 & 0.2 \tabularnewline
0.08 & 0.2 & 0.3 & 0.3 \tabularnewline
0.09 & 0.3 & 0.3 & 0.3 \tabularnewline
0.1 & 0.3 & 0.3 & 0.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.1[/C][C]0.1[/C][C]0.1[/C][/ROW]
[ROW][C]0.02[/C][C]0.2[/C][C]0.1[/C][C]0.1[/C][/ROW]
[ROW][C]0.03[/C][C]0.2[/C][C]0.1[/C][C]0.1[/C][/ROW]
[ROW][C]0.04[/C][C]0.2[/C][C]0.1[/C][C]0.1[/C][/ROW]
[ROW][C]0.05[/C][C]0.2[/C][C]0.2[/C][C]0.2[/C][/ROW]
[ROW][C]0.06[/C][C]0.2[/C][C]0.2[/C][C]0.2[/C][/ROW]
[ROW][C]0.07[/C][C]0.2[/C][C]0.2[/C][C]0.2[/C][/ROW]
[ROW][C]0.08[/C][C]0.2[/C][C]0.3[/C][C]0.3[/C][/ROW]
[ROW][C]0.09[/C][C]0.3[/C][C]0.3[/C][C]0.3[/C][/ROW]
[ROW][C]0.1[/C][C]0.3[/C][C]0.3[/C][C]0.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.10.10.1
0.020.20.10.1
0.030.20.10.1
0.040.20.10.1
0.050.20.20.2
0.060.20.20.2
0.070.20.20.2
0.080.20.30.3
0.090.30.30.3
0.10.30.30.3



Parameters (Session):
par1 = 55555pearson ; par2 = Include Quarterly DummiesDo not include Seasonal DummiesDo not include Seasonal DummiesDo not include Seasonal DummiesDo not include Seasonal DummiesDo not include Seasonal DummiesDo not include Seasonal Dummies ; par3 = No Linear TrendNo Linear TrendNo Linear TrendNo Linear TrendNo Linear TrendNo Linear TrendNo Linear Trend ; par4 = 0000000 ; par5 = 0000000 ;
Parameters (R input):
par1 = pearson ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')